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1 Introduction
The purpose of imaging and sensing techniques such as ultra-
sound-modulated optical tomography (UOT) is the production
of images or spatially defined quantitative measurements of
some parameter of interest. In the field of optical biomedical
imaging, this is typically an image of the optical absorption
coefficient within a diffuse medium at a particular wavelength.
When multiple wavelengths are employed, the data may be
combined via knowledge of the absorption spectra of various
chromophores to form physiologically relevant images of, for
example, oxygen saturation.

1.1 Sensitivity and Image Reconstruction in UOT

In UOT, the sensitivity of the system is defined approximately
by the product of the optical sensitivity and acoustic amplitude
in the system. The vastly different spatial resolutions of the
acoustic and diffuse optical aspects of UOT encourage various
approaches to the generation of images or spatially localized
measurements, depending upon the nature of the optical con-
figuration and the applied acoustic modulation.

The most basic approach is that of direct mapping; when the
measurement inherently posses sufficient and controllable spa-
tial selectivity, a measured datum may be assigned directly to
the region of assumed sensitivity in an image. This approach is
common in systems where the energy that is used to probe the
system travels in straight lines without significant diffuse reflec-
tion from the interfaces or multiple scattering by a participating
medium, such as in X-ray or ultrasound imaging. In a sensing
application, the “image” is essentially a single region, but the
implicit assumption of spatial resolution remains. Depending
upon the application, the spatial resolution afforded by a focused
or time gated ultrasound field is arguably sufficient to delineate
regions of biological interest. If we neglect acoustic absorption
and assume a constant ultrasound excitation amplitude probes
each region in a given experiment, a UOT image produced

via direct mapping records the scaled optical sensitivity in
the medium.1

In transmission mode configurations of a UOT experiment
with a large optical étendue (such as those employing photo-
refractive,2–4 photo-refractive polymer,5 spectral-hole burning,6

CCD,7 digital holography,8 or speckle contrast9 based detection
mechanisms) the optical sensitivity through a homogeneous
medium transverse to the optical axis is relatively constant
when contrasted with the exponentially varying sensitivity par-
allel to the axis of light collection. Since optical absorbers
embedded in a turbid region reduce the optical sensitivity of
the system in their vicinity, a transverse scan of the ultrasound
probe can provide useful images of the embedded absorbers.
Few demonstrations have been provided of more complicated
absorption patterns in which shadowing of the optical sensitivity
may distort the image, or of systems where an image is gener-
ated by a scan parallel to the optical axis in a high étendue
system.

In low étendue systems that employ point-like source and/or
detection mechanisms, the optical sensitivity varies significantly
throughout the image in all optical configurations and scan
directions irrespective of the homogeneity of the medium. In
the context of UOT, this point was highlighted succinctly by
the images produced by Lev and Sfez.1,10 In this case, and in
that of a high étendue system with the significant heterogeneity,
the fundamental problem is that the optical sensitivity of the
system is not uniform.

In the case of pure diffuse optical tomography (DOT), it is
the very nonuniformity of the optical sensitivity which is used to
generate images of the optical absorption. In DOT, it is recog-
nized that the spatial resolution for a pair of point-like optical
source and the detector is unsuitable for the direct image
reconstruction, and instead a model-based inversion procedure
is employed. In the most general sense, this approach employs a
forward model to predict the spatial sensitivity of the measure-
ment and this is used to drive the update of an image based upon
the measured data. The DOT problem remains ill-posed, and
a-priori information regarding the solution is typically imposed
to constrain the reconstruction.*Address all correspondence to: Samuel Powell, E-mail: s.powell@ucl.ac.uk
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Bratchenia et al.11 previously demonstrated the recovery of
the optical absorption coefficient in a turbid medium via a
model-based inversion. In their work, the UOT signal was
described in the frequency domain, and the acoustically driven
modulation of the coherent input light was linearized in a dif-
fusion-style model, similar to that presented by Allmaras and
Bangerth.12 A three-dimensional recovery of the optical absorp-
tion coefficient was performed using an iterative nonlinear
optimization employing the Levenberg–Marquardt algorithm.

In this work, we take an alternative approach. We employ a
time-domain model of the UOT signal which naturally provides
many of the oft-employed measurement types in UOT, such as
the modulation depth. Our forward model considers the nonli-
nearity of the acoustically driven decorrelation of the optical
field, which allows us to examine in greater depth the form
of the sensitivity functions which arise in the UOT experiment.
In an approach common in DOT, we linearize our forward
model in the optical parameters; this leads to a one-step differ-
ence data reconstruction which resolves an absorption perturba-
tion from an assumed known background.

This work specifically considers the case of single fiber
point-source and point-detector measurements of the field auto-
correlation under monochromatic acoustic excitation.

2 Theory

2.1 Autocorrelation Measurement in UOT

In an autocorrelation-based UOT experiment, we measure the
lag (τ) dependent autocorrelation of the flux exiting the medium
at a particular location (r) on the boundary, yðr; τÞ, r ∈ δΩ in
response to the insonification of the coherently illuminated
medium. In practice, this value must be derived from the
intensity autocorrelation function via the Seigert relation.13

Neglecting an exponential decay in the correlation function
due to Brownian motion, the data contain an oscillatory com-
ponent at the acoustic frequency and its harmonics; this is
depicted in Fig. 1. In this work, we consider ultrasound pres-
sures of amplitudes small enough to ensure that only the funda-
mental frequency is significant; more details of the assumptions
employed are presented later when we consider the forward
model in Sec. 2.3.

We consider three measurement types:

1. yðrÞDC ¼ yðr; 0Þ is equal to the continuous wave (CW
or DC) intensity in DOT.

2. yðrÞAC ¼ yðr; 0Þ − yðr; T∕2Þ is the maximum varia-
tion, or AC component, of the correlation flux over
an acoustic cycle of length T.

3. mðrÞ ¼ 1 − yðr; T∕2Þ∕yðr; 0Þ is the modulation depth
flux, which is defined as the quotient of the previous
two quantities.

2.2 Linear Image Reconstruction

In this work, we will employ a linear (difference data) reconstruc-
tion technique. Although strictly limited to the recovery of quali-
tative information,14 its simple formulation allows us to investigate
manybasic aspectsof theUOTinversion, including its sensitivity to
noise, and the effects of the a-priori information required to circum-
vent the ill-posedness of the underlying problem.

Consider a turbid medium parameterized by its spatially
varying absorption coefficient, xðrÞ ¼ μaðrÞ. The measured data
yðr; τÞ are found by the application of the nonlinear operator F

yðr; τÞ ¼ FðτÞ½xðrÞ�: (1)

The operator F incorporates the physics of the problem under
the given parameterization, the boundary conditions, a given set
of optical sources and detectors, and a particular ultrasound
configuration.

In a linear reconstruction, we typically consider the change in
a measurement Δy ¼ yðr; τÞ − y0ðr; τÞ brought about by a per-
turbation in the parameters ΔxðrÞ ¼ xðrÞ − x0ðrÞ. Expanding
Eq. (1) in a Taylor series around x0 and dropping the spatial
and lag dependent notation momentarily

y ¼ y0 þ F 0½x0�ðx − x0Þ þ
1

2
ðx − x0ÞTF 0 0½x0�ðx − x0Þ þ : : : ;

(2)

and then discounting the higher-order terms and rearranging,
we get

ΔxðrÞ ≈ ðFðτÞ 0½x0�Þ−1Δyðr; τÞ: (3)

F 0 is the first-order Frećhet derivative of the forward model.15

In the case of the modulation depth measurement

mðrÞ ¼ yðrÞAC
yðrÞDC ¼ 1 −

FðT∕2Þ½xðrÞ�
Fð0Þ½xðrÞ� : (4)

Expanding this expression in a series around a baseline x0,
discounting higher-order terms and rearranging

ΔxðrÞ ¼ −ΔmðrÞ

×
�
y0ðrÞDCFðT∕2Þ 0½x0� − y0ðrÞACFð0Þ 0½x0�

½y0ðrÞDC�2
�−1

:

(5)

Our task in this work is thus to develop an expression for F 0.
In this work, we will develop the discrete form of this operator
which is the Jacobian matrix, J.16 The inversion procedure of
Eq. (3) (or its equivalent modulation depth formulation) is
then given by

Δxk ¼ ðJðτÞ½x0�mkÞ−1Δym: (6)

Fig. 1 Illustration of the form of the measurement in autocorrelation
ultrasound-modulated optical tomography (UOT). The DC and AC
measurement types are found from the nondecaying autocorrelation
flux measured on the boundary of a static medium (black line). A fitting
algorithm must be used in the case of measurements in a fluid exhib-
iting decorrelation due to Brownian motion (gray line).
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2.3 Forward Model

Sakadžić and Wang17 previously derived a transport equation
which describes the propagation of correlation in a turbid
medium under insonification by a monochromatic acoustic
field. The authors state a diffusion approximation to this trans-
port equation which is valid under a number of assumptions
regarding the nature of the acoustic excitation and optical prop-
erties. The principle limitation is that phase increments accrued
at successive scattering sites are uncorrelated which requires that
ðkaltrÞ ≫ 1, where ðkaltrÞ is the product of the acoustic wave-
number and the optical transport mean free path μ 0−1

s . Other lim-
itations, such as the maximum permissible acoustic pressure
amplitude, are introduced by the convenient approximations
in the derivation. A more detailed analysis of the requisite
approximations is presented in the original work, where the
model is experimentally validated, demonstrating a good agree-
ment in the region of validity of the standard optical diffusion
approximation. The diffusion approximation reads

½−∇ · κ∇þ μa þ μ 0
shðτÞ�Gðr; τÞ ¼ q0ðr; τÞ; r ∈ Ω; (7)

where

hðτÞ ¼ ½P0ðrÞk0n0∕ðkaρv2aÞ�2½1− cosðωaτÞ�
× ½η2ðkaltrÞ arctanðkaltrÞ þ S2a∕3− 2ηSa cosðφaÞ�; (8)

where κ ¼ ð3μ 0
sÞ−1 is the diffusion coefficient, μ 0

s ¼ μsð1 − gÞ is
the reduced scattering coefficient, g is the scattering anisotropy,
Gðr; τÞ is the correlation fluence in the medium, q0 is an iso-
tropic source term, P0 is the pressure amplitude of the acoustic
field, k0 is the optical wavenumber in vacuo, n0 is the refractive
index of the medium, ka is the acoustic wavenumber, ρ is the
density of the medium, va is the speed of sound in the medium,
ωa is the angular acoustic frequency, η is the acousto-optic coef-
ficient, Sa is the amplitude of scatterer displacement relative to
the acoustic field, and ϕa is the relative phase of scatterer motion
to the acoustic field.

The term hðrÞ, proportional to the square of the acoustic
pressure amplitude, describes the acoustically driven decorrela-
tion of the optical field. For a given medium, and within the
region of validity of the model (where kaltr ≫ 1), the term is
also dependent upon the square of the acousto-optic coefficient
(which takes a value of η ≈ 0.32 in water18), the square of the
optical wavenumber, and has an approximately inverse relation-
ship to the acoustic frequency. The effect of this term is consid-
ered for a wide range of ðkaltrÞ in Ref. 19.

This correlation diffusion approximation was originally
derived under the conditions of isotropic scattering where
g ¼ 0, though it was demonstrated to provide a fair approxima-
tion under the replacement of μs with μ 0

s.

2.3.1 Sources, boundary conditions and detectors

A collimated source of coherent light is approximated by an iso-
tropic point source located at a depth 1∕μ 0

s below the incident
surface. We employ a modified Robin boundary condition

Gðr; τÞ þ 2An̂ · κ∇Gðr; τÞ ¼ 0; r ∈ δΩ; (9)

where n̂ is the outward normal to the boundary at r, and A
depends upon the refractive index mismatch across the boun-
dary.20 The outgoing correlation flux is given by

yðr; τÞ ¼ −n · κ∇Gðr; τÞ; r ∈ δΩ: (10)

In the case of an indexed matched boundary where A ¼ 1,
Eqs. (9) and (10) may be combined to give

yðr; τÞ ¼ 1

2
Gðr; τÞ; r ∈ δΩ; A ¼ 1: (11)

2.3.2 Finite-element implementation

We solve the correlation diffusion equation by the finite element
method.21–23 Equation (7) is multiplied by a test function which
obeys the boundary conditions, and whose zeroth and first deriv-
atives are integrable over the domain. The boundary conditions
of Eq. (9) are incorporated by the subsequent integration by
parts. The domain is subdivided into a mesh of nonoverlapping
elements joined at N vertex nodes. On this mesh, we define a set
of piecewise linear basis functions such that uiðrjÞ ¼ δij for
i; j ¼ 1; : : : ; N where rj located at the j’th vertex node. We sub-
sequently approximate the solution Gðr; τÞ ≈P

N
j ujðrÞGjðτÞ.

Selecting the basis functions in the weak formulation to be
the same as the mesh basis allows us to write the resulting linear
system of equations:

AðτÞ½x�GðτÞ ¼ q; (12)

where A is the finite element system matrix. We express the
parameters of the forward model, xðrÞ, the absorption-like
decorrelation function hðrÞ, and the diffusion coefficient κ
using the same basis functions such that, for example,
μaðrÞ ¼

P
kuμ;kðrÞμa;k. Consequently,

AðτÞ½x�ij ¼
Z
Ω

X
k

½uκ;kðrÞκk∇uiðrÞ · ∇ujðrÞ

þ ½uμ;kðrÞμa;k þ uh;kðrÞhkðτÞ�uiðrÞujðrÞ�dnr

þ 1

2A

Z
δΩ

uiðrÞujðrÞdn−1r:

(13)

and

qj ¼
Z
Ω
qjujðrÞdnr: (14)

To make a measurement at a point ri Eq. (11) is implemented
by a linear operator DT in which the appropriate elements of the
row vector are initialized: DT

j ¼ 1∕2ujðriÞ. We may now
express a single measurement of Eq. (1) in a discrete form

yðτÞm ¼ FðτÞ½x�m ¼ DT
mAðτÞ½x�−1m qm: (15)

The subscriptm indicates that this expression considers a sin-
gle UOT measurement involving one source location rj;m, one
detector location ri;m, and a single ultrasound pressure distribu-
tion pðr; τÞm. For a single measurement, the linear inversion of
Eq. (3) may thus be written

Δx ≈ ½ðDT
mAðτÞ½x0�−1m qmÞ 0�−1ΔyðτÞm: (16)
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2.4 Correlation Measurement Density Functions and
the Jacobian

In Eq. (16), the term ðDT
mAðτÞ½x0�−1m qmÞ 0 represents the sensitiv-

ity of the measurement to a perturbation in the parameters of the
forward model. In the context of DOT, Arridge generalized such
sensitivity functions in the framework of photon-measurement
density functions.22,24 This work followed earlier derivations of
the measurement sensitivity to perturbations in absorption by
Schotland et al.,25 who termed this the photon hitting density,
and others.26–28

We now explore the correlation measurement density func-
tions (CMDFs) which arise in correlation-based UOT. We
assume that both the scattering coefficient μs and the acoustic
field distribution pðr; τÞ does not change between measure-
ment of the baseline and the perturbed state in our linear
reconstruction. Assuming that the source term is independent
of absorption, we take the derivative of the forward model,
expanding the derivative of the inverse system matrix29

ðDT
mAðτÞ½x0�−1m qmÞ 0 ¼ −DT

mA−1
m ðAðτÞ½x0�mÞ 0A−1

m qm: (17)

The system is parameterized by only the absorption coeffi-
cient of the medium, and we thus take the derivative of the
system matrix with respect to each basis coefficient μa;k

ðAðτÞ½x0�mÞ 0μa;k ¼
Z
Ω
uμ;kðrÞuiðrÞujðrÞdr: (18)

We substitute this result back into Eq. (17) which provides an
expression for the k’th element of the m’th CMDF. By defini-
tion, this also defines the k’th column of the m’th row of the
Jacobian which we seek

ðJðτÞ½x0�TmÞk ¼ −DT
mAðτÞ½x0�−1m ðAðτÞ½x0�mÞ 0μa;kAðτÞ½x0�−1m qm:

(19)

To transform this expression into a more useful form, we
exploit the reciprocity of the correlation diffusion equation.
Arridge expresses this reciprocity in the context of the diffusion
equation30

DT
mA½x�−1qm ¼ qTmA½x�−1Dm: (20)

This expression states that the correlation flux across a point
on the boundary of the medium due to an internal source of cor-
relation fluence is equal to the correlation fluence measured
at the same point in the medium due to an adjoint source of
correlation flux across the same point on the boundary of the
medium, when this source is scaled according to the appropriate
measurement operator, here D.24 In the discrete case, this reci-
procity manifests itself in the symmetry of the finite element
system matrix. To proceed, we apply the reciprocity expressed
in Eq. (20) to the expression of the Jacobian in Eq. (19)

ðJðτÞ½x0�TmÞk
¼ −ðAðτÞ½x0�−1m qmÞTðAðτÞ½x0�mÞ 0μa;kAðτÞ½x0�−1m Dm;

(21)

where we have exploited the symmetry of the system matrix, its
inverse and derivatives, and the properties of the transpose oper-
ation. Finally, we denote the solution to the forward problem
GðτÞf;m ¼ AðτÞ½x0�−1m qm, and the solution to the adjoint problem
(in which the source term is the measurement operator)

GðτÞa;m ¼ AðτÞ½x0�−1m Dm. Thus,

ðJðτÞ½x�TmÞk ¼ −GðτÞTf;mðAðτÞ½x0�mÞ 0μa;kGðτÞa;m: (22)

Here, we see that the Jacobian for a perturbation of absorption in
the k’th node can be found by taking the inner product of the
correlation fluence in the domain due to the (standard) source
term, with the product of the basis function derivative term and
the correlation fluence in the domain due to the adjoint source.
We may thus compute the CMDF for a given ultrasound con-
figuration by two computations of the forward model.

2.4.1 Modulation depth CMDFs and Jacobian

The CMDFs and Jacobian for the DC measurement type are
given directly by Eq. (22). The AC sensitivity functions are
straightforward

ðJAC½x�TmÞk ¼ ðJð0Þ½x�TmÞk − ðJðT∕2Þ½x�TmÞk; (23)

and the modulation depth sensitivity functions are given by sub-
stituting the two expressions into Eq. (5), as follows:

ðJMD½x�TmÞk ¼ −
yDC0;mðJðT∕2Þ½x�TmÞk − yAC0;mðJð0Þ½x�TmÞk

½yDC0;m�2
:

(24)

2.5 Regularization

Although we expect an improvement in the localization of our
UOT sensitivity functions over that of pure DOT, our present
model still describes a diffusion process: thus the problem of
reconstructing an internal parameter distribution from the
data measured on the boundary remains ill-posed, and effec-
tively underdetermined. The consequence of these considera-
tions is that even if the sufficient measurements were
available to form a square Jacobian, direct solution of Eq. (6)
would fail to produce a stable solution, as noise in the measure-
ments amplifies high-frequency oscillations in the resultant
reconstruction.

In order to seek a useful and stable solution, it is conventional
to apply some form of regularization to the problem. One com-
monly employed approach is to make the assumption that a
“good” solution is one which balances the norm of the residual
kðJðτÞ½x0�ÞΔxg − Δyk with the norm of the solution kΔxgk,
or its derivatives. This approach is that of the general form
of Tikhonov regularization in which we replace the matrix
Eq. (6) with a minimization problem

Δxg ¼ arg min
x

ðkJðτÞ½x0�Δy − Δxk22 þ λ2kΔxk22Þ: (25)

For the underdetermined case, this minimization procedure is
equivalent to solving31

Δxg ¼ ðJðτÞ½x0�TJðτÞ½x0� þ λ2LÞ−1JðτÞ½x0�TΔy: (26)

In the following section, we employ zeroth-order Tikhonov
regularization such that L ¼ I. We select the regularization
parameter λ according to the l-curve method, though the
point of maximum curvature was chosen by the inspection
when the algorithm failed to find the correct point.
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3 Results

3.1 Correlation Measurement Density Functions

In Sec. 2.4, we derived the CMDFs for the three measurement
types introduced in Sec. 2.1. We will now visually inspect these
sensitivity functions to gain insight into the sensitivity and spa-
tial localization offered by these measurements.

A two-dimensional square domain of side 50 mm is located
with its bottom left corner at ð0;−25Þ mm. The domain is
assigned a uniform absorption coefficient μa ¼ 0.01 mm−1,
reduced scattering coefficient μ 0

s ¼ 1 mm−1, and isotropic scat-
tering g ¼ 0. The refractive index of the domain is 1.4 and
a matched boundary is employed. An ultrasonic field with a
Gaussian profile of full width half maximum 2 mm and peak
amplitude of 0.5 MPa is projected through the plane. An iso-
tropic point source is placed at position (1,0) mm to approximate
a collimated source incident perpendicular to the boundary at
(0,0). A diffuse detector is located at (50,0) mm and integrates
the outgoing flux according to a Gaussian profile with the full
width half maximum of 0.1 mm.

Figure 2(a) depicts the zero-lag (intensity) sensitivity func-
tion for a given measurement. The approximated collimated
source is indicated with the inward arrow at the appropriate loca-
tion, and the center of the diffuse detector with the outward
arrow. This figure demonstrates the characteristic absorption
sensitivity profile often seen in the literature of DOT.24–26

The scale of the linear plot is truncated in the positive direction;
regions close to the source and detector demonstrate extremely
high sensitivity to absorption perturbations. This sensitivity
function is insensitive to the acoustic field location: each row
of the DC Jacobian which corresponds to a particular optical
source and detector pair will be identical. Since in this work
we consider only one such pair, a reconstruction using this infor-
mation can only result in a scaled and regularized image of the
same form as the sole unique sensitivity function depicted in
Fig. 2(a). To produce a more detailed image would require
that many more optical sources and detectors be employed.

The AC measurement absorption sensitivity is presented in
Fig. 2(b). In this image, the acoustic field is scanned to a loca-
tion of (20,10) mm, as indicated by the crossed circle. This fig-
ure demonstrates significant sensitivity in the region of the
ultrasound, however, the region of sensitivity extends outward
from the insonified region toward the source and detector
locations.

Figure 2(c) demonstrates the modulation depth sensitivity
with the acoustic field scanned to the same location,
(20,10) mm. This figure demonstrates that measurement type
is insensitive to perturbations close to the source, detector,
and on a smooth line connecting the two. Placing an optical
absorber along this path of insensitivity will reduce the amount
of correlated and uncorrelated light reaching the detector by an
equal amount such that while the overall light level falls, the
modulation depth remains constant. This argument is clearly
supported by the analytical form of the sensitivity function
given in Eq. (4).

The modulation depth sensitivity functions demonstrate high
sensitivity in the region of the applied acoustic field. Moving
away from the acoustic focus, across the path of zero sensitivity,
we encounter a region of negative sensitivity where a perturba-
tion in absorption will attenuate more correlated light than
uncorrelated light.

In Fig. 3, we demonstrate the modulation depth sensitivity as
we scan the acoustic field through the medium, with the same
color scale as Fig. 2(c). Note in particular that when the acoustic
field is focused in the region of greatest optical sensitivity (as
seen in the DC sensitivity of Fig. 2(a)), the sensitivity function
appears to have the highest spatial localization, with two regions
of negative sensitivity appearing in the profile. This may be
problematic in a direct mapping approach as the absorption per-
turbations will be averaged over the entire region of sensitivity,
but is automatically accounted for in the image reconstruction
process.

Fig. 2 UOT absorption sensitivity functions for a transmission mode
measurement with 5 cm source-detector spacing in a two-dimensional
square domain 50 mm on a side. The crossed circle at (20,10) mm
indicates the acoustic focus. (a) DC correlation measurement density
functions (CMDF): −Jð0Þ½x0�Tk (Wm−1). (b) AC CMDF: −ðJð0Þ½x0�Tk −
JðT∕2Þ½x0�Tk Þ (Wm−1). (c) MD CMDF: −JMD½x0�Tk (m−1).
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3.2 Linear Reconstruction: Noise, Regularization,
and Comparison With Direct Mapping

Having examined the form of the individual CMDFs which
together form the Jacobian, we reconstruct an image under
varying degrees of noise. The purpose of this exercise is
twofold: first, the procedure will evaluate the functioning of
the reconstruction process; second, the regularization required
as a function of noise will be assessed. We perform the recon-
struction on both the AC and modulation depth measurements.

The reconstruction is performed on an homogeneous back-
ground with a regular set of absorption perturbations such that
any aberrations in the reconstructed image will be evident.
The background domain is the same as employed in Sec. 3.1.
The perturbation domain is formed by adding an array of 16
circular perturbations of radius 2.5 mm with a modified absorp-
tion coefficient of 0.02 mm−1. The perturbed measurements
were generated using an independent mesh from the background
measurements in order to prevent committing the inverse crime
of generating measurements by the same model by which they
are inverted.32 To demonstrate an “ideal” reconstruction, the per-
turbed absorption coefficient was interpolated from its mesh to
the baseline mesh upon which the Jacobian is computed, and
the resultant image is displayed in Fig. 4.

The measurement set was generated by scanning an ultra-
sonic field with a Gaussian profile of full width half maximum
2 mm and peak amplitude of 0.5 MPa through the domain from
ð5;−25Þ to (45,25) mm at 0.5 mm increments in the x and y.
This resulted in a total of 17 × 21 ¼ 357 measurements for both
the baseline and perturbed measurement.

Figure 5(a) shows a noise-free reconstruction using the AC
measurement type. This provides a reasonable qualitative
reconstruction of the absorption perturbations of Fig. 4. This
is especially true when it is considered that the square region
enclosing each absorption perturbation is, in the ideal case,
sampled by only 25 ultrasound scan locations. We note, how-
ever, that there are large aberrations near the source and detector
where the AC CMDFs demonstrate considerable sensitivity. As
shown in Fig. 5(b), adding 0.5% of proportional Gaussian noise
degrades the reconstruction to the point where the perturbations
are just recognizable. The increased regularization required to
reconstruct this image has also suppressed the aberrations
near to the source and detector.

Fig. 3 Nine UOT MD CMDFs for various ultrasound scan locations
which form part of the full MD Jacobian employed in the reconstruc-
tions of Fig. 6. Color scale as per Fig. 2(c).

Fig. 5 Reconstruction of the absorption perturbation, Δμa (mm−1), depicted in Fig. 4 using the UOT AC
measurements under the addition of varying amounts of proportional Gaussian noise. (a) 0% noise and
(b) 0.5% noise.

Fig. 4 Absorption perturbation Δμa [mm−1] interpolated from the per-
turbation mesh to the baseline mesh upon which the Jacobian is com-
puted. The baseline mesh does not include features of the perturbed
geometry and hence the boundaries are seen to be slightly blurred.
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The reconstructions of Fig. 6 demonstrates the modulation
depth reconstruction in the case of measurements without
noise, with 0.5%, and 1% Gaussian noise. In the noise-free
reconstruction, an excellent approximation to the actual pertur-
bation is generated both in a qualitative and quantitative sense.
As suggested by the CMDFs displayed previously, the source
and detector locations are completely suppressed in the resultant
images. As the level of noise in the image is increased, the sen-
sitivity off-axis is gradually suppressed by regularization. In the
case of 1% noise, only those perturbations directly on on-axis
are perceivable, though this measurement type appears to per-
form better than the equivalent AC reconstructions.

To demonstrate the improvement of the reconstructed images
over that of a direct mapping approach, Fig. 7 illustrates
the image formed by directly assigning the modulation depth
difference measurement, ΔmðrÞ, to pixels located at the centers
of the acoustic foci. In the absence of noise, the absorption per-
turbations along the axis of optical sensitivity (Fig. 2(a)) can be
distinctly located. The direct mapping approach demonstrates
similar spatial resolution to the reconstructed images: this is
to be expected since the sensitivity of the modulation depth
measurement was previously demonstrated to be highly local-
ized to the region of the acoustic focus. Without compensating
for the spatially varying optical sensitivity, those absorbers off-
axis are imperceptible. Moreover, the resulting unit-less image
provides no quantitative information as would be required if we
wished to attempt a recovery of a clinically relevant parameter. It
is a common feature of many hybrid imaging modalities that the
relationship of the data to the desired parameter is often unclear.
We also note that in the case of image reconstruction, a variety of
rigorous regularization strategies can be applied to stabilize the
recovery of the underlying parameters under varying degrees of
noise. In a direct mapping experiment, we may attempt to reduce
the deleterious effects of the noise by some form of spatial filter-
ing (for example, convolution with a smoothing kernel), but any
such approach is somewhat ad-hoc.

4 Discussion and Conclusions
The sensitivity functions and associated reconstructed images
presented in this work provide considerable insight into the
potential of autocorrelation-based UOT. It has been shown
that by moving the focus of an acoustic field in the medium,
additional spatial resolution can be introduced into the UOT
reconstruction: in the case of CW DOT, this would require
that additional optical sources and detectors were employed,
with associated cost and complexity.

Reconstructions based directly upon the AC measurement
type are, in the absence of noise, capable of reproducing a
fair representation of the underlying absorption perturbations.
A disadvantage of this measurement type is the significant erro-
neous absorption indicated near the source and detector posi-
tions: this is a direct consequence of the extreme sensitivity
of the measurement in these regions. If an absorption perturba-
tion were placed near the source or detector, the influence of this
measurement change would dominate the resulting image.

In a reconstruction employing both the AC and DC measure-
ments, regularization would suppress the contributions from the

Fig. 6 Reconstruction of the absorption perturbation, Δμa (mm−1),
depicted in Fig. 4 using the UOT modulation depth measurements
under the addition of varying amounts of proportional Gaussian
noise. (a) 0% noise, (b) 0.5% noise, and (c) 1% noise.

Fig. 7 Modulation depth direct mapping image of the absorption
perturbations depicted in Fig. 4.
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AC measurements in which the perturbation from the DC value
is below the noise floor. In this sense, the enhancement of a DOT
imaging system with ultrasound-modulated correlation mea-
surements will lead to a worse-case imaging resolution equiv-
alent to that of CW DOT, with improved ultrasound-modulated
resolution where the noise permits. The influence of the high
regions of sensitivity near the source and detector remains
a problem, however.

In contrast, the modulation depth measurement type com-
pletely suppresses sensitivity near the source and detector posi-
tions. Furthermore, the image reconstruction process is capable
of producing acceptable results at levels of noise higher than in
the AC measurement reconstruction. Suppressing sensitivity in
regions close to the source and detector may be valuable in bio-
medical applications where the physiological changes in a
superficial region may otherwise dominate the measurement.33

The amount of noise added to these reconstructions was
chosen to explore to the level at which the reconstructed images
are degraded to the extent that they no longer provided any
qualitatively useful information. In practice, the amounts of
noise which can be tolerated will be dependent upon the nature
of the illumination, the applied acoustic field, and the magnitude
of the absorption perturbation. Some of the consequences of
noise are discussed further in the following section.

In summary, we have demonstrated that standard techniques
for image reconstruction in DOT can be successfully employed
in UOT. The alternative measurement types available in UOT
demonstrate sensitivity with a significantly improved spatial res-
olution over that of continuous-wave DOT. The modulation
depth measurement type, and associated sensitivity functions,
demonstrate particularly attractive qualities in suppressing the
high sensitivity close to the source and detector, while also pro-
viding a better noise immunity than the direct use of the AC
measurement data.

5 Future Work
The next step in the development of this work is to conduct
reconstructions based upon the experimental data. The signal-
to-noise ratio for autocorrelation-based experimental data is a
direct function of the permissible integration (data collection)
time of the autocorrelation function which defines the measure-
ment. Data collected from fluid targets will be corrupted by an
exponential decay caused by decorrelation due to the Brownian
motion: this will increase the required integration time as the
data must be multiplied by the inverse exponential, amplifying
noise on the signal. In any case, it is the integration time which
will dictate the applicability of this method to real-world prob-
lems in biomedical imaging.

Regarding the theoretical development, four points of
particular interest for the future studies are immediately
identifiable:

1. Extending the parametrization of the medium to
include the scattering coefficient within the domain.
This may require an analysis of the uniqueness of
the inversion process: in the case of DOT, continu-
ous-wave measurements cannot be used to recover
both absorption and scattering perturbations34 and it
is unclear without further analysis if this is also true
of autocorrelation based measurements.

2. Employing a nonlinear inversion for the absolute
recovery of the desired parameters. In UOT, forming
the Jacobian matrix requires the forward model to be
solved twice for each ultrasound location: this is
potentially too slow for a standard iterative reconstruc-
tion.35 This problem might therefore be approached by
a gradient-based method as employed in both DOT
(Ref. 36) and quantitative photoacoustic tomography.37

An alternative approach might be the acceleration
of the forward model by the approximation of
the acoustically generated sink of correlation by a
(Born/Rytov) series approach.

3. Further regularization strategies should be explored
based upon a-priori information regarding the struc-
ture of the object to be imaged. The image recon-
structed in this work might be more suitably
regularized using, for example, a total-variation tech-
nique, which can only be employed in an iterative,
nonlinear inversion.

4. To improve the accuracy of the reconstruction, irre-
spective of the particular regularization or inversion
procedure, a higher quality forward model could be
employed. Recent advances in GPU accelerated
Monte-Carlo techniques for UOToffer one option.38,39

This could alternatively be approached by the applica-
tion of an order-of-scattering approach to the integral
form of a correlation transport equation, as employed
in DOT40.
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