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Abstract. Optical spectroscopic techniques including reflectance, fluorescence and Raman spectroscopy have
shown promising potential for in vivo precancer and cancer diagnostics in a variety of organs. However, data-
analysis has mostly been limited to post-processing and off-line algorithm development. In this work, we develop
a fully automated on-line Raman spectral diagnostics framework integrated with a multimodal image-guided
Raman technique for real-time in vivo cancer detection at endoscopy. A total of 2748 in vivo gastric tissue spectra
(2465 normal and 283 cancer) were acquired from 305 patients recruited to construct a spectral database for diag-
nostic algorithms development. The novel diagnostic scheme developed implements on-line preprocessing, outlier
detection based on principal component analysis statistics (i.e., Hotelling’s T2 and Q-residuals) for tissue Raman
spectra verification as well as for organ specific probabilistic diagnostics using different diagnostic algorithms. Free-
running optical diagnosis and processing time of <0.5 s can be achieved, which is critical to realizing real-time in
vivo tissue diagnostics during clinical endoscopic examination. The optimized partial least squares-discriminant
analysis (PLS-DA) models based on the randomly resampled training database (80% for learning and 20% for test-
ing) provide the diagnostic accuracy of 85.6% [95% confidence interval (CI): 82.9% to 88.2%] [sensitivity of 80.5%
(95% CI: 71.4% to 89.6%) and specificity of 86.2% (95% CI: 83.6% to 88.7%)] for the detection of gastric cancer.
The PLS-DA algorithms are further applied prospectively on 10 gastric patients at gastroscopy, achieving the pre-
dictive accuracy of 80.0% (60∕75) [sensitivity of 90.0% (27∕30) and specificity of 73.3% (33∕45)] for in vivo diag-
nosis of gastric cancer. The receiver operating characteristics curves further confirmed the efficacy of Raman
endoscopy together with PLS-DA algorithms for in vivo prospective diagnosis of gastric cancer. This work success-
fully moves biomedical Raman spectroscopic technique into real-time, on-line clinical cancer diagnosis, especially
in routine endoscopic diagnostic applications. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17

.8.081418]
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1 Introduction
Cancer remains a global health problem and is one of the leading
causes of mortality. For instance, upper gastrointestinal (GI)
malignancies, such as gastric cancer, have an estimated
989,600 new cases and 738,000 deaths per year worldwide.1

Early diagnosis and adequate treatment of GI cancers is essential
to increasing the survival rate of the patients. Current diagnos-
tics heavily rely on visualization of gross morphological
changes using conventional white light reflectance (WLR)
imaging. Recently, narrow band imaging (NBI) and autofluo-
rescence imaging (AFI) have emerged for image-enhanced
contrast of micro-vascularity and visualization of endogenous
fluorophores in tissue. But these techniques remain inadequate
for efficient and accurate diagnostics of grossly invisible lesions

during clinical examinations, as biopsies are typically performed
randomly.2 Hence, the development of real-time advanced diag-
nostic technologies that probe the endogenous biomolecular
properties of tissues for fully automated cancer diagnostics
would represent a vital advancement toward more efficient
diagnosis and management of gastric patients.

Several point-wise spectroscopic techniques (e.g., fluores-
cence, diffuse reflectance, and near-infrared (NIR) Raman
spectroscopy) have shown promising potential for early cancer
diagnostic in humans.2–6 NIR Raman spectroscopy represents a
unique optical technology capable of nondestructively probing
endogenous biomolecules to resolve highly specific diagnostic
information, while the spectral signatures can unambiguously be
assigned to intra- and inter-cellular constituents (e.g., proteins,
lipids and nucleic acids) of tissue. For instance, in vitro and
in vivo Raman spectroscopic cancer diagnosis have been
demonstrated in a variety of organs (e.g., skin,7,8 oral cavity,9,10Address all correspondence to: Zhiwei Huang, National University of Singapore,
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nasopharynx and larynx,11–15 breast,16 colon,17,18 lung,19

cervix,20,21 bladder,22 prostate,23 esophagus,24 stomach,5,6,25–29

etc.). Very recently, we have developed a rapid, high-throughput
Raman spectroscopic system integrated with multimodal wide-
field imaging modalities (WLR/AFI/NBI), and demonstrated its
utility for in vivo diagnosis of premalignant and malignant
lesions in the upper GI (i.e, esophagus,24 gastric5,25–27). A series
of publications have outlined the efficient in vivo diagnosis of
different gastric lesions including gastric dysplasia and neopla-
sia,5,25–27,29 benign and malignant ulcers.6 The inter-anatomical
variability within the normal stomach and esophagus has also
been examined in detail using image-guided Raman spectros-
copy.29 Several groups have also reported on the implementation
of real-time tissue Raman spectroscopy.30,31 For instance, Feld
et al. presented a synchronized laser Raman system to study
atherosclerosis that could acquire and process Raman spectra
within 2 s using spectral modeling of reference biochemicals
with an aid of least squares regression techniques.30 Zeng et al.
developed a real-time integrated Raman system for evaluating
skin that could acquire and process the signal within 1.1 s.31

Nevertheless, most of the current Raman spectroscopic analyses
have been limited to off-line post processing for classification
of spectra with cross-validation procedures, which render prac-
tical limitations including the setting of exposure times, post-
verification of spectrum quality, and lack of automatic feedback
mechanisms to the clinicians for implementation of straight-
forward probabilistic diagnostics in clinical settings. Hence,
fully automated tissue spectral quality verification and real-
time tissue cancer diagnostics are vital to translating the Raman
spectroscopic diagnostic technique into practical clinical endo-
scopic routine. In this work, we develop an on-line biomedical
spectral diagnostic framework integrated with image-guided
Raman endoscopy for real-time probabilistic detection of cancer
in the upper GI. We also validate the efficacy of the on-line
Raman framework developed for prospective prediction of
patients with gastric malignancies at clinical endoscopy.

2 Materials and Methods

2.1 Raman Endoscopy Instrumentation

Figure 1 shows the integrated Raman spectroscopy and trimodal
wide-field imaging system developed for in vivo tissue Raman
measurements at endoscopy, which has been described in detail
elsewhere.32 Briefly, the clinical Raman spectroscopic system
consists of a spectrum stabilized 785 nm diode laser (maximum
output: 300 mW, B&W TEK Inc., Newark, Delaware) electro-
nically synchronized with a USB 6501 digital I/O (National
Instruments, Austin, Texas), a transmissive imaging spectro-
graph (Holospec f/1.8, Kaiser Optical Systems, Ann Arbor,
MI) equipped with a liquid nitrogen-cooled, NIR-optimized,
back-illuminated and deep depletion charge-coupled device
(CCD) camera (1340 × 400 pixels at 20 × 20 μmper pixel;
Spec-10: 400BR/LN, Princeton Instruments, Trenton, New
Jersey), and a specially designed Raman endoscopic probe
for both laser light delivery and in vivo tissue Raman signal
collection. The 1.8 mm Raman endoscopic probe is composed
of 32 collection fibers surrounding the central light delivery
fiber with two stages of optical filtering incorporated at the prox-
imal and distal ends of the probe for maximizing the collection
of tissue Raman signals, while reducing the interference of
Rayleigh scattered light, fiber fluorescence and silica Raman
signals. The Raman probe can easily pass down to the

instrument channel of medical endoscopes and be directed to
suspicious tissue sites under the guidance of wide-field endo-
scopic imaging (WLR/AFI/NBI) modalities.32–34 The system
acquires Raman spectra in the wavenumber range of 800 to
1800 cm−1 from in vivo upper GI tissue within 0.5 s using
the 785 nm excitation power of 1.5 W∕cm2 (spot size of
200 μm) with a spectral resolution of ∼9 cm−1.

2.2 Study Protocol

The present study is part of an ongoing nationwide gastric can-
cer screening program, focusing on early diagnosis and treat-
ment of upper GI malignancies run by the Singapore gastric
cancer epidemiology, clinical and genetic program (GCEP).35

All patients participating in this study preoperatively signed
an informed consent, permitting the investigative in vivo
Raman spectroscopic acquisition of gastric tissues undergoing
endoscopy in the Endoscope Centre at the National University
Hospital (NUH), Singapore. This study was approved by the
Institutional Review Board (IRB) of the National Healthcare
Group of Singapore. A total of 2748 in vivo gastric tissue spectra
(2465 normal and 283 cancer) were acquired from the 305
patients recruited to construct the spectral database for develop-
ing diagnostic algorithms for gastric cancer diagnostics. Tissue
histopathology serves as the gold standard for evaluation of the
performance of Raman technique for in vivo tissue diagnosis
and characterization.

2.3 Online Biomedical Spectroscopic Framework

The online biomedical Raman spectroscopic framework devel-
oped has been implemented as a graphical user interface (GUI)
under the Matlab 2011a (Mathworks Inc., Natick, MA) scripting
environment in a fast computing workstation (64 bit I7
quad-core 4GB memory). This framework has been thoroughly
optimized for rapid data processing for real-time tissue diag-
nostics. Hardware components of the rapid Raman system
(e.g., laser power control, spectrometer, CCD shutter and cam-
era readout synchronization) have been interfaced to the Matlab
software through libraries for different spectrometers/cameras

Fig. 1 (a) Photograph of Raman endoscopy system in clinic; (b) inser-
tion of the 1.8 mm Raman endoscopic probe into the working channel
of an endoscope during gastroscopy; and (c) routine Raman endoscopy
procedure in clinic.
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[e.g., PVCAM library (Princeton Instruments, Roper Scientific,
Inc., Trenton, NJ) and Omni Driver (Ocean Optics Inc., Dune-
din, FL), etc.]. A schematic of the spectral acquisition and
processing flow of online diagnostic framework is depicted
in Fig. 2. The laser was electronically synchronized with the
CCD shutter. The automatic adjustment of laser power, exposure
time and accumulation of spectra were realized by scaling to
within 85% of the total photon counts (e.g., 55,250 of
65,000 photons) based on preceding tissue Raman measure-
ments, whereas an upper limit of 0.5 s was set to realize clini-
cally acceptable conditions. The accumulation of multiple
spectra and automatic adjustment of exposure time provides a
rapid and straightforward methodology to prevent CCD satura-
tion and to obtain high signal-to-noise ratios (SNR) for endo-
scopic applications. The Raman-shift axis (wavelength) was
calibrated using a mercury/argon calibration lamp (Ocean
Optics Inc., Dunedin, FL). The spectral response correction
for the wavelength-dependence of the system was conducted
using a standard lamp (RS-10, EG&G Gamma Scientific,
San Diego, CA). The reproducibility of the platform can be

continuously monitored with the laser frequency and Raman
spectra of cyclohexane and acetaminophen as wavenumber stan-
dards. All the system performance measures including CCD
temperature, integration time, laser power, CCD alignment
are accordingly logged into a central database via SQL server.
Due to the inter-anatomical and inter-organ spectral variances as
we observed earlier,9,29 the online framework we designed
implements organ-specific diagnostic models and can instantly
switch among the spectral databases of different organs [e.g.,
esophagus, gastric, colon, cervix, bladder, lung, nasopharynx,
larynx, and the oral cavity (hard palate, soft palate, buccal,
inner lip, ventral and the tongue)], making this Raman platform
a universal diagnostic tool for cancer detection at endoscopy.

2.4 On-Line Preprocessing and Outlier Detection

Real-time preprocessing of Raman signals was realized with the
rapid detection of cosmic rays using the first derivative with a
99% confidence interval (CI) over the whole spectral range set
as a maximum threshold. Data points lying outside of a thresh-
old were interpolated to 2nd order. The spectra were further
scaled with integration time and laser power. A first-order,
five point Savitzky-Golay smoothing filter was used to remove
noise in the intensity corrected spectra, while a 5th order
modified polynomial constrained to the lower bound of the
smoothed spectra was subtracted to resolve the tissue Raman
spectrum alone. The Raman spectra were finally normalized
to the integrated areas under the curves from 800 to 1800 cm−1,
enabling a better comparison of the spectral shapes and relative
Raman band intensities among different tissue pathologies. The
spectra were then locally mean-centered according to the
specific database to remove common variations in the data.
Following preprocessing, the Raman spectra were fed to a
model-specific outlier analysis.

We incorporate an on-line outlier detection scheme into bio-
medical spectroscopy as a high-level model-specific feedback
tool in our on-line framework by using principal component
analysis (PCA) coupled with Hotelling’s T2 and Q-residual
statistics36–38 (Fig. 2). Briefly, PCA reduces the dimension of the
Raman spectra by decomposing them into linear combinations
of orthogonal components [principal components (PCs)], such
that the spectral variations in the dataset are maximized. The
PCA model of the data matrix X is defined by Ref. 38:

X ¼ TPT þ E; (1)

where T and P represent scores and loadings, and E contains the
residuals. The loadings correspond to the new rotated axis,
whereas scores represent the data projection values. Accord-
ingly, Hotelling’s T2 statistics is a measure of variance captured
by the PCA model (sample to model distance) and is defined by
Ref. 36:

T2
ik ¼ tikðλ−1k ÞtTik; (2)

where tik is PC scores for i’th sample spectrum using component
k, and λ−1k is the diagonal matrix of normalized eigenvalues of
the covariance matrix for component k. Therefore, Hotelling’s
T2 gives an indication of extreme values within the PCA model.
On the other hand, Q-residuals is a measure of variance, which is
not captured by the PCA model (lack of model fit statistics), and
is defined by Ref. 36:

Fig. 2 Flow chart of the on-line biomedical Raman spectroscopic
diagnostic platform.
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Qik ¼
X

ðxi − tikPT
k Þ2; (3)

where xi is the sample spectrum,Qik is the sum of squared recon-
struction error for i’th sample spectrumusing componentk andPk
is the PC loadings. For both Hotelling’s T2 and Q-residuals, the
normalized 99% CI was utilized as upper thresholds to intercept
anomalous Raman spectra (e.g., noncontactmeasurements, spec-
tra from blood, gastric juice, food debris, etc.) (Fig. 2). Accord-
ingly, the Hotelling’s T2 andQ-residuals are the two independent
parameters providing quantitative information about the model
fit. Using these parameters as indicators of spectra quality (i.e.,
probe contact mode, confounding factors, white light inter-
ference, etc.), auditory feedback has been integrated into the
on-line Raman diagnostic system, facilitating real-time probe
handling advice and spectroscopic screening for clinicians during
clinical endoscopic procedures.

2.5 Online Probabilistic Diagnostics

Subsequent to verification of tissue Raman spectra quality, those
qualified Raman spectra were immediately fed to probabilistic
models for on-line in vivo diagnostics and pathology prediction.
The GUI can instantly switch among different models including
partial least squares-discriminant analysis (PLS-DA),6,20 PCA-
linear discriminant analysis (LDA),26,28 ant colony optimization
(ACO)-LDA,25 classification and regression trees (CART),39

support vector machine (SVM),17 adaptive boosting (Ada-
Boost),40 etc. for prospective classification at clinical endo-
scopic procedures. In this study, as an example, probabilistic

PLS-DA was employed for gastric cancer diagnosis. PLS-DA
employs the fundamental principle of PCA but further rotates
the components by maximizing the covariance between the
spectral variation and group affinity to obtain the diagnostically
relevant variations rather than the most prominent variations in
the spectral dataset.6 The system supports binary classification,
one-against-all and one-against-one multiclass (i.e., benign,
dysplasia, and cancer) probabilistic PLS-DA discriminatory
analysis to predict the specific tissue pathologies.

3 Results
Figure 3 shows the developed novel GUI for on-line biomedical
spectroscopic processing and diagnostics. Specifically, we test
the developed on-line framework in the stomach that represents
one of the most challenging organs presenting with many con-
founding factors (i.e., gastric juice, food debris, bleeding, exu-
dates, etc.) for spectroscopic diagnosis. The in vivomean Raman
spectra acquired from 305 gastric patients [normal (n ¼ 2465)
and cancer (n ¼ 283)] for algorithms development are shown
in Fig. 4. The Raman spectra of gastric tissue show the promi-
nent Raman peaks at 875 cm−1 [υðC − CÞ of hydroxyproline],
936 cm−1 [υðC − CÞ of proteins], 1004 cm−1 [υsðC − CÞ ring
breathing of phenylalanine], 1078 cm−1 [υðC − CÞ of lipids],
1265 cm−1 [amide III υðC − NÞ and δðN − HÞ of proteins],
1302 and 1335 cm−1 [δðCH2Þ deformation of proteins and
lipids], 1445 cm−1 [δðCH2Þ of proteins and lipids], 1618 cm−1

[υðC ¼ CÞ of porphyrins], 1652 cm−1 [amide I υðC ¼ OÞ of
proteins] and 1745 cm−1 [υðC ¼ OÞ of lipids].5,28 Clearly, gas-
tric tissue Raman spectra contain a large contribution from
triglyceride (i.e., major peaks at 1078, 1302, 1445, 1652, and

Fig. 3 On-line biomedical Raman spectroscopic diagnostic platform for gastric cancer detection.
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1745 cm−1) that likely reflects the interrogation of subcutaneous
fat in the gastric wall.6,29 Additionally, we also observed remark-
able Raman spectral differences in the Raman peak position
(e.g., 875, 936, 1004, 1078, 1265, 1302, 1335, 1445, 1618,
1652, and 1745 cm−1) between different tissue pathologies,
reconfirming our preceding in vivo Raman studies.25–27 A
detailed analysis and discussion of the Raman spectral charac-
teristics of carcinogenesis in the gastric can be found elsewhere
that includes major pathological features such as upregulation of
mitotic and proteomic activity, increase in DNA contents and
relative reduction in lipid as well as onset of angiogenesis
leading to neovasculation in the tissue.26,34

The automatic outlier detection was realized for predictive
on-line analysis using PCAwith Hotelling’s T2 and Q-residuals
statistics (99% CI). To make the online diagnostics efficient, a
two-component PCA model was rendered that included the lar-
gest tissue spectral variations. These selected significant PCs
(p < 0.0001) accounted for maximum variance of 38.71%

(PC1: 30.33%, PC2: 8.38%) of the total variability in the dataset
(n ¼ 2748 Raman spectra), and the corresponding PC loadings
are shown in Fig. 5.

Figure 6 shows the score scatter plots (i.e., PC1 versus PC2)
for the normal (n ¼ 2465) and cancer tissue spectra (n ¼ 283),
exemplifying the capability of PC scores for separating the can-
cer spectra from normal. The 99% CI of Hotelling’s T2 and Q
residuals were accordingly calculated from the training dataset
and fixed as a threshold for prospective on-line spectral valida-
tion. We then rendered probabilistic PLS-DA models for pre-
diction of gastric cancer. The training database was randomly
resampled multiple times (n ¼ 10) into learning (80%) and
test (20%) sets. The generated PLS-DA models provided a pre-
dictive accuracy of 85.6% (95% CI: 82.9% to 88.2%) [sensitiv-
ity of 80.5% (95% CI: 71.4% to 89.6%) and specificity of 86.2%
(95% CI: 83.6% to 88.7%)] for gastric cancer diagnosis. We
subsequently tested the outlier-detection as well as probabilistic
PLS-DA in 10 prospective gastric patients. PC score scatter plots
(i.e., PC1 versus PC2) for the prospective normal (n ¼ 45) and
cancer (n ¼ 30) tissue spectra are also shown in Fig. 6.

Figure 7 shows the prospective scatter plot of the Hotelling’s
T2 (38.71%) and Q-residuals (61.29%) with the 99% CI bound-
aries for 105 spectra acquired from the prospective gastric
patients. It is observed that a large number of noncontact spectra
lie outside the 99% CI and are therefore discarded in real-time.
The verified tissue Raman spectra largely fall inside the 99% CI
of T2 and Q residuals, demonstrating that this on-line data anal-
ysis provides a rapid and highly efficient means of real-time
validation of biomedical tissue spectra. The prospectively
acquired spectra verified by the on-line outlier analysis are
further fed to probabilistic PLS-DA for instant disease predic-
tion, achieving a diagnostic accuracy of 80.0% (60∕75) [sensi-
tivity of 90.0% (27∕30), and specificity of 73.3% (33∕45)]
for gastric cancer detection (Fig. 8), as confirmed by histopatho-
logical examination.

The receiver operating characteristic (ROC) curves were
further generated to evaluate the group separations. Figure 9
shows the mean of the ROC curves computed from each random
splitting of the spectral database for retrospective prediction as
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Fig. 4 In vivo mean Raman spectra of normal (n ¼ 2465) and cancer
(n ¼ 283) gastric tissue acquired from 305 gastric patients.
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Fig. 5 The principal component (PC) loadings calculated from the
spectral training database of 2748 (2465 normal and 283 cancer)
Raman spectra of gastric tissue in vivo. The significant PCs capture a
total variance of 38.71% (PC1, 30.33%; PC2, 8.38%).
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well as the ROC calculated for the prospective dataset predic-
tion. The integration areas under the ROC curves generated for
the retrospective and prospective datasets are 0.90 and 0.92,
respectively, illustrate the robustness of the PLS-DA algorithm
for gastric cancer diagnosis in vivo.

The total processing time for all the procedures (Fig. 2)
implemented was 0.13 s. The processing time for each step
of the flow chart (Fig. 2) are given in Table 1. Free-running opti-
cal diagnosis and processing time of < 0.5 s can be achieved,
which is critical for realizing real-time in vivo tissue diagnostics
at endoscopy.

Overall, this work demonstrates for the first time that the on-
line biomedical diagnostic framework can move the biomedical
Raman spectroscopy into real-time, on-line cancer detection and
diagnosis during routine clinical endoscopic examination.

4 Discussion
Histopathological examination of endoscopic biopsies for obser-
ving cytological and morphological abnormalities remains the
current gold standard for precancer and cancer diagnosis in
tissue. Several spectroscopic techniques including reflectance,
fluorescence and Raman spectroscopy have demonstrated
promising potential for realizing optical biopsies. Extensive
research is currently in progress especially for translating
Raman spectroscopic technique into real-time, clinical precan-
cer and cancer diagnostics. However, specifically for prospec-
tive clinical endoscopic applications, fast data acquisition and
short processing times (< 0.5 s), straightforward on-line prob-
abilistic diagnostics, real-time feedback to clinicians of spec-
trum quality and tissue classification are essential to making
this optical biopsy technology a robust diagnostic tool in clinical
settings. In this work, we have developed a novel on-line
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Fig. 7 Hotelling’s T2 versus Q-residuals for 105 Raman spectra (45 nor-
mal, 30 cancer, 30 outlier) acquired from 10 prospective gastric sam-
ples. The outlier (n ¼ 30—green triangles) shows higher T2 and higher
Q values than the valid spectra. The dotted line represents the 99% con-
fidence interval (CI) verifying whether the prospective Raman spectra
are within the common tissue variations of the principal component
analysis (PCA) model.
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Fig. 8 Scatter plot of the posterior probability values belonging to
prospective normal (n ¼ 45) and cancer (n ¼ 30) gastric tissue based
on PLS-DA modeling together with leave-one spectrum-out, cross-
validation. The separate dotted line gives a diagnostic sensitivity of
90.0% (27∕30) and specificity of 73.3% (33∕45) for separating cancer
from normal gastric tissue in vivo.
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Fig. 9 The receiver operating characteristic (ROC) curves computed
from the spectral database for retrospective prediction as well as
ROC curve for prospective prediction of normal and cancer gastric tis-
sue. The integrated areas under the ROC curves are 0.90 and 0.92 for
the retrospective and prospective datasets, respectively, illustrating the
efficacy of Raman endoscopy together with PLS-DA algorithms for
in vivo gastric cancer diagnosis.

Table 1 Average processing time for on-line biomedical Raman spec-
troscopic framework on a personal computer with a 64-bit I7 quad-core
4GB memory.

Analyses Computational time (milliseconds)

Cosmic ray rejection 0.5

Laser response time 10

Preprocessing 40

Outlier detection 10

Probabilistic PLS-DA prediction 70

Total computation time 100 to 130
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spectral diagnostic framework that implements fully synchro-
nized spectral acquisition, automatic integration time setting,
model-specific outlier analysis as well as organ-specific prob-
abilistic diagnostics, pushing spectroscopic techniques into real-
time cancer screening with an easy-to-use interface for routine
clinical endoscopic applications.

We have presented a universal on-line framework for biome-
dical spectroscopy (Fig. 3) that integrates preprocessing, auto-
matic outlier detection, and deploys instant change of diagnostic
models among different organs in the upper GI tract during
gastroscopy. The universal platform supports different spectro-
scopic techniques (e.g., reflectance, fluorescence and Raman
spectroscopy) with appropriate preprocessing methods and
model development for each modality. We integrate the on-
line diagnostic framework with the recently developed multimo-
dal image-guided (WLR/NBI/AFI) Raman spectroscopic
platform for early diagnosis and detection of precancer and
cancer in the upper GI at endoscopy.5,28,29 The accumulation
of tissue Raman spectra and automatic scaling of integration
time with a predefined upper limit of 0.5 s allows instant acqui-
sition of in vivo tissue spectra with improved SNR while pre-
venting CCD signal saturation. This is especially important
for endoscopic diagnostics where the autofluorescence intensity
varies significantly among different anatomical regions (e.g.,
antrum and body in the gastric, bronchi in the lung) likely
caused by distinct endogenous fluorophores in the tissue.

We have also introduced automated outlier detection for
spectra verification in endoscopic applications, whereby
probe handling variations can be significant and to a large extent
depend on the clinicians’ expertise. PCA with related Hotell-
ing’s T2 and Q-residuals is a high-level metrics for outlier detec-
tion,41 and we found that it is highly efficient and reliable in our
online diagnostic platform at endoscopic diagnosis. The PCA
model was generated from the database accounting for the
majority of common tissue variations (38.71% of total variance,
PC1: 30.33%; PC2: 8.38%) (Fig. 5). The rendered PCA model
was further tested prospectively on 10 gastric patients for pro-
spective automatic outlier detection during in vivo on-line
Raman spectroscopic screening (Fig. 6). Of the total 105 gastric
spectra acquired from the prospective gastric patients, 75 spectra
that fit the developed PCA model well [T2 and Q lies within
99% CI (Fig. 7—blue and red circles)] were eligible for further
classification. The remaining spectra (n ¼ 30, Fig. 7; green tri-
angles) from noncontact measurements, food debris or blood
contaminations show unusual disturbances, which were poorly
reconstructed by the PCA model. Large Q-residuals indicated
the presence of spectral variations unexplainable by the model
due to many confounding factors (e.g., noncontact mode, con-
taminants, or unknown spectral variations) frequently occurring
in in vivo clinical measurements.36 One noted that tissue Raman
spectra presenting with Q-residuals vaguely outside the CI
[(n ¼ 6) in Fig. 7] were accepted following off-line analysis
because the newly introduced spectral variations could be due
to tumor invasion, necrosis, tumor subtype, etc. Thus following
on-line analysis, it is advisable to review the spectra in off-line
mode to assess possible new spectral variations. This study
thoroughly shows the necessity of utilizing automated outlier
diagnostics for tissue Raman spectral quality verification in
real-time endoscopic applications.

Subsequent to on-line verification of spectrum quality, the
spectra were fed to probabilistic PLS-DA algorithms for disease
prediction. The PLS-DA modeling provided the predictive

accuracy of 80.0% (60∕75) [sensitivity of 90.0% (27∕30) and
specificity of 73.3% (33∕45)] (Fig. 8) for cancer diagnosis
on 10 prospective gastric patients, suggesting that Raman endo-
scopy with the integration of on-line diagnostic framework can
be a diagnostic screening tool for real-time in vivo gastric cancer
identification. These probabilistic diagnostic outcomes were
presented in real-time to the endoscopist within 0.5 s (Table 1),
which is a clinically acceptable time at endoscopy. With the
immediate auditory diagnostic feedback from the GUI devel-
oped, the endoscopists can now perform routine point-wise
scanning for targeted biopsies of the high-risk tissue sites.
The movie (Fig. 10) shows the online Raman endoscopic diag-
nostic procedure for real-time in vivo detection of gastric cancer
during clinical endoscopic examination. Biomedical spectro-
scopic modalities can thus now function in free-running
mode, opening the possibility of true prospective spectroscopic
screening in clinical settings.

In summary, we have developed an on-line biomedical Raman
spectroscopic framework to translate the cumbersome processing
and multivariate analysis into an easy-to-use GUI interface for
real-time, in vivo diagnosis of malignancies in internal organs.
The efficacy of the on-line diagnostic framework integrated
with the multimodal image-guided clinical Raman spectroscopy
was proven on the prospective gastric patients, illustrating the
promising potential of moving the biomedical Raman spectro-
scopy technique into real-time, on-line cancer detection and diag-
nosis during routine clinical endoscopic examination.
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