
Algorithm for automated selection of
application-specific fiber-optic reflectance
probes

Andrew J. Gomes
Vadim Backman



Algorithm for automated selection of application-specific
fiber-optic reflectance probes

Andrew J. Gomes and Vadim Backman
Northwestern University, Department of Biomedical Engineering, Evanston, Illinois 60218

Abstract. Several optical techniques and fiber-optic probe systems have been designed to measure the optical
properties of tissue. While a wide range of options is often beneficial, it poses a problem to investigators selecting
which method to use for their biomedical application of interest. We present a methodology to optimally select a
probe that matches the application requirements. Our method is based both on matching a probe’s mean sampling
depth with the optimal diagnostic depth of the clinical application and on choosing a probe whose interrogation
depth and path length is the least sensitive to alterations in the target medium’s optical properties. Satisfying these
requirements ensures that the selected probe consistently assesses the relevant tissue volume with minimum vari-
ability. To aid in probe selection, we have developed a publicly available graphical user interface that takes the
desired sampling depth and optical properties of the medium as its inputs and automatically ranks different tech-
niques in their ability to robustly target the desired depth. Techniques investigated include single fiber spectroscopy,
differential path length spectroscopy, polarization-gating, elastic light scattering spectroscopy, and diffuse reflec-
tance. The software has been applied to biological case studies. © The Authors. Published by SPIE under a Creative Commons
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1 Introduction
A fiber-optic probe will interrogate a specific volume within a
sample that is determined by the probe geometry and the sample
optical properties. For accurate optical assessment of tissue
structure and function, it is imperative that this interrogation vol-
ume coincides with the location where the relevant biological
processes are occurring. The importance of depth-selectivity
for accurate diagnosis has been underscored experimentally and
clinically, especially for the early detection of cancer, which
most often originates in a few-hundred-microns-thick mucosal
tissue layer. Our optical and histological investigations in human
patients and animal models of colon carcinogenesis have shown
diagnostic alterations in hemoglobin concentration that are
present in the mucosa but attenuated at deeper submucosal
depths.1–5 Studies with angle-resolved low-coherence interfer-
ometry demonstrate that elevation of nuclear diameter associ-
ated with dysplasia in Barrett’s esophagus was only
detectable at a depth of 200 to 300 μm and not observable at
0 to 100 μm or 100 to 200 μm.6 Several fiber-optic probe modal-
ities have been developed to target the mucosal layer with a wide
field of view. These include polarization-gating spectroscopy
(PGS),7,8 differential path length spectroscopy (DPS),9 elastic
light scattering spectroscopy (ESS),10 single-fiber reflectance
spectroscopy (SFS),11 and angled-illumination-collection
designs.12–14 These methods have proven successful in diagnos-
ing epithelial lesions including those in the colon, oral, and other
types of mucosae.1,2,9,13,15–18 On the other hand, diffuse reflec-
tance spectroscopy (DRS) methods typically have a sampling

depth on the order of several millimeters and are consequently
not very selective to the mucosal layer. However, the deeper
sampling depth of DRS may be advantageous for other appli-
cations. For example, optical assessment of blood vessels
under thick skin such as the palm requires light to first penetrate
∼1 mm through the epidermal layer. This can be achieved with
DRS, but not easily with the other techniques mentioned previ-
ously. It is evident from the above considerations that matching
the probe sampling depth to the clinical application is one of the
main driving forces behind optimal probe selection.

Given the variety of spectroscopic methods that are currently
available, there is a need to develop a schema for both choosing
the correct technology and also selecting the optimal configu-
ration of that technology for the application of interest.
Parameters of the configuration can include size of the illumi-
nation-collection area, collection angle, fiber diameter, or inter-
fiber spacing. In choosing an optical technology, there are a
number of factors to consider including sampling depth, length-
scale sensitivity, signal-to-noise ratio, cost, and convenience.

In the framework we develop in this paper, we focus on two
crucial facets of probe development: the mean sampling depth
and the sensitivity of the mean depth and path length to pertur-
bations in the optical properties of the sample. Structurally and
functionally, biological tissue is multilayered with specific bio-
logical processes and diseases occurring at different depth
layers. Accurate optical assessment of these processes and dis-
eases requires light to be preferentially targeted to the layer of
interest making the sampling depth a critical aspect of probe
design. It is important to point out that it is not sufficient to select
a probe with an application-specific depth of tissue interroga-
tion: one needs to consider how this sampling depth may
vary depending on the optical properties of tissue. The clinical
rationale for considering these parameters is that optimizing
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both of them will maximize the effect size for a given diagnostic
parameter between control and disease groups. The Cohen effect
size (d) in statistics is defined as the difference in the means
between the two groups divided by the pooled standard
deviation (s):

d ¼ x̄1 − x̄2
s

: (1)

Selecting an appropriate depth that targets the diagnostic layer
will maximize x̄1 − x̄2 as highlighted by the clinical studies ref-
erenced previously. The effect size can also be improved by min-
imizing the pooled standard deviation. Previous research has
focused on reducing biomarker variability through improved
data collection,19–21 calibration,22 and/or post-processing.23

Another avenue to improve variability is by minimizing the
dependence of the mean sampling depth and path length on
the optical properties of the medium. This ensures that a con-
sistent depth is targeted from tissue site to tissue site and also
from patient to patient. In addition, robust application of the
Beer-Lambert law to tissue spectroscopy requires that the path
length be insensitive to tissue optical properties.24 This fact has
motivated the development of probe designs for which the path
length is independent of optical properties.25,26

It would be cumbersome to experimentally test side by side
the individual technologies highlighted above for the optimum
sampling depth and sampling depth sensitivity. To overcome
this problem, we have culled the literature for mathematical
expressions of the sampling depth and path length of various
techniques and derived our own formulations. We have incor-
porated our analysis into a graphical user interface (GUI) that
takes user input of the sample optical properties outputs opti-
mum configurations of different spectroscopic techniques. The
user can then select the best technique and configuration com-
bination for their application of interest. We expect that our
method and GUI tool will aid investigators who believe that
optical methods would be useful in their disease screening
research, but do not know which technique would be best suited
for their task. Our results can also help researchers refine and
optimize the geometry of their current fiber-optic probes.

2 Materials and Methods

2.1 Probe Selection Metrics

Avariety of factors can be considered when choosing a probe for
a particular application. As stated in the introduction, we
focused on the probe mean sampling depth and on the sensitivity
of both the sampling depth and path length to perturbations in
the optical properties of the medium. The main optical proper-
ties of a sample are the scattering coefficient μs, the absorption
coefficient μa, and the average cosine of the scattering angle
(anisotropy factor g). We found that the depth and path length
were primarily functions of the reduced scattering coefficient
½μ 0

s ¼ μsð1 − gÞ� and μa. The problem of probe evaluation
can be separated into two components, which need to be
defined.

1. Mean sampling depth and path length calculation: We
define the mean sampling depth as the expected value
of the maximum depth reached by all collected pho-
tons in a Monte Carlo simulation:

hZi ¼
P

TPC
i¼1 WiZiP
TPC
i¼1 Wi

; (2)

withWi equal to the intensity weight of the ith photon,
Zi equal to the maximum depth reached by the i’th
photon, and TPC being the total photons collected
by the collection system. This definition of the mean
depth has been used previously to characterize optical
systems.7,27–32 It has the advantage of being easy to
visualize and can alert the user when the typical pho-
ton crosses a depth threshold. Other definitions, such
as those based on the time spent at a depth z or the
depth at which specified percentage photons emerge
from, are also possible.25,28 Ideally, multiple defini-
tions of the depth would be considered, requiring sev-
eral models for each of the techniques presented. To
maintain simplicity, we have used one of the accepted
definitions of sampling depth and have applied it con-
sistently across the different techniques studied. The
definition of path length is the “mean average path
length” pertinent to the modified Beer-Lambert Law
for turbid media.33–35 The modified Beer-Lambert
Law has the form

I ¼ Is expð−μahLiÞ; (3)

where I is the reflectance intensity, Is is the intensity
that would be observed if the sample was devoid of
absorbers, and hLi is the mean average path length
defined as

hLiðμa; μ 0
sÞ ¼

1

μa

Zμa
0

hLiðμ 0
a; μ 0

sÞdμ 0
a; (4)

where hLiðμa; μ 0
sÞ is the mean path length for a par-

ticular set of ðμa; μ 0
sÞ.

2. Depth and path length sensitivity to optical properties
calculation: We define the mean sampling depth and
mean average path length sensitivity to a given sample
optical property as the fractional change in the depth or
path length given a small fractional change in the opti-
cal property of interest. As an example, the formula for
the depth sensitivity to fluctuations in μa for a sample
having μa ¼ b1 and μ 0

s ¼ b2 is

ShZiμa ¼
���� ∂hZi∕hZiμa¼b1;μ 0

s¼b2

∂μa∕b1

����; (5)

where b1 is the baseline magnitude of μa, b2 is the
baseline level of μ 0

s, and hZiμa¼b1;μ 0
s¼b2 is the depth

evaluated at μa ¼ b1 and μ 0
s ¼ b2. The sensitivity to

μ 0
s can also be calculated in the same fashion as

Eq. (5), but with taking derivative of the depth with
respect to μ 0

s instead of μa. The mean average path
length sensitivity can also be determined by replacing
hZi in Eq. (5) with hLi. The depth or path length will
be independent of the optical properties of the sample
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if and only if the sensitivity as defined in Eq. (5) is
equal to zero.

The probe selection criteria embodied by the mean sampling
depth and the depth/path length sensitivities can automatically
be calculated for a given optical technique if hZi and hLi are
known. Expressions governing these parameters for DRS,
PGS, ESS, SFS, and DPS are provided in the next section.

2.2 Depth and Path Length Expressions

Expressions for the mean sampling depth and mean average
path length of several optical spectroscopic techniques are
given below. These expressions have been derived from MC
simulations in which the sample was assumed to be homo-
geneous and in which the Henyey-Greenstein phase function
was employed. In all cases, the illumination beam was assumed
to have a flat intensity profile and the numerical aperture of
simulated fibers was 0.22. The refractive index of the media
was 1.4 to correspond to biological tissue, while the outside
refractive index was 1.52 to correspond to either a lens or optical
fiber.

1. DRS: DRS has been extensively used to extract optical
properties from biological media. DRS probes have
source-detector separations that are greater than
1∕μ 0

s to satisfy the assumptions of the diffusion
approximation as shown in Fig. 1(a). Advantages of
DRS include the ability to sample deeper tissue struc-
tures and the existence of well-characterized diffusion
theory to help analyze reflectance data. The mean
average path length for DRS in a semiinfinite geom-
etry is36,37

hLiDRS ¼ 0.5ρ

�
3μ 0

s

μa

�
0.5
�
1 −

1

1þ ρð3μ 0
sμaÞ0.5

�
;

(6)

where ρ is the source-detector separation. The sam-
pling depth for DRS has been given as38

hZiDRS ¼ 1

μ 0
s

�
πρμ 0

s

2μeff∕μ 0
s

�
0.5

; (7)

where μeff is the effective attenuation coefficient equal
to ½3μaðμa þ μ 0

sÞ�0.5.
2. Collimated illumination with overlapping illumination

and collection areas: This is a broad category, and can
include probes that use either polarized7 or unpolar-
ized25 light. In this configuration, a lens is typically
used between the optical fibers and the sample surface

to deliver a collimated illumination beam to the sample
surface and to focus reflected light onto the collection
fibers as shown in Fig. 1(b). The area on the sample
surface that photons enter the sample and the area from
which they emerge after being scattered overlap. Both
the path length and the sampling depth of this method
can be tuned by varying the radius (R) of the illumi-
nation-collection area and the collection angle (θc).
These in turn can be manipulated by the numerical
aperture of the fibers, the lens focal length, and the
spacing between illumination and collection fibers.39

Path length and depth also depend on sample optical
properties such as μ 0

s, μa, and the type of phase func-
tion. Our previous studies utilized a phase function
based on the Whittle-Matérn model of light scattering
from continuous refractive index media.40 The shape
of the refractive index correlation function, parameter-
ized by the variable m, influences the shape of the
phase function. An m value of 1.5 corresponds to
the well-known Henyey-Greenstein (HG) phase func-
tion. Our group has previously developed equations
for the mean average path length for the co-polarized
reflectance signal (Ik), cross-polarized reflectance sig-
nal (I⊥), differential polarized-gated signal (ΔI ¼
Ik − I⊥), and the total reflectance signal (ΣI ¼
Ik þ I⊥).

41

hLiΣ ¼ ½2ða2
ffiffiffiffiffiffiffiffi
Rμa

p
− 1ÞðRμ 0

sÞa3 expða1 þ a2
ffiffiffiffiffiffiffiffi
Rμa

p Þ� − ½−2ðRμ 0
sÞa3 expða1Þ�

a22μa
: (8)

hLik ¼
½2ðb2

ffiffiffiffiffiffiffiffi
Rμa

p
− 1ÞðRμ 0

sÞb3 expðb1 þ b2
ffiffiffiffiffiffiffiffi
Rμa

p Þ� − ½−2ðRμ 0
sÞb3 expðb1Þ�

b22μa
: (9)

Fig. 1 Probe geometries of the different optical techniques investigated.
(a) Diffuse reflectance spectroscopy (DRS). (b) Polarization-gating spec-
troscopy (PGS). (c) Single-fiber reflectance spectroscopy (SFS).
(d) Differential path length spectroscopy (DPS). (e) Elastic light scattering
spectroscopy (ESS).

Journal of Biomedical Optics 027012-3 February 2013 • Vol. 18(2)

Gomes and Backman: Algorithm for automated selection of application-specific fiber-optic. . .



hLi⊥¼
ð2fc2

ffiffiffiffiffiffiffiffi
Rμa

p
−½c1þc3 expð−Rμ0

sÞ�ln½c1þc2
ffiffiffiffiffiffiffiffi
Rμa

p þc3 expð−Rμ0
sÞ�gÞ−ð2f−½c1þc3 expð−Rμ0

sÞ�ln½c1þc3 expð−Rμ0
sÞ�gÞ

c22μa
:

(10)

hLiΔ ¼ lnðd1 þ d2Rμa þ d3Rμ 0
sÞ− lnðd1 þ d3Rμ 0

sÞ
d2μa

:

(11)

The parameters ½ an bn cn dn � are themselves
functions of θc andm.41 For the purposes of our software
algorithm, we fix m to 1.5 (HG phase function) both
because it has only a minor influence on the depth/
path length (mean deviation of <12% over the biological
range of m) and to be able compare the polarization-
gating results with other techniques that have mostly
employed the HG phase function. In addition to the
path length models, we have previously developed an
expression for the differential polarization-gated signal
which is the difference measurement between the co-
polarized reflectance intensity and the cross-polarized
reflectance intensity (ΔI ¼ Ik − I⊥). The mean sam-
pling depth for the ΔI signal was found to behave as
a stretched exponential:39

τ 0 ¼ af1 − exp½−bðRμ 0
t Þc�g; (12)

where μ 0
t ¼ μ 0

s þ μa,τ 0 ¼ hZiμ 0
t where hZi is the

expected value of the maximum depth that photons
will visit, and ½ a b c � are linear functions of θc
specified previously.39 Following an general procedure
as in Ref. 39, we have also developed expressions for
the other polarization-gated signals:

hZik
R

¼ ðx1 þ x2Rμa þ x3
ffiffiffiffiffiffiffiffi
Rμ 0

s

p
Þ−1; (13)

hZi⊥
R

¼ ðy1 þ y2Rμa þ y3
ffiffiffiffiffiffiffiffi
Rμa

p
þ y4

ffiffiffiffiffiffiffiffi
Rμ 0

s

p
Þ−1;
(14)

hZiP
R

¼ ðz1 þ z2Rμa þ z3
ffiffiffiffiffiffiffiffi
Rμ 0

s

p
Þ−1; (15)

where [x1, x2, x3, y1, y2, y3, z1, z2, z3] are functions of
θc. In brief, Eqs. (13) to (15) were derived from MC
simulations that tracked the maximum depth collected
photons travelled for many different combinations of
Rμ 0

s and Rμa. A surface fitting procedure based on
the least-squares technique was then used to find the
functional forms that best fit the MC data. These func-
tional forms are those given in Eqs. (13) to (15) and the
coefficient values are listed in Table 1. Equations (8) and
(15) can also be used in the case when unpolarized illu-
mination and detection are used.41

3. SFS: This method uses a single fiber for both delivery
and collection of light, as illustrated in Fig. 1(c). The
advantage of SFS includes both the ability to have

<1-mm-diameter probes that can fit into endoscopic
biopsy channels as well as catheters, and simple,
cost-effective system design. The path length and sam-
pling depth statistics of SFS have been studied with
Monte Carlo simulations in which expressions for
the mean average path length and mean sampling
depth were formulated under the assumption of a
HG phase function:33

hLiSFS
dfiber

¼ 1.54

ðμ 0
sdfiberÞ0.18½0.61þ ðμadfiberÞ0.61�

;

(16)

hziSFS ¼
0.38 exp½−0.06ðμadfiberÞ�

ðμ 0
sdfiberÞ0.12

hLiSFS; (17)

where dfiber is the diameter of the fiber. Equation (17)
was calculated on a different definition of the sampling
depth based on a weighted mean. We found that this
could be transformed to the expected value of the
maximum depth by a multiplicative factor:
hZiSFS ¼ hziSFS∕1.25 on average.

4. DPS: A DPS probe consists of two adjacent fibers.
One fiber serves as both a delivery and collection
fiber (dc), while the remaining fiber only collects
light (c) as depicted in Fig. 1(d). The tissue volume
interrogated by the differential reflectance signal dc −
c has been found to be shallow and relatively indepen-
dent of the optical properties of the medium.9 We
simulated the DPS geometry with two fibers spaced
1.2dfiber apart owing to cladding separation.42 In con-
trast to Ref. 42, we also took into account the numeri-
cal aperture of the delivery and collection fiber

Table 1 Fitting coefficients for PGS depth models.

Parameter Functional form

x1 ½−13.9þ 62.9∕ lnðθcÞ�−1

x2 2.30þ 0.00075θ2c

x3 ð0.71þ 0.028
ffiffiffiffiffi
θc

p Þ−1

y1 ð−10.06þ 0.38
ffiffiffiffiffi
θc

p Þ−1

y2 ð0.93 − 0.0066θcÞ−1

y3 0.61þ 5.65 · 10−6θ3c

y4 ð1.16 − 8.58 · 10−5θ2c Þ−1

z1 expð−3.45þ 0.36
ffiffiffiffiffi
θc

p Þ

z2 2.45þ 0.00075θ2c

z3 1
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(NA ¼ 0.22). In our MC modeling of the DPS geom-
etry we found the DPS mean average path length to
follow:

hLiDPS
dfiber

¼ ½0.207 − 0.059ðμ 0
sdfiberÞ2

þ 0.859
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ 0
sdfiber

p
þ 0.317μadfiber�−1:

(18)

An empirical equation for the DPS path length has also
been provided for a fixed g ¼ 0.8:43

hLiDPS
dfiber

ðg ¼ 0.8Þ ¼ 1þ ðμsdfiberÞ−0.53
1þ ðμadfiberÞ0.53

: (19)

The drawback of the empirical equation is that it is
only valid for g ¼ 0.8, whereas the model in Eq. (18)
has the g variable incorporated in μ 0

s. We have
observed that the path length can increase by greater
than 20% when g is increased from 0.8 to greater
than 0.9. Many tissues have g in the range of 0.9.
Therefore, we have decided to use Eq. (18) instead
of Eq. (19) in our algorithm since it is valid across
a wider range of g values encountered in biological
tissue. When the g value is fixed to 0.8 in Eq. (18),
we obtain excellent agreement with the experimental
results of Eq. (19) with a mean percent error of 8% and
a maximum percent error of only 17% across the entire
range of μsdfiber and μadfiber studied in Ref. 43.
This agreement experimentally validates Eq. (18)
for g ¼ 0.8 and underscores the validity of our MC
modeling of the DPS probe geometry. Simulations
revealed the DPS sampling depth to be of the follow-
ing form:

hZiDPS
dfiber

¼ð0.337þ1.95
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ 0
sdfiber

p
þ1.56μadfiberÞ−1:

(20)

Equations (18) and (20) were derived from simulations
having dfiber ¼ ½0.01; 0.04; 0.06; 0.08; 0.1� cm,
g ¼ ½0.8; 0.9; 0.95�, μs ¼ ½50; 100; 250� cm−1, and
μa ¼ ½0 − 40� cm−1.

5. ESS: Probes based on ESS typically have small
source and detector fiber separation (ρ < 1∕μ 0

s),
which allows them to sample superficial tissue layers.
The basic geometry of an ESS probe is shown in Fig. 1
(e). In theory, the depth and path length can be
turned by the fiber diameter, center-to-center fiber
spacing, and fiber tilt.10 In our Monte Carlo analysis
we restricted the fiber diameter to 200 μm and the fiber
tilt to 0 deg, as these are the most typically used
configurations. We then charted the sampling depth
and path length as a function of the center-to-center
fiber separation ρ. We found that we could leverage
Eqs. (16) and (17) from SFS (ρ ¼ 0) such that

hLiESS ¼ hLiSFSð0.0051ρþ 1.88Þ
hZiESS ¼ hZiSFSð0.0021ρþ 2.12Þ; (21)

where ρ is in units of microns. Equation (21) was
derived from MC simulations of the ESS geometry
with ρ ¼ ½250; 500; 750; 1000; 1250; 1500� μm on
media having g ¼ ½0.8; 0.9; 0.95�, μa ¼ 1 − 20 cm−1

and μs ¼ ½50; 100; 200� cm−1.

2.3 Probe Selection Algorithm

Selecting an optimal probe is a multicriteria decision analysis
problem. One method to solve such problems is a weighted
sum model (WSM). In the WSM, each criterion is given a rel-
ative weight of importance. There are two main criteria in our
probe selection problem.

1. Deviation of the mean sampling depth from the target
depth: A given probe will have an mean sampling
depth characterized by hZi. The user of that probe will
have a target depth (Pt) within the sample that they are
trying to interrogate. The deviation of the probe depth
from the target depth can be calculated as ðjPt − hZijÞ∕
Pt. For an ideal probe, the deviation would be zero.

2. Sensitivities of the sampling depth and path length to
μ 0
s and μa: The sensitivities can be calculated accord-

ing to Eq. (5). The properties μ 0
s and μa are chosen

because the sampling depth and path length equations
can be reduced to functions of these two parameters.
An ideal probe would have all calculated sensitivities
equal to zero such that the depth and path length are
independent of the sample optical properties.

The sampling depth deviation as well as depth and path
length sensitivities will be functions of the probe geometry G
for each optical technique. The geometry can be manipulated
by changing R, dfiber, θc, or ρ. Suppose that a user has a target
depth of Pt and that probe geometry G has sampling depth

hZiðGÞ, depth sensitivities Shziμ 0
s
ðGÞ and Shziμa ðGÞ, and path length

sensitivities ShLiμ 0
s
ðGÞ and ShLiμa ðGÞ. In our analysis, optimal probe

selection will be achieved by choosing a particular G to mini-
mize the weighted sum AðGÞ:

AðGÞ ¼ w1

���Pt − hZiðGÞ
���

Pt
þ w2S

hzi
μ 0
s
ðGÞ þ w3S

hzi
μa ðGÞ

þ w4S
hLi
μ 0
s
ðGÞ þ w5S

hLi
μa ðGÞ; (22)

where w1 − w5 are relative weights supplied by the user. These
weights indicate the importance the user places on the corre-
sponding criteria term. For example, if w1 is set to zero, then
the algorithm will not take into consideration the match between
the target depth and the probe sampling depth when selecting an
optimal geometry. In contrast, if w1 is set to a high value, the
algorithm will attempt to match the target depth and the probe
sampling depth very accurately. To minimize Eq. (22), we used
the Nelder-Mead optimization algorithm in MATLAB. In brief,
the algorithm will cycle (via a simplex search) through the
geometry parameters (dfiber, ρ, R, and θc) until a minimum
sum is reached. It will do this separately for each optical tech-
nique such that there will be an optimum geometry for DRS,
PGS, SFS, DPS, and ESS.

Journal of Biomedical Optics 027012-5 February 2013 • Vol. 18(2)

Gomes and Backman: Algorithm for automated selection of application-specific fiber-optic. . .



2.4 Automated Probe Selection with a MATLAB
Graphical User Interface

We implemented a MATLAB GUI to automate probe selection
using Eq. (22). A screenshot of the GUI is shown in Fig. 2(a).
The first step in the GUI is for the user to specify the baseline
values of, and μa which in turn delineate the b1 and b2 param-
eters of Eq. (5). These values should correspond with mean
optical properties of the sample of interest and can be obtained
from the literature or experimentally determined integrating
sphere measurements. The optical properties of a wide variety
of tissue types have been previously studied.44 However, care
must be taken when translating ex vivo optical property deter-
minations to in vivo measurements. The second step is for the
use to enter the target depth. The target depth is the depth
within the sample where the most diagnostic or scientifically
relevant information is expected to be obtained. Next, the user
stipulates the relative weights given in Eq. (22). These weights
determine the criteria that will be the most important in the
automated selection process. If these are not explicitly speci-
fied, they will default to a value of 1. Finally, the user can place
upper and lower bounds on the probe geometry parameters
such as dfiber, ρ, R, and θc. This may help the user limit the
selection space to geometries that utilize commercially avail-
able components or that are more convenient in a clinical set-
ting. After all input values have been selected and the user
initiates the automated selection, the program will attempt
to minimize Eq. (22) for each optical technique. After the min-
imization procedure is complete, the GUI will output a table of
results as depicted in Fig. 2(a). Each row of the table corre-
sponds to a different optical technique (DRS, PGS, SFS,
DPS, ESS). The first column gives the weighted sum from
Eq. (22) for the optimal geometry of each technique. The

best technique will have the lowest value in the first column.
The next five columns give the values of the optimization cri-
teria: the depth deviation and the depth and path length sensi-
tivities. In the remaining columns are shown the values of the
geometry parameters (dfiber, ρ, R, and θc) that compose the
optimum geometry. The user can take these values and con-
struct the ideal application-specific probe.

The DRS technique is known to be valid across a specified
range of parameters. Therefore, in our algorithm we institute
two checks to make sure the user is notified as to when the dif-
fuse reflectance assumptions may be violated. The algorithm
displays a warning dialog box if the transport albedo ðμ 0

s∕μ 0
s þ

μaÞ < 0.8 for which the DRS result would not be accurate.45 In
addition, the algorithm ensures that the output value of ρ satis-
fies ρμ 0

s > 1. A warning dialog is displayed if the upper and
lower bounds on ρ would not satisfy this property.

The algorithm outputs ideal probe configurations based on
single values for μ 0

s and μa that correspond to a single wave-
length. Since broadband measurements are often taken, it can
be useful to visualize how the depth and path length vary with
wavelength. To satisfy this need, the GUI plots the depth and/or
path length for each technique as a function of wavelength. This
is achieved in the “depth and path length spectra” panel of the
GUI, as shown in Fig. 2(a). The user selects a technique from
the first drop-down menu, either the depth or path length from
the second drop-down menu, and then loads a MATLAB data
file. The data file consists of the wavelength in the first column
followed by the corresponding μ 0

s and μa values in the second
and third columns, respectively. Based on these values, the GUI
will use the expressions in Sec. 2.1 to calculate the depth or path
length at each wavelength for the ideal geometry specified in the
GUI table. As an example, we show the SFS path length spectra
for dfiber ¼ 400 μm in Fig. 2(b). The value of μ 0

s was 20 cm−1 at

Fig. 2 MATLAB graphical user interface (GUI) for automated probe selection. (a) GUI interface where the user can enter the target depth, optical
properties for the medium, weights for the optimization algorithm, and bounds on the probe geometry parameters. Pressing the submit button
will initiate the algorithm and the results will be outputted to the depicted table. (b) The “depth and path length spectra” panel in the GUI allows
the user to plot the depth or path length spectrum for a selected technique by loading a data file consisting of the optical properties as a function of
wavelength. Depicted is the SFS path length spectrum.
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560 nm and followed a λ−1 dependence. The value μa was
10 cm−1 at 560 nm and followed the absorption spectrum of
hemoglobin with 75% oxygen saturation. The path length fol-
lows the hemoglobin spectrum with dips in the path length cor-
responding to the characteristic hemoglobin absorption peaks at
420, 542, and 576 nm.

2.5 Case Studies

To illustrate the use of the GUI, we consider two biological case
studies. The first is the case of detecting dyplasia in Barrett’s
esophagus. Previous research with angle-resolved low coher-
ence interferometry has shown that diagnostic increases in
nuclear size occur at a depth of 200 to 300 μm beneath the
esophageal surface.6 The user could set a target depth of 250 μm
in the GUI. The optical properties at a wavelength of 630 nm for
normal human esophagus have been supplied by Table 2 of
Holmer et al.: μa ¼ 2.1� 3.6 cm−1, μs ¼ 125.6� 22.3 cm−1,
and g ¼ 0.94� 0.02.46 The next task is assigning the relative
weights from Eq. (22). It has been found that the diagnostic
changes occurring with esophageal dysplasia are localized to
the 200- to 300-μm layer. Therefore, it is important to have
the target depth and probe sampling depth match as closely
as possible and we set w1 ¼ 1. Assigning weights to the sensi-
tivity variables hinges on several considerations. The standard of
deviation μa is high with a coefficient of variation greater than
one. To maintain a consistent depth or path length given this
variability, it is desirable minimize the sensitivity of the depth
and path length to μa. The increase in nuclear size observed with
low coherence interferometry might be expected to result in an
increase in g and consequent reduction in μ 0

s. To target the same
region between control and dysplastic patients would necessitate
minimizing the depth and path length sensitivity to μ 0

s. For sim-
plicity, we will set w2 − w5 also equal to one. The final user
input is setting bounds on the geometry parameters. Choice
of these bounds is primarily driven by what is commercially
available or feasible to manufacture and what is clinically con-
venient. For example, the diameter of upper endoscope acces-
sory channels places upper bounds on the size of a potential
esophageal probe. We set a lower limit of 100 μm and upper

limit of 3 mm for dfiber and R while setting the lower
limit of ρ to 250 μm. We allowed θc to vary from 0 deg
to 45 deg.

The second case involves optically determining chromo-
phore concentrations from target tissue using a Beer’s Law
algorithm. This approach has been previously used to study
microcirculatory alterations associated with dysplasia2,47 as
well as to monitor chemotherapy drug concentrations in
tissue.48 Insensitivity of the effective path length to tissue optical
properties helps to ensure robust application of this method.24,26

For the second case study, we change the target depth to 150 μm.
Hemoglobin concentration measured from this depth was diag-
nostic for early detection of colonic neoplasia.2 For simplicity,
we will maintain the same optical properties as the first case
study since the optical properties of the colon have been found
to be similar.49 In general, the optical properties will need to be
adjusted based on the tissue or organ being investigated. This
case study will require higher weights to be placed on the
path length sensitivity terms. As an example, we will consider
w1 ¼ 0.5, w2 ¼ w3 ¼ 0.1 and w4 ¼ w5 ¼ 1.

3 Results

3.1 Validation of Sampling Depth
Expressions for PGS

In Fig. 3, we plot the MC simulations of the PGS sampling depth
versus the models developed in Eqs. (13) to (15). Each PGS
signal is shown in a different subplot of Fig. 3. with (a) co-
polarized signal, (b) the cross-polarized signal, (c) total signal.
In all cases, there is a clear linear correlation between the sim-
ulations and the models with Pearson correlation coefficient
greater than 0.99. The mean percent differences between
model and simulation were 9% for the co-polarized signal,
8% for the cross-polarized signal, 10% for the total signal.
The error for the delta-polarized signal has been previously
found to be ~5% in Ref. 39. This leads us to conclude that
Eqs. (13) to (15) can be used as accurate condensations of
the MC simulations for PGS.

Table 2 Algorithm results for esophageal dysplasia detection case study.

Depth sensitivity
Path length
sensitivity

Technique Weighted sum Depth % error μ 0
s μa μ 0

s μa R (cm) d fiber (cm) p (cm) θc

SFS 0.746 7.090E-3 0.300 0.134 0.180 0.131 NA 0.025 NA NA

DPS 0.785 3.830E-3 0.346 0.082 0.320 0.036 NA 0.037 NA NA

PGS-Delta 0.921 2.513E-8 0.420 0.117 0.328 0.055 0.017 NA NA 11.366

PGS-Co 0.715 3.104E-8 0.224 0.206 0.156 0.129 0.029 NA NA 46.334

PGS-Cross 1.277 1.240E-5 0.301 0.346 0.299 0.331 0.018 NA NA 60.000

PGS-Total 0.702 4.477E-7 0.253 0.171 0.167 0.110 0.018 NA NA 32.864

ESS 2.020 130.7 0.300 0.119 0.180 0.117 NA NA 0.025 NA

DRS 3.205 184.0 0.253 0.111 0.927 0.073 NA NA 0.025 NA
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3.2 Validation of Depth and Path Length Expressions
for DPS

We illustrate the correspondence between our MC simulations
of the DPS geometry and the models of Eqs. (18) to (20) for the
depth and path length in Fig. 4(a) and 4(b). Figure 4(a) demon-
strates that the simulation and model coordinates cluster around
the ideal line of unity indicating good agreement. This
agreement was quantified through the mean percent error,
which was 3%. Figure 4(b) also demonstrates good agreement
between simulation and model with an overall percent error of
3% for the path length. As previously mentioned in Sec. 2.2, our
model of the DPS path length agrees well with previously pub-
lished experimental data43 with a mean percent error of 8%.

3.3 Validation of Depth and Path Length Expressions
for ESS

In Fig. 5(a) and 5(b) we have plotted our MC simulations of the
depth and path length of the ESS geometry versus our models of
the depth and path length from Eq. (21). For the depth plotted in
Fig. 5(a), there is a 9% error percent difference of the depth data
points about the ideal line of unity. In Fig. 5(b), the percent
difference of the path length data about the unity line is
11%. Figure 5(b) also plots the path length as determined
from a previously published analytical model for ESS by Reif
et al.:10 hLi ¼ ½0.32∕ðμaμ 0

sÞ0.21�. This equation is only valid for
200-μm diameter fiber with a 250-μm inter-fiber spacing. As
Fig. 5(b) demonstrates, the data points from this previously vali-
dated model (shown in red) clearly overlap with the data points
from model in Eq. (21) (shown in black). This underscores the
validity of our MC simulations of the ESS geometry and the
models we derived from them.

3.4 Sampling Depth and Sensitivity Behavior

We now examine the behavior of the mean sampling depth for
all the techniques previously mentioned. In particular, we were
interested in how the depth could be tuned by varying the geom-
etry, as this would directly affect optimal probe selection. In
Fig. 6, we plot the log of the sampling depth scaled by μ 0

s of
the various techniques versus a parameter we term the area
extent. The area extent is a measure of the maximum horizontal
distance a photon could travel between its entry and exit points
for each technique multiplied by μ 0

s. For PGS the area extent is
equal to 2Rμ 0

s, for DPS and SFS the area extent is μ 0
sdfiber, while

for ESS and DRS the area extent is ρμ 0
s. From the expressions in

Sec. 2.1 it can be observed that in the case of PGS, SFS, and
DPS, for μa → 0, the quantity μ 0

shZi can be represented as
a function solely of the area extent. The optical properties
used to generate the data in Fig. 6 are μs ¼ 200 cm−1,
μa ¼ 0, and g ¼ 0.9 From Fig. 6, it is clear that the sampling
depth increases with the area extent for all the techniques though
the precise behavior is not the same. For example, the
delta-polarized signal saturates very quickly with area extent
when compared with other methods.
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Fig. 3 Comparison of sampling depth model estimates (hZiMod) for
polarization-gated measurements shown in Eqs. (13) to (15) with the
Monte Carlo simulation estimates (hZiMC): (a) co-polarized signal,
(b) cross-polarized signal, (c) total polarized signal. The line of unity
is shown for comparative purposes.
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Fig. 4 Comparison of the models developed in Eqs. (18) to (20) for the
differential path length spectroscopy (DPS) mean sampling depth and
mean average path length with the Monte Carlo results from simulations
of the DPS probe geometry. (a) Monte Carlo simulations of DPS depth
(hZiMC

DPS∕dfiber) versus model predictions of the DPS depth (hZiMod
DPS ∕

dfiber). (b) Monte Carlo simulations of the DPS mean average path length
(hLiMC

DPS∕dfiber) versus model predictions of the DPS mean average path
length (hLiMod

DPS ∕dfiber). The line of unity is shown for comparative
purposes.
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Fig. 5 Comparison of the models developed in Eq. (21) for the elastic
scattering spectroscopy (ESS) mean sampling depth and mean average
path length with the Monte Carlo results from simulations of the ESS
probe geometry. (a) Monte Carlo simulations of ESS depth (hZiMC

ESS∕
dfiber) versus model predictions of the ESS depth (hZiMod

ESS ∕dfiber). (b) In
black are the Monte Carlo simulations of the ESS mean average path
length (hLiMC

ESS∕dfiber) versus model predictions [Eq. (21)] of the ESS
mean average path length (hLiMod

ESS ∕dfiber). In red are the Monte Carlo
simulated path length versus the path length predicted by Ref. 10 for
an ESS probe with dfiber ¼ 200 μm and inter-fiber spacing of 250 μm.
The line of unity is shown for comparative purposes.
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Next we wanted to examine the sensitivity of the depth and
path length to μ 0

s and μa. In Fig. 7(a) and 7(b) we plot the sen-
sitivity [defined in Eq. (5)] of the sampling depth to μ 0

s and μa,
respectively, as a function of a geometry parameter. The geom-
etry parameter is simply defined as 2R for PGS, dfiber for DPS
and SFS, and ρ for DRS. The ESS technique is not shown since
its sensitivity will be identical to that of SFS over the range of ρ
specified in Sec. 2.2. The optical properties used to generate the
data in Fig. 7 are μs ¼ 200 cm−1, μa ¼ 2 cm−1, and g ¼ 0.9.
Examination of Fig. 7(a) shows the dependence of the μ 0

s
depth sensitivity on the geometry parameter is dependent on
the technique being used. In most cases, the sensitivity decreases
when the geometry parameter is increased. Notable exceptions
are the PGS delta-polarized signal for which the sensitivity
increases and eventually saturates with R and SFS/ESS and
DRS for which the sensitivity is independent of dfiber. If the

main objective was to minimize μ 0
s depth sensitivity, then selec-

tion of a DRS probe or analysis of the total-polarization signal
from a polarization-gated probe with area extent greater than
five would be appropriate. It should be noted that the validity
of the DRS equations used to generate Figs. 6 and 7 are appli-
cable when the diffusion approximation is valid, namely when
ρμ 0

s ≫ 1. Next we examine the μa depth sensitivity depicted in
Fig. 7(b). Here the behavior of the sensitivity as a function of the
geometry parameter is more uniform across optical techniques.
In nearly all cases, the sensitivity increases with the geometry
parameters. The lone exception is DRS, for which the depth sen-
sitivity is independent of ρ. Optimal minimization of the μa
depth sensitivity would entail selection of a DRS probe.

Next, we explored the sensitivity of the path length to μ 0
s and

μa in Fig. 7(c) and 7(d), respectively. The SFS/ESS, PGS (co-
pol), and PGS (total-pol) methods have path length μ 0

s sensitiv-
ities that are independent of the geometry parameter. The PGS
(delta-pol) sensitivity increases with R and saturates at large R.
The DRS sensitivity steadily decreases with ρ, while the PGS
(cross-pol) and DPS tend to decrease with the geometry param-
eter. The behavior of the DPS path length sensitivity to μ 0

s
deserves further examination. The DPS sensitivity reaches
zero when μ 0

sdfiber is approximately equal to 2.4 or equivalently
when the transport mean free path [l� ¼ ð1∕μ 0

sÞ] is equal to
2.4dfiber, which corresponds to twice the center-to-center sepa-
ration between the DPS fibers. It is beyond the scope of this
paper to confirm whether this phenomenon generalizes to
other inter-fiber spacings, but it is useful to know where exactly
the sensitivity reaches the optimal zero value. Finally, we inves-
tigated μa path length sensitivity in Fig. 7(d). The main pattern
observed is for the sensitivity to increase with the geometry
parameter for all the optical methods. The optimal techniques
for μa path length sensitivity minimization are DPS and the
PGS (delta-pol) methods.

3.5 Application of Automated Probe Selection
Algorithm to Biological Case Studies

We utilized the MATLAB GUI to implement the probe selection
algorithm embodied in Eq. (22). For the case of detecting dys-
plasia in Barrett’s esophagus, we input the optical properties,
target depth, and associated weights as described in Sec. 2.5.
The automated algorithm took 0.15 s to run on a personal com-
puter and the results were outputted in tabular format. These
results are summarized in Table 2. Each row corresponds to
a different technique, and each column gives the value of the
criterion or geometry parameter for the optimal geometry of that
technique. The optimal technique will have the lowest value in
the weighted sum column. For this case study, the PGS-total,
PGS-co, and SFS techniques performed similarly with weighted
sum equal to ~0.7. The ideal SFS probe would have a dfiber of
0.025 cm. In general, most of the optical methods are capable of
targeting the specified depth with an error less than 1%. The
exceptions are ESS and DRS. This is because they tend to target
deeper depths than the specified 0.025 cm. The next case study
we examined was measuring chromophores concentration from
a shallow depth of 0.0150 cm. Compared to the first case, the
target depth was less and higher weight was placed on the path
length sensitivity. The results of this case study are depicted in
Table 3. For this case study, a PGS (delta-pol) probe with an R of
0.005 cm and θc ¼ 6 deg is optimal. Using this type of probe,
the 0.0150-cm depth would be interrogated within 1%. For a 1%
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Fig. 7 Sensitivities of the mean sampling depth and mean average path
length for each optical technique to perturbations in μ 0

s and μa plotted as
functions of the geometry parameter. The geometry parameter is
defined as R, dfiber, or ρ depending on the technique. (a) Depth sensi-
tivity to μ 0

s . (b) Depth sensitivity to μa. (c) Path length sensitivity to μ 0
s .

(d) Path length sensitivity to μa.
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perturbation in μ 0
s or μa, the path length of the PGS (delta-pol)

probe would deviate by 0.15% and 0.02%, respectively.

4 Discussion
In this paper, we have provided a simple and flexible framework
for application-specific fiber-optic probe design. The guiding
principle of the algorithm was to maximize diagnostic effect
size for clinical biophotonic applications as defined in Eq. (1).
To accomplish this, our framework takes into account the target
sampling depth, and the sensitivity of the depth and path length
to fluctuations in the optical properties of the sample. We use a
weighted sum algorithm incorporating the above criteria to opti-
mize the probe geometry. The algorithm is implemented in an
easy-to-use MATLAB GUI interface where the user can specify
the target depth, sample optical properties, relative importance
of the algorithm criteria, and bounds on elements of the probe
geometry. We plan on making this software publicly available
for researchers to use.

Our results show that in most cast cases, both the mean sam-
pling depth and the sensitivities of the path length and depth can
be adjusted by the geometry. Notable exceptions include PGS
(co-pol), PGS (total-pol), and SFS for which the path length sen-
sitivity is independent of this value. In general, depth and path
length sensitivity to μa increases with the geometry parameter
(2R, dfiber, or ρ) for all optical techniques. The pattern is more
complicated when looking at the sensitivity to μ 0

s. Here the sen-
sitivity may decrease or increase with the geometry parameter
depending on the optical technique. For example, the path
length sensitivity increases with R for the PGS (delta-pol) signal
but decreases with dfiber for the DPS method. In addition, a wide
range of depths. ESS and DRS tend to sample depths greater
than l�, while the remaining methods interrogate depths on
the order of 0.3-1 l� as shown in Fig. 6.

The biological case studies we laid out gave realistic and
concrete examples of probe selection scenarios. The first exam-
ple was diagnosing esophageal dysplasia at a depth of 250 μm.
All the techniques except for ESS and DRS had a depth percent
error of less than 3%. This is not surprising, as these methods
were designed largely in part to target mucosal tissue structures.
If we had set a deeper target depth, then the ESS and DRS

techniques would have performed better. Indeed, if the target
depth is set to 650 μm, the depth percent error for ESS drops
from 131% to 5%. Our next case study involved measuring
chromophore concentration from a depth of 150 μm. In this
example, the path length sensitivity was considered paramount
for accurate application of Beer’s law. The PGS (delta-pol) was
found to be ideal both because of its ability to correctly achieve
the 150-μm depth and its low path length sensitivity to μa. At
this juncture, it must be stressed that the outcome of the algo-
rithm depends on the user-selected weights of Eq. (22). This is
both an advantage and disadvantage. The advantage is that it
gives the user a lot of flexibility to experiment with different
weights and find what best matches the application. This, how-
ever, introduces an element of subjectivity to the problem of
probe selection in the quality of the output depends on user guid-
ance. In addition, the algorithm will be sensitive to the accuracy
of the tissue optical properties input by the user. In general, the
optical properties are not known precisely and must be esti-
mated, typically from ex vivo specimens whose results do not
translate exactly to the in vivo case. As an example of the algo-
rithm sensitivity to optical properties, we increased the value of
μ 0
s by 20% in the first biological case study described in

Secs. 2.5 and 3.5. The PGS-total technique remained the optimal
technique selected by the algorithm but the geometry changed
from R = 0.018 cm to R = 0.02 cm. This suggests that the ulti-
mate technique chosen by the algorithm may be robust to optical
property uncertainty but that the specific geometry of that tech-
nique will be affected by optical property uncertainty.

The main goal of this paper was to develop a framework for
optimal probe design. Our algorithm necessitates expressions
relating the sampling depth and path length to the optical proper-
ties of the medium as well as illumination-collection geometry.
In the course of our main study we have used Monte Carlo sim-
ulations to develop depth and path length expressions for PGS,
DPS, and ESS. These expressions have utility independent of
their contributions to our algorithm. For example, they can be
used to study the sampling volumes of these techniques and in
particular the wavelength and system geometry dependence of
these volumes. There are also several probe techniques that this
paper has not considered at this time, in particular probe geom-
etries that use tilted illumination and collection beams.10,12,14

Table 3 Algorithm results for chromophores concentration measurement at a depth of 150 μm.

Depth sensitivity
Path length
sensitivity

Technique Weighted sum Depth % error μ 0
s μa μ 0

s μa R (cm) d fiber (cm) p (cm) θc

SFS 0.304 0.017 0.300 0.086 0.180 0.085 NA 0.011 NA NA

DPS 0.317 0.012 0.317 0.049 0.260 0.021 NA 0.016 NA NA

PGS-Delta 0.224 1.988E-7 0.377 0.105 0.151 0.024 0.005 NA NA 5.8

PGS-Co 0.272 1.115E-6 0.175 0.144 0.139 0.101 0.017 NA NA 54.9

PGS-Cross 0.725 13.0 0.387 0.384 0.212 0.371 0.005 NA NA 60.0

PGS-Total 0.272 1.377E-6 0.203 0.123 0.154 0.085 0.010 NA NA 44.0

ESS 1.760 284.4 0.300 0.119 0.180 0.117 NA NA 0.025 NA

DRS 2.903 373.0 0.253 0.111 0.927 0.073 NA NA 0.025 NA
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This is due to a lack of condensed equations explaining their
depth and path length behavior. However, our algorithm and
GUI can be easily extended once equations for these and
other techniques are known.

To maintain simplicity in our algorithm, we have made use of
some assumptions that need to be addressed. In both our own
Monte Carlo simulations and in the simulations of other groups
that we employed, it has been assumed that the optical proper-
ties are distributed homogeneously throughout the sample. In
reality, biological tissue can be multilayered, have absorption
localized to blood vessels, and have inhomogeneous distribution
of the scattering properties. A correction factor50 has been devel-
oped for blood vessel absorption that would allow our algorithm
to be fully valid as long as the corrected μa is input to the algo-
rithm. However, there is currently no general solution for multi-
layered structures and our use of the homogeneous assumption
is necessary to make the problem tractable. While the value of
the one-layer assumption for studying reflectance from biologi-
cal media is well established,9,10,51,52 our algorithm results must
be considered as an estimate for multilayer systems and future
study of the effect of multilayer structures on our algorithm is
warranted. In addition, we have not explicitly considered the
effect of the scattering phase function on the depth and path
length. The Henyey-Greenstein phase function was used in
the modeling for the all the techniques studied. It has been pre-
viously found that the details of the phase function have only a
minor influence on the depth and path length properties of the
techniques we investigated.10,39,53 Thus we do not expect the
choice of phase function to significantly alter our results though
this is an area of future study. Finally, as noted in Sec. 2.1, we
used a sampling depth definition based on the expected value of
the maximum depth collected photons will have reached and we
applied this definition consistently across the different optical
techniques. Other definitions of depth are also possible such
as a weighted mean33 or the depth from which a specified per-
centage of photons emerge.25 Ideally, different depth metrics
would be incorporated into the algorithm. This feature is limited
by the availability of different depth expressions. Our algorithm
and GUI could also be extended in the future to incorporate dif-
ferent depth definitions.

This paper has considered the target depth and the depth and
path length sensitivities to be the main criteria for probe selec-
tion. The chief reasons for this framework are both its relevance
to increasing diagnostic effect size and that its parameters are
easily computable. However, there are additional factors that
can govern probe selection. Cost, ease of manufacturing, and
signal to noise ratio (SNR) are crucial considerations especially
for technologies that seek to be commercialized. In addition,
some techniques may be more readily translated to a clinical
setting. Smaller probes, for example, can fit through the various
accessory channels of endoscopes. The GUI indirectly addresses
this issue by allowing the user to set upper and lower bounds on
the probe geometry parameters. These can be linked to the cost,
size, and SNR of the final probe design.

5 Conclusions
In this paper we have presented a framework for application-
specific probe design and selection. The main outcome is a flex-
ible and user-friendly GUI that automates probe assessment for
several common optical methods. We intend to make this GUI
and associated software publicly available for researchers to
investigate promising probe designs for their application of

interest. We expect that our algorithm will aid users in evaluat-
ing probe designs for specific applications.
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