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1 Introduction
Since the beginnings of color science, two basic tendencies have
been present with its development. The first has to do with the
idea that color vision is almost exclusive to humans, and the
second implies that only a reduced part of the visible spectrum
is required to achieve the perfect perception of colors. Both
tendencies have been supported by relevant findings and theo-
ries. This work is concerned with the second tendency.

Color science was founded on human perception, even in the
definition of light, but especially with Maxwell’s determination
of the color-matching functions of the normal human eye.1,2

Fortunately, by the end of the 18th century, it was recognized
that light is part of a wider spectrum and that “plant and animal
colors do not exist simply for human pleasure.”3,4

The idea that combining a reduced number of basic colors is
enough to generate any other color seems to have been intro-
duced by Thomas Young. He stated that “it is almost impossible
to conceive each sensitive point of the retina to contain an infin-
ite number of particles, each capable of vibrating in perfect uni-
son with every possible undulation, it becomes necessary to
suppose the number limited, for instance, to three principal
colors, red, yellow, and blue, etc.”5 The same idea was also
suggested by Maxwell in his pioneering studies on color.
Maxwell concluded that all the colors of the spectrum could
be compounded from red, green, and blue, which he called
the primaries.1 However, since long ago, studies on color
have shown that there are no three spectral “primary” colors
from which all other colors can be compounded.6

Apparently Maxwell was the first to consider the problem of
determining the laws of the composition of colors, so that the

number of “standard” colors was reduced to a minimum. The
determination of the minimum number of components required
for color vision has been assessed in different ways and from
different perspectives. One approach has been supported by
physiological studies on animal vision in general, considering
humans as a particular case.3,7 On the other hand, principal com-
ponents analysis (PCA) has been successfully used for deter-
mining the level of redundancy or the degree of importance
of visual information related to color vision. For instance,
Judd et al.8 applied PCA to study the spectral distribution of
daylight from experimental determinations. They found that
only two components were required to reconstitute the measured
curves with a good approximation. Cohen9 made use of PCA to
obtain the best linear model that fit a subset of 150 spectral
reflectances of Munsell color samples. He found that the first
three characteristic vectors accounted for 99.18% of the total
variance of the original data. Maloney10 used PCA to show
that within the visible spectrum, three components are sufficient
to represent most of the variation in spectra of “natural forma-
tions.” But he concluded that at least seven components are
required to optimally reconstruct the original data. Parkkinen
and Jaaskelainen11 showed that color spectra can be accurately
reconstructed using a few of what they called “principal spec-
tra.”Wandell12 proposed a method for the analysis and synthesis
of color images taking advantage of the high degree of corre-
lation across the visible wavelengths. He suggested the use
of PCA to model spectral reflectance and illumination.
Parkkinen et al.13 analyzed 1257 reflectance spectra in the vis-
ible region of the Munsell color chips. They found that eight
characteristic spectra are needed to achieve a good representa-
tion for all spectra. Oxtoby and Foster14 did psychophysical dis-
crimination experiments using images of Mondrian-like patterns
of Munsell surfaces and their spectral approximations producedAddress all correspondence to: Francisco J. Sanchez-Marin, Centro de
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by PCA. Observers required at least five basis functions for dis-
crimination performance to be a chance occurrence.

It is worth noting that, except for Oxtoby and Foster, all
the authors mentioned above worked with spectra, while the
data analyzed in this work was taken directly from the spectral
images.

As mentioned above, several research studies have found a
high degree of correlation in the visible spectrum. Taking this as
starting point, this work is not simply an attempt to assess the
optimum dimensionality for the formation of spectral images of
natural scenes, but also to determine specifically which of the
several combinations of the available wavelengths are the most
important for image formation. The used statistical methods do
not consider specific observers. However, due to the importance
of human vision, several results are given as could be perceived
by a human observer.

An important point, already mentioned above, is that in this
work, instead of using spectral data, data was taken directly
from the “slices” of spectral images. To our knowledge, this is
the first time an analysis of this kind has been conducted.

2 Spectral Images and the Color Signal
The spectral images used in this work were acquired as
described by Brelstaff et al.,15,16 and made available by the
same authors. Each spectral image consists of a sequence of
31 chromatically narrow-band-filtered 8-bit, 256 × 256 pixel
images. These images were acquired sequentially using a set
of 31 optical interference filters in the range from 400 to
700 nm with 10-nm spacings. The images include common
natural objects like plants, trees, flowers, grasses of different
colors, the sky, shapes and textures.

The images produced by the camera represent spectral mea-
surements of radiance, that is, measurements of the power of
light reflected by the surfaces of the objects in the scenes at spe-
cific wavelengths. In this work, the color signal corresponds to
the radiance measured with the camera.

Using the notation suggested by Wandell,12 color informa-
tion is acquired at wavelengths λn, for n ¼ 1,N. The color signal
is obtained by multiplying the spectral power distribution of the
illuminant at point x, ExðλnÞ times the surface spectral reflec-
tance at x, SxðλnÞ. Therefore, the color signal is

CxðλnÞ ¼ ExðλnÞSxðλnÞ: (1)

Considering that the response of the photoreceptor of a spectral
camera is RðλnÞ, the response of the camera can be modeled as

ρxR ¼
XN

n¼1

ExðλnÞSxðλnÞRðλnÞ: (2)

But as shown by Brelstaff et al.,16 the spectral response of
the spectral camera used to acquire the images is practically
constant from 400 to 700 nm. Given that, the spectral
response of the camera can be considered as simply the color
signal given in Eq. (1), but multiplied by a scalar. This scalar
multiplication has no effect in the reconstruction of the
RGB images, due to the normalization that is part of such a
process.

3 Determination of the Principal Wavelengths
All the authors mentioned in the introduction found a high
degree of redundancy across the visible wavelengths. This

suggests that dimensionality reduction in spectral images is pos-
sible. However, a major deficiency of PCA for dimensionality
reduction of multivariate data is that, while the dimension of the
data space may be reduced from, say, p to q, all the p original
variables are, in general, needed to define the q new variables.
Thus, dimensionality reduction along with the identification of
the most important, or principal, variables is highly desirable,
especially if that reduced number of variables conveys the
main features of the whole sample.

3.1 Principal Components Analysis

PCA is frequently used to uncover patterns that may be exhib-
ited in a given set of data. This technique is also useful in deter-
mining if any given information is unnecessary or redundant.
When unnecessary or redundant variables are identified, dimen-
sionality reduction is possible. For instance, if p variables x1,
x2. . . , xp, are observed on n individuals (n > p), their corre-
sponding values are grouped in an (nxp) data matrix X.
The sample covariance matrix is given by ðn − 1Þ−1 X 0X,
and the sample correlation matrix can be written in the same
form if the columns of X have previously been standardized.
Principal component analysis generates p new variables y1,
y2. . . , yp, which are uncorrelated and ordered in such a way
that the first few explain most of the variation (i.e., useful infor-
mation) contained in all the original variables. All this is
achieved without disturbing the overall features of the sample.
This statistical method implies the calculation of the eigenvalues
and eigenvectors of the sample covariance or correlation matrix.
The first k eigenvalues indicate the amount of variance of the
original data that is explained when only k < p variables are
considered. The corresponding eigenvectors are used to obtain
the new variables.

3.2 Determination of the Minimum Number of
Components to be Retained

In a given multivariate study, the dimension of the original data
is given by the number of variables that are considered at the
outset. When using PCA, the first step for selecting the most
important variables is to determine the minimum number of
principal components to be retained. This number serves as a
guide for dimensionality reduction and for determining the num-
ber of important variables (wavelengths). Several criteria have
been suggested to determine the number of principal compo-
nents to be retained so that the original data is appropriately rep-
resented. Among the most used are: retaining components with
eigenvalues greater than 1.0 (λs > 1.0), the Scree plot, the bro-
ken stick model, and, keeping components with eigenvalues
totaling to a fixed amount of the total variance.17 For the
sake of objectivity, in this work, the stopping method proposed
by Eastment and Krzanowski was applied.18 This method is
based on a cross-validation procedure which assumes that a suit-
able choice is a number of components for which adequate pre-
diction of the original data matrix is possible. The method is as
follows: assuming that the observations of p variables (x1, x2. . . ,
xp) on n individuals (n > p) are the columns of a (nxp) data
matrix X, the singular value decomposition (SVD) of X is
defined by X ¼ USV 0, where U 0U ¼ Ip, VV 0 ¼ V 0V ¼ Ip,
and S ¼ diagðs1; s2; : : : ; spÞ. If uij is the (i, j)’th element of
U, then the (i, j)’th element xij of X is given by
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xij ¼
Xp

t¼1

uitstvtj; (3)

where vij is the (i, j)’th element of V 0 and si is the correspond-
ing principal (or eigen-) values. When PCA is used to reduce the
dimensionality of a problem, determining how many compo-
nents are needed to reproduce the data with the desired accuracy
is required. Thus, retaining the first M components can be con-
sidered as modeling the elements of X by

xij ¼
XM

t¼1

uitstvtj þ εij; (4)

where εij is an error or residual term. The aim of the method is to
determine the optimal value of M using cross-validation. In the
classic cross-validation procedure, the data matrix is divided
into subgroups. Each subgroup is deleted from the data in
turn, and the parameters of the predictor are estimated from
the remainder of the data (for the model in turn). Finally, the
deleted values are predicted for the model. A suitable object
function relating actual and predicted values is used and the
model that optimizes such a function is selected. In our case,
for each possible choice of M, a predicted value x̂Mij of xij is
calculated (i ¼ 1, . . . , n; j ¼ 1, . . . , p), and the discrepancy
between actual and predicted values is calculated with

PRESSðMÞ ¼ 1

np

Xn

i¼1

Xp

j¼1

ðx̂Mij − xijÞ2: (5)

To avoid using the same data for its own prediction, the corre-
sponding row and column are deleted and the prediction is cal-
culated using the following equation:

x̂Mij ¼
XM

t¼1

ðûit
ffiffiffiffi
ŝt

p
Þð ffiffiffiffi

s̄t
p

v̄tjÞ; (6)

where ûit, ŝt and s̄t, v̄tj are calculated using the Singular Value
Decomposition when the i’th row and the j’th column of X are
eliminated, respectively. At this point, it is worth noting that
Eastment and Krzanowski,19 due to hardware limitations, used
an updating algorithm for estimating the singular value decom-
position. In this work, the singular value decomposition was
actually calculated for predicting each xij. That is, 1040 singular
value decompositions of a 130 × 8 matrix were calculated.
To select the optimum value of M, the following statistic is
calculated:

WM ¼ PRESSðM − 1Þ − PRESSðMÞ
DM

÷
PRESSðMÞ

DR
; (7)

where DM represents the degrees of freedom required to fit the
M’th component and DR represents the remaining degrees of
freedom after fitting the M’th component. Taking into account
the number of parameters to be estimated and the constraints
on the eigenvectors at each step, DM ¼ nþ p − 2M. Given
that there are np − p degrees of freedom at the outset (consid-
ering the columns of X being mean-centered), DR can be easily
calculated at each stage by successive subtraction. Eastment and
Krzanowski19 suggested that the optimum value for M is that at
which WM becomes greater than unity or when the value of
WM stabilizes. WM represents the increase in predictive

information supplied by the M’th component divided by the
average information in each of the remaining components.

3.3 Selection of Wavelengths

The variable selection method proposed by Krzanowsky19 was
used in this work because its optimality criterion implies the best
subset of variables which reproduce as closely as possible the
general features of the complete original data. Such optimality
criterion implies direct comparisons between the multidimen-
sional locations of individual points of the principal components
of the subset configuration and the corresponding locations of
points of the principal components configuration produced by
the complete original data. This type of comparisons is called
Procrustes analysis.20

In our context, wavelengths correspond to variables and the
respective reflectances recorded at each pixel of the images cor-
respond to responses to those variables. Thus, redundant wave-
lengths are those which do not convey additional visual (color)
information to that provided by the principal wavelengths. The
purpose of this work is not only to determine how many but also
which are the most important wavelengths in the image forma-
tion process. Thus, we are considering light as a compound
stimulus such that several of its components are redundant
for image formation.

3.4 Implementation of the Variable Selection Method

For determining the principal wavelengths in the spectral
images, representative 64 × 64 pixels subimages were carefully
selected from each “slice” of the images (Fig. 1). This means
that, for each spectral image, 31 samples (each of 4096 pixels)
were used. This is equivalent to considering the application of
each of the 31 variables (wavelengths) to 4096 cases. The sub-
images containing the greatest amount of colors from the
imaged scene were selected. For building the covariance matrix
required for PCA, the pixel values of the subimage for
each wavelength were entered as a column of the matrix follow-
ing a lexicographic order in the subimage. The result was a

Fig. 1 Grayscale version of an RGB image reconstructed using the infor-
mation of 31 wavelengths, from 400 to 700 nm in steps of 10 nm. The
64 × 64 square area of the selected subimage for analysis is shown. A
color version is shown below.
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4096 × 31 covariance matrix for each spectral image. The same
matrix was used for determining the minimum number of com-
ponents to be retained and for the selection of variables (wave-
lengths). This approach is different from those used in previous
publications where spectra were used in the analysis.

4 Image Reconstruction for a Human Observer
Once the principal wavelengths for each spectral image were
determined, RGB images were reconstructed using only the
required information for the reduced number of wavelengths.
This was done to provide a “visual” representation of the results,
and to investigate the suitability of the resulting images for
human vision.

For generating the RGB images, the spectral images were
structured as 3-D matrices whose dimensions were R × C × L.
The first two were spatial dimensions (R ¼ 256 pixels, C ¼ 256

pixels, or R ¼ 64 and C ¼ 64 for subimages), while the third
was the spectral dimension (L ¼ 31 wavelengths, or a much
smaller number of selected wavelengths). When the matrix con-
taining the CIE 1931 color-matching functions21 was used to
generate the RGB images, only the rows that corresponded
to the selected wavelengths were used together with the respec-
tive “slices” of the spectral images. This way, only the informa-
tion related to the selected wavelengths was introduced for each
reconstruction. In Fig. 1 is shown a grayscale version of an RGB
image that was reconstructed using the 31 “slices” of the

Table 1 The first five eigenvalues of 10 spectral images, and the corresponding percentages of variance that are explained by principal component.

Image
First five

eigenvalues
Explained

variance (%)

Cumulative
explained

variance (%) Image
First five

eigenvalues
Explained

variance (%)

Cumulative
explained

variance (%)

1 48089 79.53 79.53 6 48378 82.24 82.24

8002 13.23 92.76 5716 9.72 91.95

1552 2.57 95.33 1157 1.97 93.92

1202 1.99 97.32 945 1.61 95.52

500 0.83 98.14 870 1.48 97.00

2 55837 71.54 71.54 7 32519 74.23 74.23

8818 11.29 82.83 7369 16.82 91.05

8254 10.57 93.41 3037 6.93 97.98

2433 3.12 96.53 238 0.54 98.52

635 0.81 97.37 164 0.37 98.90

3 111910 81.69 81.69 8 46776 81.26 81.26

17465 12.75 94.44 9022 15.67 96.93

2246 1.64 96.08 787 1.37 98.29

1842 1.35 97.43 302 0.52 98.82

932 0.68 98.11 175 0.30 99.12

4 88706 71.63 71.63 9 148450 95.43 95.43

25745 20.79 92.41 2967 1.91 97.34

5584 4.51 96.92 1273 0.82 98.15

1266 1.02 97.94 1044 0.67 98.83

935 0.75 98.70 783 0.50 99.33

5 35675 69.63 69.63 10 10773 76.36 76.36

10065 19.64 89.27 2354 16.69 93.04

3324 6.49 95.76 495 3.51 96.55

1147 2.24 98.00 133 0.94 97.49

321 0.63 98.63 83 0.59 98.08

Journal of Biomedical Optics 046005-4 April 2013 • Vol. 18(4)

Sanchez-Marin: Principal wavelengths in the formation of spectral images of natural scenes



spectral image and the corresponding information of the
CIE 1931 color-matching functions for the respective 31
wavelengths.

5 Results
The procedure for determining the principal wavelengths
described above was applied to 10 spectral images of natural
scenes. These 10 images were in turn selected from a set of
29 spectral images. As will be shown, the obtained results
were consistent for all the 10 spectral images. However, for
simplicity, some discussions will refer to the results of two rep-
resentative images used as examples.

When the stopping method proposed by Eastment and
Krzanowski18 was used, a “true” dimensionality of five variables
resulted for the 10 analyzed images. Table 1 shows the first five
eigenvalues of the covariance matrix of the 10 spectral images
used in this work. The first five eignenvalues correspond to the
image shown in Fig. 1. As can be seen, the first three principal
components of each image explain around 95% of the total vari-
ance, and the first five explain around 98% of the total variance.
This supports the results of the stopping method which, in all
cases, suggested the retention of five principal components.

As mentioned above, the statistical method that was used for
selecting the most important wavelengths has the advantage of
preserving the structure of the original data. To show that the
method actually worked as expected, in Fig. 2 are plotted the
first versus the second and third principal components of
the covariance matrix of the spectral image represented in Fig. 1.
For Fig. 2(a), the principal components were calculated using
the entire 4096 × 31 covariance matrix, while for Fig 2(b),
the principal components were calculated using a reduced
4096 × 5 covariance matrix after applying the variable selection
method. As can be seen in these figures, the structure of the data
is well preserved after removing 26 wavelengths of the original
data set.

At this point it is convenient to note that all images were con-
structed using the same exact procedure. The reference images
[Figs. 3(a) and 4(a)] were reconstructed using the information

associated with the 31 images, one per wavelength, and the cor-
responding 31 rows of the CIE 1931 color-matching functions,
from 400 to 700 nm.

The results of applying the variable selection method are
given in Table 2. As can be seen, the selected wavelengths
for each spectral image are more or less evenly distributed
along the visible spectrum. That is, no significant concentration
of selected wavelengths was obtained in any range of the
spectrum.

However, it is worth noting the constant appearance of wave-
lengths close to the long wave limit of the visible spectrum. In
Figs. 3 and 4 below, the reconstructions of two of the 10 ana-
lyzed spectral images are shown.

For Figs. 3 and 4, Figs. 3(a) and 4(a) are the RGB reconstruc-
tions that resulted when all the 31 wavelengths were used, and
are considered to be the reference images for a human observer.
Figures 3(b) and 4(b) are the RGB reconstructions obtained

Fig. 2 (a) Plot of the first versus the second and third principal components calculated considering all the 31 wavelengths, and (b) with only five
selected wavelengths.

Fig. 3 Reconstruction of spectral image 1 using the 31 original wave-
lengths (a); the five wavelengths selected with the method (b); the five
averages of the selected wavelengths (c); five evenly distributed wave-
lengths with 50 nm increments (d); four wavelengths (e); and (f) just
three wavelengths (f).
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when only the five wavelengths selected by the variable selec-
tion method were used. For instance, for reconstructing
Fig. 3(b), only the data related to 550, 580, 600, 680, and
690 nm was used. As can be seen in Figs. 3(b) and 4(b), the
wavelengths chosen with the selection method produced poor
“visual results” (poor RGB images). Considering that for all
the analyzed images the selected wavelengths were rather
evenly distributed in the visible spectrum, only the averages
of the selected wavelengths (from the shortest to the longest
for the 10 images) were used. The averages were calculated fol-
lowing the order shown in Table 2. In the first step, the magni-
tudes of the shortest wavelengths for each of the 10 images were
added and the result was divided by 10, then the next 10 wave-
lengths were added and the result was divided by 10. The same
procedure was applied to the remaining wavelengths. The
results were: 470, 505, 557, 637, and 672 nm. Using these aver-
ages as a reference, the images that appear in Figs. 3(c) and 4(c)

were produced using the wavelengths 470, 500, 560, 640, and
670 nm, for which the required information for image
reconstruction was available. As can be seen, the resulting
images represent a considerable improvement from the point
of view of a human observer, though they are still easily dis-
criminated from the reference images. These results suggested
that few wavelengths evenly distributed in the visible spectrum
could produce acceptable RGB images. Therefore, the images
shown in Figs. 3(d) and 4(d) were generated using the data cor-
responding to 450, 500, 550, 600, and 650 nm. In all cases, a
noticeable improvement was obtained, at least for a human
observer (i.e., in the RGB images).

In several applications of PCA, dimensionality reduction is
considered appropriate even when only a little more than 80%
of the data variability is explained by the retained principal
components. The percentages given in Table 1 suggest that
less than five wavelengths could be enough to produce better
results. Consequently, the images of Figs. 3(e) and 4(e) were
obtained using only four wavelengths. The best improvement
was obtained in Fig 3(e), where only the information relative
to 450, 500, 550, and 600 nm was used. This result was
even better than the results obtained with five wavelengths.
Several tests were completed to generate RGB images with
only three wavelengths, but no improvement, at least in the
RGB images, was obtained. The best results with this approach
are shown in Figs. 3(f) and 4(f). The wavelengths used for
Fig. 3(f) were 450, 550, and 650 nm. The wavelengths used
for Fig. 4(f) were 450, 600, and 660 nm. Those wavelengths
were chosen because they are close to the wavelengths that pro-
duce the maximum individual responses of the human cones (L,
M, and S).

A probable alternative to the PCA variable selection method
could imply the analysis of the energies of the “slices” that con-
stitute each spectral image. To investigate this, the energies of
the 31 “slices” of the spectral image represented in Fig. 1 were
calculated and plotted in Fig. 5. As can be seen, the wavelengths
selected with the variable selection method for that spectral
image (550, 580, 600, 680, and 690 nm) correspond to “slices”
with the highest energies of their neighboring wavelengths.

Fig. 4 (a) Reconstruction of spectral image 3 using the 31 original wave-
lengths; (b) the five wavelengths selected with the method; (c) the five
averages of the selected wavelengths; (d) five evenly distributed wave-
lengths with 50 nm increments; (e) four wavelengths; and (f) just three
wavelengths.

Table 2 The five selected wavelengths for the 10 spectral images.

Image Selected wavelengths

1 550, 580, 600, 680, 690

2 430, 440, 560, 570, 690

3 430, 450, 490, 550, 660

4 510, 520, 570, 620, 660

5 420, 530, 650, 690, 700

6 470, 480, 520, 540, 560

7 480, 500, 510, 690, 700

8 400, 450, 480, 670, 680

9 470, 490, 510, 670, 680

10 540, 610, 680, 690, 700 Fig. 5 Total energy of each of the 31 “slices” that constituted the spec-
tral image represented in Fig. 1.
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However, it is clear that it would be difficult to decide which five
to choose just from the information of the energies of the slices.
This shows the importance of the role of the variable selection
method.

6 Discussion
The method for dimensionality reduction suggested that the
“true” dimensionality of all the analyzed spectral images was
five. That is, five wavelengths should be enough to reconstruct
any of the 10 spectral images with an acceptable quality. Taking
into account that only 10 images were sampled and that the
intensity of the “slices” of the spectral images were not manip-
ulated to improve the results, it can be said that the images
shown in Figs. 3(d), 3(e), 4(d), and 4(e) support this result.
This result coincides with that of Oxtoby and Foster,14 who
did not analyze spectra, but did psychophysical discrimination
experiments, presenting images to human observers that were
reconstructed in the same way it was done here.

On the other hand, assuming that the recorded reflectances in
the spectral images are perceived by many species of animals, it
is worth mentioning that vertebrates have five classes of visual
photopigments.22 Furthermore, several groups, including birds
and many lizards, retain all five classes. Consequently, consid-
ering that the spectral sensitivity of a photopigment is deter-
mined by its peak, λmax,

23 it can be said that these findings
also support our dimensionality reduction results. Moreover,
it has been consistently confirmed that spectral information
can be coded with, at most, five types of receptors.24–26 In addi-
tion, models indicate that animal color vision, involving five or
fewer broadly tuned receptors, is well matched to most natural
spectra.27

With regard to the consistent appearance of a selected wave-
length close to the 700 nm limit of the visible spectrum, it is
worth noting that, according to Endler,28 the reflectance spectra
of green leaves shows one peak at about 550 nm and another
one at about 700 nm. The fact that all the analyzed images
in this work contain a considerable proportion of green areas
explains the appearance of those wavelengths. This also partly
explains why the images reconstructed with the five averaged
wavelengths appear rather greenish [Figs. 3(c) and 4(c)].
Interestingly, for many species, green is one of the main colors
associated with their food, which has always been a strong fac-
tor for adaptation.

According to Lythgoe and Partridge,24 the long-wavelength
limit for vision is likely to be set by the absorption of porphy-
ropsin with a λmax of about 630 nm, which allows useful sensi-
tivity to light longer than 740 nm.

An important aspect of this study was that the intensity of
the slices of the spectral images was used as recorded by the
spectral camera. Better results can probably be obtained,
even with less than five wavelengths, by manipulating the pro-
portions with which each slice contributes to the reconstruction
of the RGB images.

Finally, though PCA by itself is not able to include the impact
of specific sensors on the selection of basic functions,29 our
results suggest that the variable selection method that was
used in this work (which is not just PCA) yielded objective
information of the structure of the physical stimuli (i.e., the
spectral structures) that have been shaping the visual systems
of animals and insects since many years ago.

7 Conclusions
The variable selection method used here achieved the identifi-
cation of redundant wavelengths and the selection of subsets of
wavelengths without disturbing the overall features of the origi-
nal data.

Considering that the response of the spectral camera used to
acquire the images has a constant response all along the visible
spectrum, our results suggest that five wavelengths, evenly dis-
tributed in the visible spectrum, should be enough to achieve
color vision by different living beings.

Fine tuning in the perception of color might imply mecha-
nisms that modulate the degree of participation of individual
wavelengths depending on their mutual interaction.
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