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Abstract. Second-harmonic-generation (SHG) imaging of mouse ovaries ex vivo was used to detect collagen
structure changes accompanying ovarian cancer development. Dosing with 4-vinylcyclohexene diepoxide and
7,12-dimethylbenz[a]anthracene resulted in histologically confirmed cases of normal, benign abnormality, dyspla-
sia, and carcinoma. Parameters for each SHG image were calculated using the Fourier transform matrix and
gray-level co-occurrence matrix (GLCM). Cancer versus normal and cancer versus all other diagnoses showed
the greatest separation using the parameters derived from power in the highest-frequency region and GLCM energy.
Mixed effects models showed that these parameters were significantly different between cancer and normal
(P < 0.008). Images were classified with a support vector machine, using 25% of the data for training and 75%
for testing. Utilizing all images with signal greater than the noise level, cancer versus not-cancer specimens
were classified with 81.2% sensitivity and 80.0% specificity, and cancer versus normal specimens were classified
with 77.8% sensitivity and 79.3% specificity. Utilizing only images with greater than of 75% of the field of view
containing signal improved sensitivity and specificity for cancer versus normal to 81.5% and 81.1%. These results
suggest that using SHG to visualize collagen structure in ovaries could help with early cancer detection.© 2012 Society

of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.7.076002]
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1 Introduction
In the U.S. alone there are more than 20,000 new cases of ovar-
ian cancer each year and more than 15,000 deaths per year. The
most common type of ovarian malignancy is derived from
epithelial cells and is more likely to occur in postmenopausal
women. Mortality rates are high because an effective screening
test does not currently exist. Only 15% of ovarian cancers are
found before metastasis has occurred. If ovarian cancer is found
and treated before metastasis, the 5-year survival rate is 94%
(versus 28% for metastatic disease).1 Thus, an early diagnostic
test to detect premalignant changes would save many lives.

Current methods of screening consist of measuring serum
levels of cancer antigen 125 (CA-125) and transvaginal ultra-
sound.2,3 Serum levels of CA-125 are often elevated in
women with ovarian cancer.2,4–7 However, CA-125 levels are
influenced by conditions other than ovarian cancer such as
other cancers, lung disease, liver cirrhosis, hysterectomy, obe-
sity, and smoking habits.8–12 Furthermore, CA-125 is usually
elevated only in patients with stage II–IV cancer, not in patients
with borderline tumors or stage I ovarian cancer.13

Transvaginal ultrasound can be used to visualize both ovaries
and evaluate the size of lesions to determine the extent of tumor

growth and metastasis.14,15 However, tumor morphology and
vascular perfusion, as seen by ultrasound, are not enough to
identify abnormalities in ovaries of normal volume or distin-
guish between benign and malignant tumors.16,17 Furthermore,
CA-125 combined with ultrasound does not decrease the
number of mortalities resulting from ovarian cancer.18,19

Owing to the low performance of CA-125 and ultrasound in
detection of early cancers, women who are at high risk may be
advised to undergo a prophylactic salpingo-oophorectomy
(removal of the ovaries and fallopian tubes). Whereas this
procedure is highly effective at reducing cancer risk, removal of
the ovaries is known to increase morbidity and mortality.20–24

Optical methods that have been investigated for detection of
ovarian cancer include spectroscopy, optical coherence tomo-
graphy (OCT), confocal microscopy, photoacoustic imaging
(PAI), and multiphoton microscopy (MPM). Several studies
have been performed utilizing these modalities. However,
most comparisons are between normal and advanced cancer
because women rarely present with early-stage ovarian cancer.

Reflectance and fluorescence spectroscopy can differentiate
normal and neoplastic ovarian tissue with good sensitivity and
specificity.25–29 Limitations of spectroscopy include shallow
depth of penetration and low spatial resolution. OCT images
of the ovary show details of tissue microstructure such as surface
epithelium, follicles, cysts, collagen bundles, and vessels.30,31Address all correspondence to: Jennifer K. Barton, University of Arizona, Biome-
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Furthermore, differences between normal and abnormal/neo-
plastic ovarian tissue are seen, such as epithelial inclusions,
invaginations, and differences in attenuation.27,28,30,32,33 How-
ever, OCT does not have the resolution necessary to visualize
dysplasia. Confocal microscopy produces subcellular-resolution
images that can be used to identify cancer occurring on the sur-
face of the ovary, but the depth of imaging is limited.29,34,35 PAI
has the largest depth of imaging (2 to 3 cm) and, owing to dif-
ferences in absorption properties, can visualize large structures
such as corpora lutea, follicles, and blood vessels.31,36 Likewise,
malignant and normal ovaries in postmenopausal women can be
distinguished by their different absorption properties.37 How-
ever, PAI has relatively low resolution and may be confounded
by benign conditions with high vascularity or hemorrhage, or
early-stage cancers without significant vascularity changes.

MPM can achieve submicron resolution, comparable to that
of a confocal microscope. Owing to the decrease in scattering at
longer wavelengths, MPM using near-infrared light has the abil-
ity to image hundreds of microns deeper than confocal micro-
scopy using ultraviolet or visible light. Also, less out-of-focus
fluorescence emission is generated, due to the nonlinear proper-
ties of the multiphoton process, potentially increasing depth of
imaging and improving resolution. The resolution limit of MPM
depends on the illumination point spread function. The depth
limit of MPM depends on the pulse energy, tissue attenuation
(from absorption and scattering), and ratio of collected signal
to background signal.38 In MPM, femtosecond pulsed laser
light is focused onto the tissue with high numerical aperture
optics, resulting in high instantaneous power density in a
small volume of tissue. In two-photon excited fluorescence
(TPEF), two photons are simultaneously absorbed by a fluoro-
phore and then emitted as one photon at a higher frequency than
the incident light. In second harmonic generation (SHG), phase
matching of photons in noncentrosymmetric structures results in
a scattering event in which two photons are combined into one
photon at twice the frequency of the incident light. Remitted
light from TPEF and SHG are separated using bandpass filters
and collected with photomultiplier tubes. The laser beam is
scanned throughout the tissue volume to create a 3-D image
set. Because the probability of the multiphoton process is
very low outside the small focal volume, very fine sectioning
capacity is possible. MPM can be used to see changes in endo-
genous cellular fluorescence and collagen structure as a result of
ovarian cancer.39–41 SHG shows that normal ovaries have thin
collagen fibers organized in a net-like structure, whereas malig-
nant ovaries have a denser, wavy collagen structure, possibly
resulting from recruitment of activated fibroblasts to the outer
rim of the tumor.39,41–43 Furthermore, the collagen structure
of normal low-risk and normal high-risk postmenopausal ovar-
ies is slightly different.39 SHG may offer a useful balance of
sensitivity, resolution, and depth of imaging.

Imaging ovarian tissue in vivo or surgical samples ex vivo can
provide useful indication of the difference between normal and
cancerous ovaries, but it is difficult to ascertain what changes
preceding cancer development can be visualized. Women
usually present with advanced disease, and the etiology of ovar-
ian cancer is poorly understood. Mouse models of ovarian can-
cer may provide insight into ovarian cancer development. We
utilized a cancer model in mice that had undergone early ovarian
failure because most ovarian cancers arise in postmenopausal
women.44 Thus, a follicle-deplete, ovary-intact animal closely
approximates the natural human progression through the events

of perimenopause and the postmenopausal stage. 4-Vinylcyclo-
hexene diepoxide (VCD) has been found to induce premature
ovarian failure in mice and rats by accelerating the process
of atresia in ovarian small pre-antral follicles.45 Previous studies
in mice demonstrate that VCD-induced follicle loss can cause
depletion of the smallest pre-antral follicles within 15 days of
daily dosing and complete ovarian failure within 46 days of
the onset of dosing.46 As a result, the mouse retains little residual
ovarian tissue. The model has been developed by treating mice
with VCD to induce ovarian failure and subsequently exposing
the ovary to a known carcinogen, 7,12-dimethylbenz[a]anthra-
cene (DMBA), to induce ovarian cancer. The VCD/DMBA
model develops a variety of benign and malignant tumors.47

Our overall goal is to develop an imaging method that can
determine with certainty whether a woman’s ovaries are normal
or ovarian cancer is developing. With such a method, high-risk
women could undergo a laparoscopic diagnostic test to deter-
mine if their ovaries are healthy to avoid, or prolong time to,
oophorectomy. In this study, we utilized SHG microscopy to
examine micron-scale collagen structure in normal, atypical,
and cancerous mouse ovaries. By examining alterations in
collagen structure, we may ultimately be able to identify the
changes that precede ovarian cancer. Differences in SHG micro-
scopy images of the diagnostic categories were examined by eye
and quantified with numerical parameters relating to image
frequency content and second-order gray-level statistics.
Further, a classification scheme was developed using a support
vector machine.

2 Methods

2.1 Animals

All experiments were performed per NIH guidelines, and pro-
tocols were approved by the University of Arizona Institutional
Animal Care and Use Committee. Female B6C3F1 mice (age 28
days, Harlan, Dublin, VA) were housed in microisolators per
NIH guidelines and allowed a 7-day acclimation period before
initiating the experiment. Fifty-two 28-day-old mice received
intraperitoneal (IP) injections of VCD, 160 mg∕kg∕day in
sesame oil, daily for 20 days, or received sesame oil vehicle
only as control. Four months after the end of IP dosing, animals
received a single injection of DMBA, 50 μg in 5 μL sesame oil,
or 5 μL sesame oil vehicle for controls, under the bursa of the
right ovary. Sterile surgical method was used to expose the ovar-
ian bursa for subbursal injection. Prior to surgery animals were
anesthetized by IP injection of 2% Avertin at 0.015 mL per gram
body weight. The left ovary was not injected. Therefore, there
were four experimental groups: both VCD and DMBA exposed,
only VCD exposed, only DMBA exposed, and neither VCD nor
DMBA exposed. Ovaries were harvested at 5 or 7 months after
subbursal injection with DMBA and immediately imaged. Time
from ovary excision to completion of imaging was less than 1 h.

2.2 Imaging

Imaging was performed with a single-beam multiphoton micro-
scope (TrimScope, LaVision BioTec, Bielefeld, Germany) using
a titanium:sapphire laser light source (Chameleon Ultra2,
Coherent, UK) coupled to the scanner unit, with a pulse
width of 120 fs in the sample. The laser intensity was adjusted
with an electro-optical modulator (EOM 350-80, Conoptics,
USA). Simultaneous SHG and TPEF image data were recorded

Journal of Biomedical Optics 076002-2 July 2012 • Vol. 17(7)

Watson et al.: Analysis of second-harmonic-generation microscopy : : :



through non-descanning reverse detection using triple detector
port equipped with Galium Arsenide (H7422A-40, Hamamatsu,
Hamamatsu City, Japan) and bialkali sensors (H6780-01 and
H6780-20, Hamamatsu). For this study, only the SHG image
data were analyzed. The excitation wavelength was set to
780 nm, and a bandpass filter FF01-377∕50 (Semrock) and a
dichroic mirror Di01-R405-25 × 36 (Chroma) were used to col-
lect light from SHG. Power on the sample was set to 20 mW.
Pixel dwell time was 4.61 μs, and three-line summing was used.
Images were taken at 10-μm depth increments from the surface
of the tissue to 60 to 100 μm depth. All images had a 400- by
400-μm field of view and contained 993 by 993 or 1021 by 1021
pixels with 14-bit grayscale resolution.

2.3 Histology and Pathological Evaluation

After imaging, ovaries were fixed in Bouin’s solution for 2 to
4 h, transferred to 70% ethanol, dehydrated, embedded in par-
affin blocks, and sectioned at 5 μm thickness. Orientation was
carefully maintained from explant to imaging, fixation, paraffin
embedding, and sectioning, by maintaining anatomical orienta-
tion at explant and placing the ovary face up on filter paper indi-
cating medial-lateral and superior-inferior locations. Histology
sections were taken perpendicular to the area imaged, allowing a
cross-sectional view of the imaged edge. Every 20th section was
mounted and stained with hematoxylin and eosin. All histologic
specimens were evaluated by a pathologist and a gynecologic
oncologist with veterinary training. Any ovary with suspected
tumor had additional sections immunostained with cytokeratin
(anti-cytokeratin 18 antibody [E431-1] and rabbit polyclonal to
wide-spectrum cytokeratin, Abcam Inc., Cambridge, MA), per
the manufacturer’s recommended protocol, to determine if the
tumor was of epithelial origin. The specimens were diagnosed
per pathologic findings into the following seven categories:
normal, DMBA-effect, tubular adenoma, tubular adenoma
with areas of focal dysplasia, granulosa cell tumor, Sertoli–
Leydig cell tumor, or adenocarcinoma. Normal ovaries were
those which contained only healthy tissue or changes consistent
with a normal aging process. DMBA-effect was a benign
abnormality, caused by DMBA exposure, characterized by
epithelial cell proliferation, degenerating follicles, degenerating
corpora lutea, and highly active steroidogenic cells. Tubular ade-
noma was a benign epithelial tumor of glandular origin charac-
terized by cells organized in tubules. The limited number of
granulosa cell and Seroli–Leydig cell tumors seen precluded
their inclusion in the image analysis. Adenocarcinoma, a malig-
nant tumor arising from the epithelial cells of glandular tissue, is
the most common form of ovarian cancer in women.

2.4 Analysis and Classification

Images were analyzed by eye and characteristic features were
identified. On the basis of visual examination, it was expected
that computation of spatial frequency content and standard gray-
level co-occurrence matrix (GLCM) parameters might capture
the variations in collagen fiber thickness and periodicity seen
by eye, subsequently enabling automatic classification of
images into correct diagnostic groups. All images were prepro-
cessed by resampling to 1024 by 1024 pixels using bilinear
interpolation. All image processing and analysis was performed
in MATLAB (R2011a, Mathworks).48

From the fifty-two animals included in the study, 92 speci-
mens were imaged and 59 specimens were included in the

analysis. Twelve specimens were not imaged due to instrument
or investigator error. Thirty-one of the specimens were not
included in the analysis because they did not contain ovary
or the ovary was entirely covered by fat and/or connective tissue
in the area imaged. Two other specimens were excluded from
the analysis because they were the only example from a unique
diagnosis (granulosa cell tumor and Sertoli—Leydig cell
tumor). Images were excluded from the analysis if the average
gray level was less than 1% above the noise floor of the imaging
system, if they contained artifacts from fur or other debris, or if
the imaged area was not ovary, as verified by histology.

After exclusion of unusable ovaries and images, the following
data were available for analysis: normal (25 ovaries, 315 images),
DMBA-effect (11 ovaries, 115 images), tubular adenoma (10
ovaries, 94 images), tubular adenoma with dysplasia (9 ovaries,
54 images), and adenocarcinoma (4 ovaries, 55 images).

2.5 Fourier Analysis

The two-dimensional discrete Fourier transform was computed
for each image using the standard FFT algorithm. The images
contained primarily low-frequency content with some high-
frequency noise. To remove noise and analyze the lower-
frequency content, a frequency cutoff was determined by eval-
uating the fiber size by eye. The smallest collagen fiber width
was approximately 6 pixels, which equates to a spatial fre-
quency of one-sixth the maximum, so the frequency range
used in the analysis was limited to the lowest sixth of spatial
frequencies. This lower frequency range was divided into
three equal-width circular bands: low-, middle-, and high-
frequency bands. The power in each band was computed and
normalized to the total power in the three bands. The DC
value was excluded from the lowest-frequency region.

2.6 Gray-Level Co-Occurrence Matrix Analysis

GLCM analysis is a widely used texture analysis method devel-
oped by Haralik et al.49 The GLCM is formed by counting
the number of occurrences of a gray level adjacent to another
gray level, at a specified pixel distance and direction. The
result is a matrix with rows and columns representing gray
levels and elements containing the probability of the gray-
level co-occurrence. A separate matrix can be generated for
each pixel separation and each direction. Symmetric GLCMs
were computed using 64 gray-levels with the gray-level limits
being the minimum and maximum gray-levels in the image—
that is, gray-level values in each image were linearly scaled such
that the highest gray-level in the image became 64 and the low-
est gray-level in the image became 1. For a 1024- by 1024-pixel
image, a practical upper bound on pixel separation was 50 pix-
els. Separations of 1 to 50 in 1-pixel increments were used for
this study. Because collagen fiber orientation was not consistent
from ovary to ovary, parameters for four orientations (0 deg,
45 deg, 90 deg, and 135 deg) were computed and averaged.

From each GLCM, four parameters (contrast, correlation,
energy, and homogeneity) that capture essential image charac-
teristics were computed as follows:

Contrast∶
X

i;j

ji − jj2pði; jÞ; (1)

Correlation∶
X

i;j

ði − μiÞðj − μjÞ½pði; jÞ�
σiσj

; (2)
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Energy∶
X

i;j

pði; jÞ2; (3)

Homogeneity∶
X

i;j

pði; jÞ
1þ ji − jj ; (4)

where pði; jÞ is the probability of gray level i occurring next to
gray level j, μi ¼

P
i

P
j i · pði; jÞ, μj ¼

P
i

P
j j · pði; jÞ,

σi ¼
P

i

P
j ði − μiÞ2 · pði; jÞ, and σj ¼

P
i

P
j ðj − μjÞ2 ·

pði; jÞ. All parameters have a maximum value of 1 and a mini-
mum value of 0 or–1.48,49 There are many other parameters that
can be computed from the GLCM. To minimize the computation
time required, a few parameters with the most potential were
selected.

High contrast occurs when an image has a high number of
pixel pairs with large differences in gray level occurring at the
specified separation and orientation. High correlation occurs in
images with periodic features. Energy (or angular second
moment) is highest in images with uniform gray level or uniform
gray-level differences at the specified separation and lower for
those with more variation in gray levels. Finally, homogeneity
(or inverse difference moment) is highest in images with pixels
of the same or similar gray levels at the specified separation and
orientation.

Combining the Fourier and GLCM parameters resulted in a
total of 203 parameters to describe each single image. The first
three parameters were the power in the low-, middle-, and high-
frequency bands. The rest of the parameters are GLCM contrast,
correlation, energy, and homogeneity for 1-;2-; 3-; : : : ; 50-pixel
separations.

2.7 Image Classification

The five diagnoses were used to separate the images for classi-
fication. Carcinoma was compared to normal, and carcinoma
was compared to all other images (noncarcinoma). Also, benign
tubular adenoma was compared to tubular adenoma with dys-
plasia. Image classification was performed using a support vec-
tor machine (SVM) algorithm. The SVM is a machine learning
classifier for separating two classes.50 MATLAB default settings
were used, with sequential minimal optimization for finding the
hyperplane and either a linear or quadratic kernel to map the data
into kernel space. The classification function uses the equation

c ¼
X

i

aikðsi; xÞ þ b; (5)

where si are the support vectors,ai are the weights (slope), b is
the bias (intercept), and k is a kernel function, which was chosen
to be linear (dot product) or quadratic. If c ≥ 0, then x is clas-
sified as a member of the first group; otherwise x is classified as
a member of the second group.49

Training was performed on 25% of the data selected at ran-
dom. Training was performed 100 times, with replacement of
training images to the image pool before each subsequent train-
ing iteration. The performance of the classifier was determined
by finding the average and standard deviation of the area under
the receiver operator characteristic (ROC) curve for the 100
training sets. The ROC curve is a plot of the true-positive
rate versus the false-positive rate (i.e., sensitivity versus 1—
specificity) and is calculated using the true classes (specified
by the user) and the output classes from the SVM at various
bias values. A larger area under the ROC indicates better

classifier performance.51,52 Sensitivity and specificity were
determined by selecting the point on the ROC curve where sen-
sitivity and specificity were approximately equal.

The minimum number of parameters for optimal binary clas-
sification of each group pair was found using sequential forward
selection (SFS).53 For SFS, the area under the ROC curve was
evaluated for each of the 203 parameters using 100 training sets
(all images in the training set have known diagnoses). The best
single parameter was then combined with each of the remaining
202 parameters, and 100 training sets were performed to find the
highest performing pair of parameters. The best two parameters
were then combined with the remaining 201 parameters, and
100 training sets were performed to find the highest performing
trio of parameters. This process was repeated until the optimal
set of parameters was identified. An additional parameter was
kept only if the additional parameter increased the performance
by greater than one standard deviation from the previous perfor-
mance. Differences in optimal parameters were checked for
statistical significance using a linear mixed-effects model, to
account for multiple images from each ovary. The mixed-effects
model included a random intercept and a robust sandwich
estimator to estimate the covariance matrix.

To verify that the properly trained classifier performs better
than random guessing, the classifier was challenged with a
random grouping test, in which training was performed as
above, but classes were assigned randomly instead of correctly.
The random assignments were given in the same proportion as
true image classes.

Many images contained large regions without signal. Images
with high and low signal area were trained on and tested sepa-
rately to see if higher signal area resulted in better sensitivity and
specificity. Images from normal and carcinoma diagnoses were
placed into the following groups based on visual inspection:
images having greater than 75% of the field of view (FOV) con-
taining signal (19 carcinoma and 54 normal), images with
greater than 25% of the FOV containing signal (40 carcinoma
and 119 normal), and images with less than 25% of the FOV
containing signal (8 carcinoma and 12 normal). The parameters
that were found to be best for normal versus carcinoma (when
training on all images) were used for training, and 100 iterations
were performed.

3 Results
Images representing the general appearance of each diagnosis
are shown in Fig. 1. Images of normal ovaries have thin, straight
collagen fibers that weave in all directions around the many dif-
ferent-sized follicles. Images from DMBA-effect ovaries have
various-sized fibers with small voids in some areas. Tubular ade-
noma ovary images have primarily thin collagen fibers with dis-
tinctive fuzzy dots. Images from ovaries with tubular adenoma
and tubular adenoma with dysplasia are similar, but more var-
iation in collagen fiber thickness can be seen in tubular adenoma
with dysplasia. The carcinoma ovary images tend to have thick,
wavy collagen fibers that are ordered in the same direction, close
together, and in thick bands not covering the entire field of view.

The SFS resulted in selection of two or three image analysis
parameters for each binary classification. Using more than three
parameters never resulted in improved performance. Carcinoma
was best differentiated from normal alone, and from all other
diagnoses combined, using two parameters: power in the highest
frequency region (PHF) and GLCM energy with 38-pixel
separation. Tubular adenoma was best differentiated from
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tubular adenoma with dysplasia using three parameters: GLCM
contrast at 17- and 25-pixel separation and GLCM energy at 22-
pixel separation. The average values of these five parameters are
shown in Figs. 2 and 3. There was a statistically significant dif-
ference between carcinoma and all other diagnoses for PHF
(P < 0.0150) (Fig. 2). There was a statistically significant dif-
ference between cancer and all other diagnoses, except tubular
adenoma with dysplasia, for GLCM energy with 38-pixel
separation (P ≤ 0.0025) (Fig. 2). There was a statistically
significant difference between tubular adenoma and tubular
adenoma with dysplasia for GLCM contrast at 17- and
25-pixel separation and GLCM energy at 22-pixel separation
(P ≤ 0.0015) (Fig. 3).

Visualizing these data in another manner, Fig. 4 shows a
plot of PHF versus GLCM energy at 38-pixel separation for car-
cinoma and normal diagnoses. Carcinoma values appear to fall
on the outer border of the normal values. Figure 5 shows a plot
of GLCM contrast at 17- and 25-pixel separations for tubular
adenoma and tubular adenoma with dysplasia diagnoses. The
tubular adenoma with dysplasia values appear to fall on a line
with similar slope but higher intercept than tubular adenoma.

The area under the ROC curve (AUC) was always greater
than 0.78 for correct class and less than 0.61 for random
class, showing that all training groups that were trained with
the correct class performed better than training groups that
were trained with random class assignments (25% of data in
training, 75% testing, 100 iterations). Also, quadratic kernel
resulted in a performance similar to that of linear kernel
(AUC 0.83 for linear and AUC 0.81 for quadratic) for carcinoma
versus normal and carcinoma versus noncarcinoma.

When training on 25% and testing on the remaining 75%, the
classifier showed better than 74% average sensitivity and

Fig. 1 Images from three ovaries of each diagnosis: normal (a–c),
DMBA-effect (d–f), tubular adenoma (g–i), tubular adenoma with
dysplasia (j–l), and carcinoma (m–o).

Fig. 2 Average values for parameters used to separate carcinoma from
normal and carcinoma from noncarcinoma. TA ¼ tubular adenoma,
TD ¼ tubular adenoma with dysplasia. Only positive standard devia-
tions are shown.

Fig. 3 Average values for parameters used to separate tubular adenoma
(TA) from tubular adenoma with dysplasia (TD). Only positive standard
deviations are shown.

Fig. 4 Plot of power in the high-frequency region versus GLCM energy
for carcinoma and normal diagnoses.
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specificity results for all groups. The quadratic kernel resulted in
higher sensitivity and specificity than the linear kernel for car-
cinoma versus normal (77.8% and 79.3%, compared to 75.4%
and 76.1%, respectively). The same result was seen for carci-
noma versus noncarcinoma (81.2% and 80.0%, compared to
76.6% and 75.4%). The highest sensitivity and specificity
achieved for each group are shown in Table 1.

For carcinoma versus normal, images with signal in less than
25% of the FOV had low sensitivity and specificity. Using
images with signal in greater than 25% of the FOV produced
sensitivity and specificity slightly better than using all images.
Using images with signal in greater than 75% of the FOV
produced the highest sensitivity and specificity (Table 2).

4 Discussion
The VCD/DMBA-treated animal model successfully led to
ovarian adenocarcinoma, the most commonly occurring ovarian
malignancy in women. Therefore, the collagen structure
changes seen in this model may be similar to structural changes
seen in human ovarian cancer. Unfortunately, the incidence of

adenocarcinoma was only 35% in the VCD/DMBA group (and
0% in the control groups). Thus, the number of carcinoma speci-
mens was very small compared to the number of specimens
from other diagnoses. Combined with relatively large variation
in the appearance of carcinoma regions, the analysis results pre-
sented here must be considered preliminary.

Both VCD and DMBA caused atrophy of ovarian tissue and
occasionally adhesions, making the ovaries difficult to find and
separate from fat and other tissue. This difficulty resulted in
exclusion of many samples that were histologically confirmed
as nonovarian tissue in the area imaged. Also, VCD and DMBA
caused effects in the ovary that are not common in women. VCD
caused the development of benign tubular adenomas. Tubular
adenomas are rare in the human ovary, so the findings related
to this, although possibly useful in a very small population,
would not directly translate to changes seen in women at
high risk for adenocarcinoma. Occasionally, the tubular adeno-
mas also developed focal areas of dysplasia. Because dysplasia
often precedes cancer, identification of collagen changes due to
dysplasia would be very useful for detecting precancerous
changes in human ovary, but it is unclear if the collagen mor-
phology changes accompanying tubular adenoma with dysplasia
would be the same as collagen morphology changes occurring
during dysplasia in the absence of tubular adenoma.

DMBA caused a condition we labeled “DMBA-effect.” The
DMBA-effect included changes associated with highly active
steroidogenic cells, degenerating follicles, degenerating corpora
lutea, and a proliferative epithelial layer. The entire effect is not
seen in humans, but proliferation of the epithelial layer is a risk
factor for ovarian cancer, so the collagen changes that were seen
in the DMBA-effect may translate to humans if the change in
collagen morphology is related to epithelial proliferation. Aver-
age parameter values for DMBA-effect images frequently fell
between values for normal and carcinoma, suggesting the pos-
sibility that collagen changes may be due to proliferation of the
epithelial layer; however, the differences in parameter values for
DMBA-effect and normal were not statistically significant.

Training results revealed that power in the highest-frequency
band and GLCM energy with 38-pixel separation were the most

Fig. 5 Plot of contrast with 17-pixel separation vs. contrast with 25-
pixel separation for tubular adenoma (TA) and tubular adenoma with
dysplasia (TD).

Table 1 Testing results for 100 iterations.

Groups tested Sensitivity, % (SD) Specificity, % (SD)

Carcinoma versus normal 77.8 (11.3) 79.2 (6.8)

Carcinoma versus noncarcinoma 81.2 (11.1) 80.0 (5.0)

TA versus TD 80.2 (3.8) 82.7 (4.6)

Note: TA ¼ tubular adenoma, TD ¼ tubular adenoma with dysplasia.

Table 2 Testing results for carcinoma versus normal.

<25% Signal area All images >25% Signal a\Area >75 Signal area

Sensitivity,
% (SD)

Specificity,
% (SD)

Sensitivity,
% (SD)

Sensitivity,
% (SD)

Sensitivity,
% (SD)

Specificity,
% (SD)

Sensitivity,
% (SD)

Specificity,
% (SD)

62.0 (32.4) 66.7 (14.4) 77.8 (11.3) 79.2 (6.8) 79.5 (15.0) 81.3 (9.7) 81.5 (12.7) 81.1 (9.7)
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useful parameters for separation of both carcinoma versus nor-
mal and carcinoma versus noncarcinoma images. It is expected
that the frequency content of the images would vary from group
to group because the collagen fiber width is visually different. In
the carcinoma images, collagen fibers appear to be much thicker
than collagen fibers in tubular adenoma or normal images,
which will translate to lower relative power in the high-
frequency region. It is also expected that GLCM energy
would change for different collagen morphologies, because
the collagen width and spacing affects the transition of gray
levels across the image. Normal has lower average energy at
38-pixel separation because the fibers are thinner, causing
more variation in gray levels when moving across the image.

The increase in performance for carcinoma versus noncarci-
noma over carcinoma versus normal is likely due to carcinoma
having greater separation from other diagnoses than from nor-
mal. For example, carcinoma and tubular adenoma with dyspla-
sia have a larger separation in the average value for power in the
high-frequency region than carcinoma and normal. Difficulty in
distinguishing the carcinoma and normal categories is likely due
to the wide variation in collagen structure within normal ovaries,
leading to a variation in computed image features. Normal ovar-
ies have considerable image variation because the collagen
structure depends on the structures it surrounds—stromal
cells, follicles, or scar tissue from a new corpus luteum will
all look different.

For simplicity, we initially intended to use only a linear ker-
nel for classification. However, owing to the parabolic shape of
the plot of the parameters (Fig. 4) for carcinoma and normal, a
quadratic kernel was also tested. Training performance of the
quadratic kernel was slightly lower (AUC lower) than the linear
kernel, but the quadratic kernel gave better sensitivity and spe-
cificity results for both carcinoma versus normal and carcinoma
versus noncarcinoma. There was an increase in sensitivity and
specificity despite a decrease in AUC because the portion of the
ROC curve near equal sensitivity and specificity for the quad-
ratic kernel was above the ROC curve for the linear kernel at the
selected point. If another point on the ROC curve was selected,
the sensitivity and specificity may be greater for the linear kernel
than for the quadratic kernel. These results suggest that the ideal
line for separation is neither linear nor quadratic.

Because of varying surface topology, clefts, and invagina-
tions in the ovaries, as well as variations in ovary composition,
there were frequently large portions of the image FOV that did
not contain signal. Sensitivity and specificity results were simi-
lar to random when only images with less than 25% of the FOV
containing signal were used. The sensitivity and specificity
results were improved when only images containing signal in
greater than 25% of the FOV (rather than all images) were ana-
lyzed. Restricting analysis to only images with greater than 75%
of the FOV containing signal resulted in incremental improve-
ment, but also required the exclusion of many images. These
results indicate that images used for detection of cancer require
signal in at least one-quarter of the FOV. In this study, the pre-
sence of images with a small percentage of the FOV containing
signal was mainly due to the small radius of curvature of the
mouse ovaries, which, when combined with the water-
immersion objective, precluded a flat field of view. The radius
of curvature of a human ovary would be much larger, and a clin-
ical implementation of the system would likely be a contact
probe, allowing the physician to obtain an image of a flat sur-
face. When imaging a flat surface, there is likely to be signal in

the entire FOV, reducing the number of images that would need
to be excluded from the analysis.

Tubular adenoma and tubular adenoma with dysplasia were
separated with the largest sensitivity and specificity of the three
groups tested. For tubular adenoma versus tubular adenoma with
dysplasia, training results showed that the most useful para-
meters were GLCM contrast at 17- and 25-pixel separation
and GLCM energy at 22-pixel separation. The excellent perfor-
mance when using energy and contrast at different pixel separa-
tions is likely related to the periodicity of fiber spacing in the
images, which was generally between 5 and 50 pixels. These
results indicate that tubular adenoma images contain a pattern
that repeats at approximately 22-pixel separation and larger dif-
ferences in gray levels at 17- and 25-pixel separations than tub-
ular adenoma with dysplasia. Images of tubular adenoma and
tubular adenoma with dysplasia had a very distinct visual
appearance, with the presence of dots intermixed with numerous
thin fibers. It is unclear what tissue constituent is responsible for
these dots, and more investigation is required to find the cause of
this signal. Clinically, distinguishing a benign condition from
dysplasia would be useful, although as stated, the incidence
of tubular adenoma in women is small.

The high sensitivity to dysplastic changes is particularly
exciting because the histologically verified region of dysplasia
was typically deep in the ovary, not in the superficial volume
imaged. This finding suggests that there may be a field effect
influencing the surrounding collagen structure for hundreds
of micrometers. A field effect has been noted in light-scattering
spectroscopy of the colon.54 As the number of dysplastic ovaries
in this study was small, however, a firm conclusion cannot
be drawn.

Classifier performance for every group was higher with true
diagnosis assignments than with random diagnosis assignments.
This result proves that the classifier is able to separate better than
random chance.

Twenty to fifty percent of BRCA-positive (high-risk) patients
develop ovarian cancer.55 If 1000 BRCA-positive patients
underwent prophylactic oophorectomy, 500 to 800 of these pro-
cedures would be extraneous, causing unnecessary morbidity
and mortality. If 1000 patients were tested before oophorectomy
using a diagnostic test with 80% sensitivity and specificity, as
we have shown, then only 100 to 160 would be unnecessary
oophorectomies. The trade-off is that 100 to 160 women
with cancer would not be caught by the test. By changing
the bias value on the ROC curve, 100% sensitivity and 51% spe-
cificity can be selected. Using the corresponding curve for
separation, the diagnostic test would successfully detect all can-
cers and result in unnecessary oophorectomy of 245 to 392
patients. Compared to the current method of prophylactic
ovary removal, this diagnostic test would cut the number of
unnecessary oophorectomies in half, greatly reducing unneces-
sary morbidity and mortality.

The analysis and classification methods used here provided a
simple way to separate two classes at a time. A more sophisti-
cated classifier would enable multiple diagnoses, and would
incorporate data from a full stack or multiple stacks of images
to capture the variation in ovary morphology. The differences
in collagen structure between categories are often very subtle,
and there is significant variation within a group, particularly
in the case of normal. Tumors are often much more uniform
throughout—this is seen most obviously in the tubular adenoma,
which look very similar from slice to slice and ovary to ovary.
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Additionally, the dynamic changes in collagen structure may
make the same diagnosis appear different depending on the
extent of disease. In the future, we plan to examine whether
combining SHG images with TPEF images and/or optical coher-
ence tomography images can improve classifier performance.
We also plan to analyze images obtained in vivo at multiple
time points during an animal’s lifetime to better evaluate
changes during early disease development. The in vivo imaging
series will allow us to select ovaries with disease at the end of the
study and look back in time to determine changes in collagen
structure during early disease. With better understanding of
early disease, we hope to develop an optical diagnostic test
for ovarian cancer to use in women who are candidates for pro-
phylactic oophorectomy. The ideal diagnostic system would be
implemented minimally invasively using a micro-endoscope,
like a falloposcope, that could image both the fallopian tubes
and ovaries. Such a test could potentially reduce the number
of unnecessary salpingo-oophorectomies in high-risk women
and thus improve their quality of life.
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