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Abstract. The invariant imbedding T-matrix method (II-TM) is employed to simulate the optical properties of normal
biconcave and deformed red blood cells (RBCs). The phase matrix elements of a RBC model computed with the II-
TM are compared with their counterparts computed with the discrete-dipole approximation (DDA) method. As
expected, the DDA results approach the II-TM results with an increase in the number of dipoles per incident wave-
length. Computationally, the II-TM is faster than the DDA when multiple RBC orientations are considered. For a
single orientation, the DDA is comparable with or even faster than the II-TM because the DDA efficiently converges
for optically soft particles; however, the DDA method demands significantly more computer memory than the II-
TM. After the applicability of the II-TM is numerically confirmed, a comparison is conducted of the optical proper-
ties of oxygenated and deoxygenated RBCs and of normal and deformed RBCs. The spectral variations of RBCs’
optical properties are investigated in the wavelength range from 0.25 to 1.0 μm. Furthermore, the statistically aver-
aged phase matrix of spheres and biconcave RBCs are compared. Conducted numerical simulations suggest the
applicability of the II-TM for the inverse light scattering analysis and radiative transfer simulations in blood. © The
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1 Introduction
Red blood cells (RBCs) or erythrocytes flowing in blood are
responsible for the delivery of oxygen from the lungs through-
out the human body and the return transport of CO2 from the
tissues to the lungs. RBCs have specific biophysical properties
for responding to a change in the local chemical and mechanical
environment. The deviations from regular biophysical properties
of RBCs impair their normal functions in the human body and
are sensitive markers for various blood disorders and diseases,
e.g., malaria and sickle cell anemia. For this reason, relevant
techniques to obtain the characteristics of the biophysical prop-
erties of RBCs have been of paramount significance in medical
diagnostics. Optical techniques have been considerably investi-
gated as they provide a fast and noninvasive pathway to probe
cell changes. Some of the well-known examples of optical tech-
niques are flow cytometers,1,2 quantitative phase imaging,3,4 and
Fourier transform light scattering.5

To interpret optical experimental data and extract accurate
and significant RBC information, computational techniques are
required to model single-scattering properties of RBCs. Normal
mature RBCs are shaped as biconcave oblate discs, which deform
with pressure and physiological conditions in blood. The disc
diameter ranges from 5 to 10 μm. Microcyte and macrocyte6

are, respectively used to identify RBCs with diameters smaller
than 7.0 μm and larger than 8.5 μm. Although the RBC shape
is intriguing, performing rigorous light scattering calculations is
a nontrivial task; particularly prior to the twenty-first century. In

most of the earlier optical modeling, theoretical simplifications
had to be made. Examples of such simplifications include the
spherical2,7 and spheroidal8 approximations of the RBCs’ mor-
phology made because of the ease with which the optical pro-
perties can be obtained from either the Lorenz-Mie theory or the
extended boundary condition method (EBCM). Other examples of
the simplifications are the use of approximate or semi-empirical
scattering computational methods to compute the optical proper-
ties of more realistic RBC shapes, such as the Born approxima-
tion,9 anomalous diffraction theory,10,11 Wentzel-Kramers-Brillouin
approximation,12 and physical-geometric-optics approximation
method.13 As the numerical methods have gradually developed
to solve Maxwell’s equations, numerous publications are available
on light scattering by RBCs using numerically rigorous methods
including the discrete-dipole approximation (DDA),14,15 finite-
difference time-domain (FDTD) method,16 boundary element
method,17 multilevel fast multipole algorithm (MLFMA),18 and
discrete sources method (DSM).19,20 To model light scattering
signals associated with deformed RBCs21 in Poiseuille flows,
the FDTD method has been employed. Moreover, the MLFMA
has been applied to distinguish light-scattering signals from healthy
and diseased RBCs.18

Among the available computational methods, two T-matrix
methods, EBCM andDSM, are expected to be the most appealing
because they are semi-analytical (i.e., low demand on computer
memory and high accuracy of derived results) and efficient in
obtaining the optical properties of a particle with multiple pos-
sible orientations. The motivation for applying the T-matrix meth-
ods to obtain the optical properties of RBCs is additionally
justified by the axial symmetry of most RBCs. However, the stan-
dard EBCM to compute the T-matrix encounters the ill-condition
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problem, because RBCs are concave and fairly flat. As to the
other T-matrix methods, both the DSM and null-field method
with discrete sources have been applied to the optical modeling
of RBCs. A comparison between the DSM and the DDAmethods
shows large differences22 that are attributed to the failure of the
DSM to converge. The numerical methods, the DDA and FDTD,
have been much more popular than the other available T-matrix
methods in practical modeling, although computationally inten-
sive when the particle size parameter is large.

Two recent papers23,24 report on the results of light scattering by
excessively large spheroidal and cylindrical particles based on the
invariant imbedding T-matrix method (II-TM) that combines the
method of separation of variables (SOV) or EBCM and an invariant
imbedding method (IIM)25 to compute the T-matrix (the two
methods are referred to as SOVþ IIM and EBCMþ IIM).
Either the SOVþ IIM or EBCMþ IIM is demonstrated to be
applicable to particles of an aspect ratio much larger than the values
that can be effectively handled by the EBCM. The role of the SOV
and EBCM is to enhance the numerical performance of the IIM.
Because of the significance of RBCs’ light scattering in a biological
system, the purpose of this study is to illustrate the numerical
capability of the II-TM in the optical modeling of RBCs. This
research will not extensively compare the II-TM with other
available methods; instead, it will contrast the II-TM with the
DDA. A better understanding of the relative numerical perfor-
mance of the II-TM in comparison with the other methods can
be gained by comparing the DDA method with other numerical
methods reported in Wriedt et al.26 and Gilev et al.22

The remainder of this work is organized into five sections.
Section 2 describes the morphology of RBCs, followed by
the discussion of complex refractive indices in Sec. 3.
Section 4 contains the procedures necessary to apply the
II-TM to solve the light scattering by RBCs. The numerical
simulation results are presented and discussed in Sec. 5. A sum-
mary of the present study and a conclusion of the optical mod-
eling applicability of the II-TM are delineated in Sec. 6.

2 Morphology of RBCs
A normal RBC is generally shaped as a biconcave disk to
achieve a large surface-area-to-volume ratio. Figure 1(a)
shows the typical model geometry of RBCs considered to be
axially symmetric. The meridional cross-section of a biconcave
RBC is shown in Fig. 1(b) with four characteristic morphologi-
cal parameters,27 i.e., the diameter (D), dimple thickness (t),
maximum thickness (h), and diameter of a circle that determines
the location of the maximum thickness (d).

The diameter measurements of RBCs can be traced back to
1821 (see Table 2 in Ponder28). In 1971, Evans and Fung29

significantly improved the resolution of RBC geometric mea-
surements by using the interference holography technique
and, based on the analysis of 50 cells, reported an average diam-
eter of 7.82 μm, a dimple thickness of 0.81 μm, and a height of
2.58 μm. Ten years later, using the same technique but a much
larger sample, 1581 cells from 14 healthy people, Fung et al.30

reported an average diameter of 7.65 μm, a dimple thickness of
1.44 μm, and a height of 2.84 μm. The parameters of an aver-
aged RBC from the two measurements are used in the optical
modeling found in Sec. 5. The values of RBC parameters
reported in the literature and obtained from different techniques
can be found in Fung et al.30 and Yurkin.27 The volume (V), the
surface area (S), and the sphericity index (SI ¼ 4.836V2∕3∕S)
are important geometric parameters. In the hematocrit study,

a three-parametric mathematical model is proposed to character-
ize the geometry, from which V, S, and SI can easily be
computed after the minimization of the difference between
the model and the data image.

The parametric equation of the Evans-Fung model is given by29

zðρÞ ¼ �R
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where R is the radius (i.e., R ¼ D∕2); ρ is horizontal distance; and,
c0, c1, and c2 are three parameters that determine the RBC shape.
In addition to the Evans-Fung parametric model, a small set of
parametric equations have been proposed in the literature to
model the biconcave shaped RBCs. Kuchel and Fackerell31

proposed a three-parameter implicit equation with R1, R2, and
R3 to characterize the RBC shape (hereafter, the KF model):

ðρ2 þ z2Þ2 þ R1ρ
2 þ R2z2 þ R3 ¼ 0: (2)

Based on Eq. (2), Yurkin proposed a four-parameter model by
introducing the parameter R4 into Eq. (2) with the new equation
written as27

ρ4 þ 2R4ρ
2z2 þ z4 þ R1ρ

2 þ R2z2 þ R3 ¼ 0: (3)

The Yurkin and Evans-Fung models have the same degree of free-
dom; the coefficients are determined once four independent geo-
metric parameters,D, t, h, and d, are known. Other models, which
have one less degree of freedom than the Yurkin and Evans-Fung
models, have also been used in the literature, such as the Cassini
oval,20 and a parametric model credited to Borovoi.11 The Skalak
model32 has one degree of freedom; namely, the particle size. As
shown in Fig. 1(c), all the models have morphological differences,
although the diameter, the minimum thickness, and the maximum
thickness are fixed to be the same. For simplicity, we use either the
Evans-Fung or Yurkin model for practical modeling because they
have the most degrees of freedom.

In the Evans-Fung and Yurkin models, the parametric
coefficients are completely determined once D, t, h, and d
are known and vice versa. However, it should be mentioned
that the parametric equations given by Eqs. (2) and (3) could
not be of the expected biconcave shape. To illustrate this feature,
the values ofD, t, and h are fixed at the averaged values reported
in Evans and Fung with the parameter ðζ ¼ d∕DÞ varying in the
range between 0.05 and 0.95. We found that the shape given by

Fig. 1 (a) 3-D RBC model; (b) two-dimensional cross-section; and
(c) five different parametric models.
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Eq. (1) is not a biconcave shape when d∕D is smaller than
approximately 0.6 (i.e., d ¼ 4.692) or larger than 0.89 (i.e.,
d ¼ 6.9598), as evident in the three top panels of Fig. 2,
which show typical geometries determined in Eq. (1). The
results indicate that the parametric model based on Eq. (1)
has a limited range of the parameter d. Because d is rarely
reported in experiments, c0, c1, and c2 cannot be determined
only based on D, t, and h. The extra morphological parameters
can be specified through the determination of the particle vol-
ume, the particle surface area, or other geometric parameters.
Similarly, we plotted the three typical geometries shown in
the lower panels of Fig. 2 according to the Yurkin model.
When ζ is smaller than ∼0.31, the resultant geometry is not
the expected shape, and the dimple thickness is larger than
the given value. The reason for failing to obtain the expected
geometry is due to the existence of different branches of geom-
etry. Figure 3 shows the variation of the particle volume, the
surface area, and SI as a function of ζ. The Yurkin model
has a larger range of deformation. The volume and SI index

predicted from the Yurkin model are always larger than those
of the Evans-Fung model. The surface area of the Yurkin
model is smaller than that of the Evans-Fung model when ζ
is less than 0.87.

The geometry of RBCs depends on many factors associated
with the pressure and physiologic conditions in blood. Skalak
and Branemark33 discovered that an RBC deforms into a para-
chute shape in order to traverse capillaries smaller than the
diameter of the nondeformed RBC. Zarda et al.34 developed
a finite element method to model the deformation of RBCs
from a biomechanics approach. Based on the lubrication theory,
Secomb35 studied RBC deformation for both axisymmetric and
fully 3D geometries. Pozrikidis36 employed a boundary-integral
method to model axisymmetric motion of RBCs passing
through capillaries. Hosseini and Feng37 studied the deformation
of RBCs using a particle-based model. To illustrate the numeri-
cal capability of the II-TM to model deformed RBCs, we use the
geometry reported by Zarda et al.34 corresponding with a dimen-
sionless pressure drop of 16. The results are shown in Fig. 4.

Fig. 2 The shape of RBCs determined by Eq. (1) (upper panel) and Eq. (3) (lower panel) for three different values of ζ.

Fig. 3 Volume, surface area, and sphericity index of the Evans-Fung and the Yukin models as a function of ζ.
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3 Complex Refractive Index
In addition to the size and morphology of a RBC, the complex
refractive index is required to theoretically determine the optical
properties. RBCs consist of a membrane filled with hemoglobin
solution. The membrane is thin, on the order of 7 nm, and its
influence on scattering was usually neglected, but the appropri-
ateness of neglecting the membrane in scattering computation
was confirmed through numerical calculations based on the
finite element method.17 For this reason, RBCs are considered
to be homogenous, and the major determination for the refrac-
tive index is the hemoglobin concentration.

The RBCs’ refractive indices at various wavelengths have
been reported in the literature. Prahl38 tabulated the molar
extinction coefficient for both oxygenated and deoxygenated
hemoglobin in water, and the imaginary part of the refrac-
tive index can be obtained from the result. Friebel and
Meinke39,40 measured the absorption coefficient of hemoglobin
as well as the reflectance from which the complex refractive
indices are derived. The comparison of the absorption coeffi-
cient compiled by Prahl,38 and the measurement by Friebel
and Meinke39 finds the data are close, although some small
differences can be identified. To obtain the real parts of refrac-
tive indices, Faber et al.41 applied the subtractive Kramers-
Kronig relations to the absorption data tabulated by Prahl.38

Zhernovaya42 reported the real parts of refractive indices for
nine wavelengths between 400 and 700 nm for both oxygenated
and deoxygenated hemoglobin. The real parts of the refractive
indices reported from the previous studies are quite different. In
this modeling, we follow Faber et al.41 because the complex
refractive indices in the spectral range 250 to 1000 nm can
be easily obtained, although the data may not be accurate
due to the finite range of absorption spectrum. Figure 5
shows the variation of the complex refractive indices with
respect to the wavelength.

4 Invariant Imbedding T-Matrix Method
The wavelength of the incident light of general interest is from
the UV to the near infrared. In this wavelength range, the maxi-
mum size parameter of RBCs is on the order of 200. Although
the optical properties may be derived from available numerical
methods based on advanced parallel computational techniques,
the computation is too intensive, particularly in the case of a
large number of simulations associated with multiple orien-
tations, wavelengths, and sizes. We briefly summarize the

II-TM for the computation of the single-scattering properties
of RBCs.

The electromagnetic fields in light-scattering systems satisfy
the Maxwell equations and can be expanded in terms of vector
spherical functions. The T-matrix is defined to transform the
expansion coefficients of the incident field and those of the scat-
tered field. The basic principle of the II-TM to compute the T-
matrix of a single RBC is illustrated in Fig. 6. The RBC is
discretized in terms of multiple inhomogeneous spherical layers.
The key procedure of the II-TM is to obtain the T-matrix of a
particle composed of kþ 1 layers based on the T-matrix of a
particle of k layers. The T-matrix of the inscribed sphere is

Fig. 4 Deformed RBC due to pressure drop in poiseuille flow. The
inscribed sphere of a deformed RBC is larger than that of a normal RBC. Fig. 5 Complex refractive index of oxygenated and deoxygenated

hemoglobin.

Fig. 6 Schematic diagram illustrating the principle of the II-TM to cal-
culate the T-matrix, which contains all the light scattering information.
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obtained from the separation of variables method (i.e., the
Lorenz-Mie theory). One advantage of the II-TM is the simplic-
ity with which it modifies the particle geometry and refractive
index. For the detailed mathematical procedures and physical
interpretations to calculate the T-matrix, please refer to our pre-
vious publications.23

To adapt the parametric model into the II-TM package, one
must solve the intersection of a sphere with the biconcave curve.
To be more specific, the cosine of the polar angle (the angle
between the radius and the positive symmetric axis), μ, is
required. In the Evans-Fung model, we have

μ ¼
�
1 −

y2R2

r2

�
1∕2

; (4)

where r is the radius of sphere, and y is the solution of the
following polynomial

a5y5 þ a4y4 þ a3y3 þ a2y2 þ a1yþ a0 ¼ 0; (5)

whose coefficients are given by

a0 ¼ c20 − r2∕R2

a1 ¼ −c20 þ 2c0c1 þ 1

a2 ¼ −2c0c1 þ 2c0c2 þ c21

a3 ¼ −2c0c2 þ 2c1c2 − c21

a4 ¼ c22 − 2c1c2

a5 ¼ −c22: (6)

In the Yurkin model, we have

μ ¼
�
−½−2r2ð1 − R4Þ þ ðR2 − R1Þ� þ
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�1∕2
: (7)

Fig. 7 Comparison of phase functions computed from the II-TM and the ADDA.
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Fig. 8 Comparison of the phase function (P11), P12, and P22 at three incident angles computed from the II-TM and ADDA. The scattering plane is chosen
to be the y − z plane (90 deg of scattering azimuthal angle).

Fig. 9 Comparison of six nonzero phase matrix elements of randomly oriented RBCs computed from the II-TM and ADDA.
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When R4 ¼ 1, i.e., the KF model,

μ ¼
�
r4 þ r2R1 þ R3

r2ðR1 − R2Þ
�
1∕2

: (8)

Parachute shaped RBCs described in Sec. 2 have the
axially rotational symmetry but lack the mirror symmetry.
Unlike the biconcave RBCs, whose shape is described
through a parametric equation, the shape of deformed
RBCs is defined through numerical values. In this case,
the values at undefined points are obtained through linear
interpolation.

5 Results and Discussion

5.1 Comparison of the II-TM and the DDA

Several reasons exist for comparing the II-TM and the DDA in
the computation of RBC optical properties. First, the DDA
method is applicable to arbitrarily shaped particles, and its
accuracy is well understood through comparison with the other
existing numerical methods. Therefore, the comparison of the
II-TM and the DDA helps to gain knowledge of the relative per-
formances of available numerical methods, validate the numeri-
cal implementation of the II-TM, understand the accuracy of the
DDA, and choose the method of preference in practical appli-
cations. Moreover, RBCs in plasma or other solutions are opti-
cally soft, and the DDA’s performance is relatively better than

Table 1 Computational time, memory requirement, and number of processors involved in simulation.

D (μm) Orientation

II-TM ADDA

Time Mem Procs Time Dpl Mem Procs

7.82
0 deg 10.8 m 7 MB 1

3.8 m 15 3.6 G 1

3.3 m 30 23 G 16

5.2 m 50 110 G 64

30 deg 11 m 0.2 G 16

8.9 m 15
3.6 G 1

1 m 15
3.6 G 16

11.3 m 50
110 G 64

Random 11 m 0.4 G 16 6.77 h 15 3.6 G 16

Fig. 10 Comparison of six nonzero phase matrix elements of randomly oriented oxygenated and deoxygenated RBCs at the Soret band.
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the other available numerical methods. We use the Amsterdam
DDA (ADDA) code (adda-0.79) developed by Yurkin and
Hoekstra27,43 (the original source code can be obtained at
http://code.google.com/p/a-dda/).

Figure 7 shows the comparison of phase functions com-
puted from the II-TM and ADDA for a RBC in the case of
face-on light incidence. The wavelength (λ) of the incident
light is 0.6328 μm in vacuum and 0.4747 μm in medium.
The morphological parameters for the RBC are specified
as: D ¼ 7.82 μm, h ¼ 2.58 μm, t ¼ 0.81 μm, and d ¼
4.843895 μm; the size parameter defined in terms of the wave-
length in the medium is πD∕λ ≅ 51.7532; and the relative
refractive index is assumed to be 1.05. Either the KF model
or the Yurkin model with R4 ¼ 1 is used to characterize the
RBC shape. Multiple ADDA simulations are performed by
increasing the number of dipoles per incident wavelength
(dpl) from 10.5 (default value) to 55. To quantify the difference
between the ADDA and the II-TM results, the mean relative
error (MRE) is defined as

MRE ¼ 100%
1

N

XN
i¼1

½PADDAðθiÞ − PII−TMðθiÞ�∕PII−TMðθiÞ;

(9)

where N (¼721) is the number of scattering angles involved in
the computations. As shown in Fig. 7, the ADDA phase func-
tions expectedly approach the T-matrix result (i.e., the decrease
of MRE indicated in the figure) with an increase in the dpl.
When the number of dpl is larger than 25, the phase functions
computed from the two methods are virtually very close. If the
number of dpl is larger than 50, a further increase in the dpl
does not necessarily decrease the mean relative error. The

Fig. 11 Spectral variance of the scattering cross-section and absorption
cross-section of oxygenated and deoxygenated RBCs.

Fig. 12 Comparison of phase matrix of biconcave and parachute RBCs. The incident light is aligned from below with the symmetry axis.
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default dpl (10.5) is sufficient for the convergence of the DDA-
simulated phase function in the forward hemisphere, in agree-
ment with the literature,14,27 but larger dpl (25) is needed for
the convergence in the near-backscattering directions.

Figure 8 shows the comparison of phase functions, the P12

and P22 elements, computed from the ADDA and the II-TM for
three different orientations with respect to the incident light cor-
responding to θinc ¼ 30 deg, 60 deg, 90 deg. The scattering

plane (y–z plane) is chosen for the phase matrix presentation.
For convenience, the other 13 elements in the scattering
phase matrix are not plotted. In the ADDA computation, the
number of dpl is assumed to be 50. A good agreement is
obtained except the P12 element in the first column has a relative
large difference at the scattering angle near 135 deg.

Figure 9 shows the comparison of six nonzero phase matrix
elements for randomly oriented RBCs computed from the II-TM

Fig. 13 Comparison of phase matrix of biconcave and parachute RBCs. The incident light makes an angle of 90 deg with the symmetry axis.

Fig. 14 Modified intensity of the biconcave RBC and the parachute RBC for the face-on incidence (a) and the rim-on incidence (b).
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and the ADDA. To achieve the computational efficiency without
losing significant accuracy, we have assumed the “dpl” to be 15
in the ADDA simulation. Note that the II-TM and the ADDA
fundamentally differ in obtaining the orientation-averaged opti-
cal properties; the II-TM employs an analytical algorithm after
the T-matrix is obtained while the ADDA computes the phase
matrix for each orientation and then performs the numerical
average. In the DDA simulations, as many as 64 numbers of
α in (0, 360], 65 numbers of β in (0, 90], and 1 number of γ
(0 is assumed) are set to achieve the randomness of RBC ori-
entations; α, β, and γ are three Euler angles used to specify the
orientation of the RBC in the laboratory coordinate system.

In order to compare the numerical performance (memory
consumption and computational speed) of the II-TM and
ADDA, Table 1 lists the computational time, the memory
requirement, and the number of processors used in the compu-
tation. Note that for fixed orientations, the phase matrices are
only computed referring to a specific scattering plane to hasten
the ADDA. As seen from Table 1, both the II-TM and the
ADDA are relatively efficient when the incident light is aligned
with the RBC axis of symmetry. With this particular RBC ori-
entation with respect to the incident light, a sub T-matrix rather
than a whole T-matrix in the II-TM is required to compute the
phase matrix, and the ADDA needs to run one simulation case
associated with X (or Y) polarization of the incident light. The
evidence shows the ADDA is faster than the II-TM for a single
orientation of the particle and much slower than the II-TM for
randomly oriented RBCs. The reason is that most of computa-
tional time in the DDA simulations is spent on computing the

scattered field because the internal field can be efficiently
obtained for optically soft particles due to efficient conver-
gence of the iterative solver. For example, the ratio of compu-
tational time for internal electric fields and phase matrix is
approximately 0.87 in the case of the last row in Table 1.
Differently, the T-matrix method is relatively efficient to obtain
the phase matrix and spends a majority of time to calculate the
T-matrix. In the three considered cases, the computational time
of the phase matrix from the T-matrix is almost negligible.
It should be pointed out that, in the II-TM simulations, we
have employed a larger number of spherical layers with a step
size of 0.05 and 100 terms of vector spherical harmonics in
expanding the electric field to provide benchmarks. Numerical
tests show that the two conditions can be relaxed without losing
much accuracy, and the computational time can decrease. In the
case of face-on incidence, for example, with the use of 0.1 step
size and 82 terms of vector spherical harmonics, the compu-
tational time of II-TM is approximately two minutes with
MRE of 2.189%. Also, note that the ADDA requires much
more computer memory than the II-TM.

5.2 Oxygenated and Deoxygenated RBCs

After the validation of the II-TM method, we compute the opti-
cal properties of oxygenated and deoxygenated RBCs in a spec-
tral range from 0.25 to 1.0 μm, an area in which the absorption
of the medium can be reasonably neglected. In the spectral
region beyond 1.0 μm, the absorption behavior of the medium
becomes obvious. In this case, the theory of light scattering in an

Fig. 15 Statistical distribution of RBC parameters.
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absorbing medium should be employed; therefore, we only con-
sider wavelengths where the medium is nonabsorbing. In the
computation, we assume that the plasma medium has the refrac-
tive indices of water.44

Figure 10 shows the six phase matrix elements of an oxygen-
ated and deoxygenated RBC at the Soret absorption band
(415 nm). The particle is assumed to be randomly oriented.
The phase function has relatively small differences; however,
large differences are found for the P22, P33, and P44 elements
when the scattering angle is larger than 90 deg. The simulated
results reveal that it may be possible to determine the degree of
oxygen saturation based on the depolarization of backscatter-
ing light.

Figure 11 shows the scattering and absorption cross-sections
of oxygenated and deoxygenated RBCs in a spectral range from
0.25 to 1.0 μm. For comparison, we included the simulation
results based on assuming the RBCs to be the volume-equivalent
spheres. The dependence of the optical properties on oxygen
saturation is evident. Despite the significant difference in geom-
etry, the absorption cross-sections for biconcave RBCs and
spherical RBCs are found to be close with the only observable
differences near the Soret absorption band. However, the scat-
tering cross-sections and, thus, the single-scattering albedo are
more sensitive to the particle shape. In radiative transfer simu-
lations, the nonsphericity of RBCs may need to be considered.

5.3 Deformed Red Blood Cells

The II-TM is adapted to compute the optical properties of
deformed RBCs. Figure 12 illustrates the difference between
the phase matrix of biconcave and parachute RBCs for face-
on incidence. The incident wavelength is 660 nm, the refractive
index of the medium is 1.331, and the relative refractive index of
the RBC is 1.046þ i1.261 × 10−5. The RBC shape is modeled

using the Evans-Fung parametric equation with D ¼ 7.82 μm,
h ¼ 2.58 μm, t ¼ 0.81 μm, and d ¼ 4.844 μm. Because of the
axial symmetry, we observe the phase function to oscillate and
P11 ¼ P22 and P33 ¼ P44. The locations of peaks and minima
are rarely the same because the phase delay of the incident light
is quite different due to the thickness dissimilarity. Figure 13
mimics Fig. 12 except for the rim-on incidence. The phase
matrix elements are averaged over the scattering azimuthal
angle. We observe the near-backscattering phase function of
biconcave RBCs is smaller than the parachute RBCs because
the geometric cross-section of the former is smaller. P22∕P11

is found to be quite unalike for the two different geometries.
We have compared the ADDA results and the II-TM results
for deformed RBCs and congruence is obtained when the dpl
is 30. For simplicity, the ADDA results are not included.

Figure 14 shows a comparison of the modified intensity
corresponding to the scattering cases in Figs. 12 and 13. The
modified intensity is defined as27

PmodðθiÞ ¼ P11ðθiÞsin2
�
π
θi − θ1
θn − θ1

�
; (10)

where θi is the scattering angle, and θ1 and θn are chosen to be
10 and 50 deg. Equation (10) is used in the reverse light scatter-
ing for straightforward comparison of the simulated results with
measurements by the scanning flow cytometer. The comparison
of results shown in Fig. 14 illustrates distinguishable signals
from biconcave RBCs and parachute RBCs.

5.4 Statistical Average Properties

To compute the phase matrix of an ensemble of RBCs, we
assume the sample to be diluted and the independent scattering
assumption to be valid. In the modeling, we randomly generated

Fig. 16 Comparison of statistical averaged phase matrix elements of randomly oriented RBCs and spheres.
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RBCs according to the distribution given by Fung et al.30 In
Fig. 15, the histograms in terms of diameter, maximum thick-
ness, minimum thickness, d, volume, and surface area are
plotted. For simulation simplicity, we assume the RBCs to be
randomly oriented. We compare the phase matrix computed
from biconcave RBCs and spheres as shown in Fig. 16. The dif-
ference in the results predicted from spherical and biconcave
models is found to be quite large. In addition to the nonspher-
icity indicator, P22∕P11, the distinctive feature of the other phase
matrix elements computed from a biconcave disk model is that
the curves are smooth without oscillations. Collective scattering
may be obvious when the sample is not diluted. In this case,
further development is required for the present T-matrix method
to consider mutual interactions between individual RBCs.

6 Summary and Conclusion
The II-TM has been applied to the simulation of optical proper-
ties of single RBCs. The II-TM is capable of obtaining the RBC
optical characteristics in the wavelength spectrum from the UV
to near-IR with realistic size parameters. Moreover, available
parametric models reported in the literature to mimic the RBC
shape have been implemented into the II-TM computational
package developed by the authors.

When comparing the II-TMwith the DDAmethod, a numeri-
cal method for the solution of light scattering by RBCs, excel-
lent agreement between the two is obtained. The differences
between the DDA results and the II-TM results decrease with
an increase of the resolution in discretizing the RBC into dis-
crete dipoles. The DDA method requires more computer
memory than the II-TM because the former is a numerical
method based on the dipole representation of the geometry
and the latter is a semi-analytical method using spherical shells
to discretize the particle geometry. However, when the number
of particle orientations and the scattering angles is small, the
DDA is comparable or even faster than the II-TM.

In summary, the II-TM can obtain accurate optical properties
of RBCs in a wide range of size parameters with reasonable
computational time. The extension of the present work to multi-
ple red blood cells or other types of cells can be performed
without much technical difficulty. The II-TM results can also
be employed as a reference for the other numerical and approxi-
mate methods used by the research community.
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