Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging

Peng Shao
Wei Shi
Parsin Hajireza
Roger J. Zemp
Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging

Peng Shao, Wei Shi, Parsin Hajireza, and Roger J. Zemp
University of Alberta, Department of Electrical and Computer Engineering, Edmonton, Alberta, T6G 2V4, Canada

Abstract. We present a new integrated micro-endoscopy system combining label-free, fiber-based, real-time C-scan optical-resolution photoacoustic microscopy (F-OR-PAM) and a high-resolution fluorescence microscopy endoscopy system for visualizing fluorescently labeled cellular components and optically absorbing microvasculature simultaneously. With a diode-pumped 532-nm fiber laser, the F-OR-PAM sub-system is able to reach a resolution of ~7 μm. The fluorescence subsystem, which does not require any mechanical scanning, consists of a 447.5-nm-centered diode laser as the light source, an objective lens, and a CCD camera. Proflavine is used as the fluorescent contrast agent by topical application. The scanning laser and the diode laser light source share the same light path within an optical fiber bundle containing 30,000 individual single-mode fibers. The absorption of proflavine at 532 nm is low, which mitigates absorption bleaching of the contrast agent by the photoacoustic excitation source. We demonstrate imaging in live murine models. The system is able to provide cellular morphology with cellular resolution co-registered with the structural information given by F-OR-PAM. Therefore, the system has the potential to serve as a virtual biopsy technique, helping visualize angiogenesis and the effects of anti-cancer drugs on both cells and the microcirculation, as well as aid in the study of other diseases.

Keywords: optical-resolution photoacoustic microscopy; fluorescent microscopy.

Paper 12194P received Mar. 25, 2012; revised manuscript received Jun. 21, 2012; accepted for publication Jun. 25, 2012; published online Jul. 18, 2012.

1 Introduction

Optical-resolution photoacoustic microscopy (OR-PAM) is capable of sensing endogenous optical absorption in biological bodies with fine lateral resolution provided by optical focusing. Pioneered by Maslov et al., OR-PAM imaging has been successfully applied to both structural and functional imaging. Since both oxy- and deoxyhemoglobin are the dominant absorbing components in blood, the distribution of optical absorption, detected by the OR-PAM system, can be used to recover oxygen saturation (SO2). For example, Hu et al. used OR-PAM to image SO2 with capillary-level resolution in mouse brain with dual-wavelength measurements. Hu et al. also imaged the healing process of laser-induced microvascular lesions in a small animal model in vivo in terms of morphological and SO2 mapping. These studies demonstrated the capability of OR-PAM as a potential powerful tool in microcirculatory physiology and pathophysiology.

Recently our group reported the first label-free, fiber-based OR-PAM (F-OR-PAM) imaging systems. The system retains many of the powerful properties of our previously proposed table-top system. It takes advantage of a flexible image guide and has significant potential to serve as a new micro-endoscopic imaging technique for clinical use. Visualization of microvasculature in living mouse ears was demonstrated with the system.

Fluorescence contrast high-resolution fiber-optic micro-endoscopy (HRME) was introduced by Muldoon et al. This technique, which is inspired by the goal of virtual histopathology, utilizes a microscopic setup to image fluorescently-labelled cellular structures with lateral resolution on the order of microns. Fluorescent signals excited by a wide-field light source are magnified and sensed by a CCD camera. Rosbach et al. justified the feasibility of the imaging modality in evaluating lymph nodes from breast cancer patients with morphological variation. Muldoon et al. verified the validity of the technique in assisting diagnosis of oral lesions by observing and analyzing morphology of epithelia in human oral cavities.

In the present paper, we propose a combined system based on the HRME technique and our previous F-OR-PAM system, with the purpose of engineering a hybrid imaging platform to visualize capillary vasculatures along with cellular context.

2 Methods

The dual modality imaging platform consists of two modules (Fig. 1). The F-OR-PAM system employs a 532-nm diode-pumped Ytterbium-doped fiber laser system as the optical source (GLP-10, IPG Photonics Corporation). The dual modality imaging platform consists of two modules

Address all correspondence to: Roger J. Zemp, University of Alberta, Department of Electrical and Computer Engineering, Edmonton, Alberta, T6G 2V4, Canada. Tel: 780-902-9463; Fax: 780 492 1811; E-mail: rzemp@ualberta.ca

076024-1 July 2012 • Vol. 17(7)
Experimental setup for the combined photoacoustic and fluorescence micro-endoscopy imaging system (RM: reflective mirror; GS: glass slide; PD: photodiode; SM1/2: scanning mirrors 1 and 2; FG: function generator; DX/Y: galvanometer scanning mirror divers; BS: beam splitter; OL: objective lens; UST: ultrasound transducer; P-R: pulser-receiver; TL: tube lens; EM: emission filter; DM: dichroic mirror; EX: excitation filter; DL: diode laser; DAQ: data acquisition card; HSD: high-speed digitizer; FL: fiber laser). The system is composed of an OR-PAM subsystem and a fluorescence microscopy system. A 2D galvanometer scanning mirror pair is used for raster optical scanning of the focused laser pulse. In the fluorescence imaging subsystem, excitation light is selected with an excitation filter and a dichroic mirror and directed by a beam splitter to share the same light path as the laser beam through the objective lens and the image guide to the target. Fluorescence energy is then reflected back through the dichroic mirror and then focused by a tube lens to the high-resolution CCD camera.

a pulser-receiver (5900 PR, Olympus NDT, Inc.) and then digitized by a 12-bit, 8-channel, high-speed digitizer (CS8289, Gage Applied Technologies, Inc.) along with the higher-frequency (x-axis) scanning feedback signals. For the fluorescent sub-system, a 447.5-nm-centered diode laser is utilized as the excitation light source. A standard fluorescent filter unit is employed in the system. An exciter band-pass filter with a center wavelength (Thorlabs, Inc.) of 445 nm is utilized. A 475-nm cut-off dichroic mirror (Chroma Technology Corp.) is used to reflect excitation light while transmitting excited fluorescence signals back. Excited fluorescence signals travel back through the image guide, reflected by the beam splitter positioned above the objective lens, and then follow the light path to the scientific-grade, high-resolution Electron-Multiplied CCD (EM-CCD, Andor Technology). To rule out noise in the fluorescence signals, we use a 500-nm long-pass barrier filter (Thorlabs, Inc.) between dichroic mirror and tube lens. Pixel size of the CCD is 8 μm x 8 μm and there are 1002 x 1004 pixels in total. The objective lens and the tube lens function together as a microscopic system. We use a plano-convex lens with a focal length of 150 mm (Thorlabs, Inc.) as the tube lens, and therefore the magnification factor of the system is ∼3.3. Proflavine, an FDA-approved drug for human medical use, is utilized as the contrast agent. In soft tissue, proflavine stains nuclei. This is important, since nuclei are often enlarged in cancer cells. Since the 532-nm laser is away from the absorption spectrum of Proflavine, no fluorescence signals will be generated by our OR-PAM optical source.

The image guide we used, which consists of 30,000 single-mode fibers in a bundle, has a diameter of ∼800 μm. Considering the magnification factor of the microscope system, each single fiber covers 4.7 pixels of the EM-CCD on average, which is above the Nyquist limit.

The software package for data acquisition and data transfer is written in C/C++, and data processing and analysis is conducted with Matlab (Mathworks, Inc.).

3 Results

3.1 System Characterization

Figure 2 illustrates the system characterization of the imaging system. Figure 2(a) shows the entire footprint of the image guide, which has a diameter of ∼800 μm. When the fluorescent imaging module is well focused, single elements of the image guide can be visualized, as is shown in Fig. 2(b). This demonstrates that the module is capable of imaging features at a cellular level. To examine the lateral resolution of the fluorescent module, we imaged a 1951 United States Air Force resolution target (USAF 1951). Features with a dimension of 4.38 μm can be resolved, which suggests that the imaging module has a lateral resolution that is on the order of the F-OR-PAM subsystem. For properties of our F-OR-PAM module, readers can refer to Ref. 12 for details. Figure 2(d) and 2(e) are images of a carbon fiber network obtained with both the two modules with fluorescent dye applied to the background. Contents in the two images are consistent. While carbon fibers appear as dark features in the fluorescent images, the F-OR-PAM image relies on photoacoustic signals from the fiber structures. The dual-modality imaging platform is capable of simultaneously providing two kinds of information that are supplementary to each other.

3.2 In Vivo Imaging

In vivo studies were conducted to demonstrate imaging capability of our system. An ear of a 7-week-old SCID hairless outbred
mouse was imaged for in vivo studies. Experimental procedures
followed the laboratory animal protocol approved by the Uni-
versity of Alberta Animal Use and Care Committee. An animal
anesthesia system was utilized while image data were collected.
Before the imaging experiment, we topically applied proflava-
mine-saline solution with a concentration of 0.01% (w/v) to the ear
skin surface. To avoid contamination of fluorescence image by
our fiber laser, the fluorescent and F-OR-PAM images were
taken sequentially in a few minutes after the dye was applied.
But acquisition of the two images can be interlaced. The measured
power of the excitation 455-nm light at distal end of the
image guide is around 0.45 mW. The 532-nm laser works with
PRR of 160 kHz. The average power measured at the distal
end when conducting F-OR-PAM imaging is around 35 mW.
Results of the experiment are shown in Fig. 3. The scanning
frequency of the galvanometer mirror system is 400 Hz and
1 Hz for the s- and y-axis, respectively. With the laser repetition
rate of 160 kHz, the frame rate of the F-OR-PAM imaging sub-
system is two frames per second, resulting in images with
160,000 points. Figure 3(a) and 3(b) are the F-OR-PAM maximum
amplitude projection (MAP) and fluorescent images of the
mouse ear obtained at the same location, respectively. A two
dimensional Hessian-based Frangi vesselness filter was used for
data processing.18 Figure 3(c) is the co-registered image.

Figure 3(d) is a fluorescence image of normal human oral
mucosa taken with our system. After topical application of the
fluorescent dye, the distal end of the image guide was placed in
contact with normal human oral mucosa to acquire fluorescent
images. Staining of nuclei and cell membrane can be visualized
clearly in the image.

4 Discussion

We demonstrated a hybrid imaging system for both F-OR-PAM-
based vasculature and fluorscently labeled cellular structure
imaging. We further provide cellular information on the micron
scale based on the OR-PAM system reported by our group.12,13
We believe that the concept shown in the present paper may lead
to a more powerful tool for biomedical imaging.

A potential application of our system is the study and diag-
nosis of early-stage cancer. Whereas F-OR-PAM can provide
images of vasculature (and potentially hemoglobin oxygena-
tion) in tissue, cellular information may provide morphological
context, which is crucial for researchers and clinicians. For
example, morphological anomalies in tumor tissue and varia-
tions in the microvasculatures due to cancer angiogenesis can
confirm each other. This enables the technique to serve as a
form of noninvasive virtual biopsy for identification of superfi-
cial tumor tissues in human cavities in diagnosis by clinicians.

Acknowledgments

We gratefully acknowledge funding from the Canadian Cancer
Society (TFF 019237, TFF 019240, CCS 2011-700718),
NSERC (355544-2008, 375340-2009, STPGP 396444), the
Terry Fox Foundation, the Alberta Cancer Research Institute
(ACB 23728), the Canada Foundation for Innovation Leaders
Opportunity Fund (18472), Alberta Advanced Education &
Technology Small Equipment Grants Program (URSI09007-
SEG), Microsystems Technology Research Initiative (MSTRI
RES0003166), and University of Alberta Startup Funds. We
also acknowledge student scholarship support from Alberta
Ingenuity, Alberta Innovates, NSERC, and the China Scholar-
ship Council.

References

1. K. Maslov et al., “Optical-resolution photoacoustic microscopy for in
2. S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of
microhemodynamics by optical-resolution photoacoustic microscopy,”
3. H. F. Zhang et al., “Functional photoacoustic microscopy for high-
resolution and noninvasive in vivo imaging,” Nat. Biotech. 24(7),

Fig. 3 Results of in vivo experiments. Panel (a) is the fluorescence image of the mouse ear taken at the same location where the F-OR-PAM image was obtained; panel (b) is the F-OR-PAM image. (c) Co-registered image of (a) and (b). (d) Fluorescence image of normal human oral mucosa with topical application of Proflavine.

