Visualization of peripheral vasodilative indices in human skin by use of red, green, blue images

Izumi Nishidate
Noriyuki Tanaka
Tatsuya Kawase
Takaaki Maeda
Tomonori Yuasa
Yoshihisa Aizu
Tetsuya Yuasa
Kyuichi Niizeki
Visualization of peripheral vasodilative indices in human skin by use of red, green, blue images

Izumi Nishidate,a Noriyuki Tanaka,a Tatsuya Kawase,a Takaaki Maeda,b Tomonori Yuasa,c Yoshihisa Aizu,c Tetsuya Yuasa,a and Kyuichi Niizeki a

*Tokyo University of Agriculture and Technology, Graduate School of Bio-application and Systems Engineering, Koganei, Tokyo 184-8588, Japan
bKushiro National College of Technology, Department of Mechanical Engineering, Kushiro, Hokkaido 084-0916, Japan
cMuroran Institute of Technology, College of Design and Manufacturing Technology, Muroran, Hokkaido 050-8588, Japan
dYamagata University, Graduate School of Biosystem Engineering, Yonezawa, Yamagata 992-8510, Japan

Abstract. We propose a method to visualize the arterial inflow, the vascular resistance, and the venous capacitance in the skin tissue from red, green, blue (RGB) digital color images. The arterial inflow and the venous capacitance in the skin tissue are visualized based on an increase in the rate of change in the total blood concentration and the change of the total blood concentration during upper limb occlusion at a pressure of 50 mmHg. The resultant arterial inflow with the measured mean arterial pressure also provides an image of the vascular resistance in human skin. The arterial inflow, the vascular resistance, and the venous capacitance acquired by the method are well correlated with those obtained from the conventional strain-gauge plethysmograph. The correlation coefficients \(R \) between the estimated values by the method and the measurements by the SPG are calculated to be 0.83 \((P < 0.001) \) for the arterial inflow, 0.77 \((P < 0.01) \) for the vascular resistance, and 0.77 \((P < 0.01) \) for the venous capacitance.

Keywords: arterial inflow; vascular resistance; venous capacitance; skin hemodynamics; RGB image; Monte Carlo simulation; strain-gauge plethysmograph; upper arm occlusion.

Journal of Biomedical Optics 061220-1 June 2013 Vol. 18(6)

1 Introduction

Quantitative evaluation of the peripheral hemodynamics is important for clinical and physiological assessments of vascular functions. Impaired vasodilatation is associated with most forms of cardiovascular disease, such as hypertension, coronary artery disease, chronic heart failure, peripheral artery disease, diabetes, and chronic renal failure \(^1\) as well as a lack of physical activity due to spinal cord injury or a sedentary lifestyle. \(^2\) Therefore early detection of impaired vasodilatation is useful as a prognostic of disease progression in various vascular dysfunctions. The strain-gauge plethysmograph (SPG) has been widely used to evaluate vasodilatation based on hemodynamics. \(^3\) The SPG is a device that measures the volume changes in limbs and digits by using a gauge made of a mercury-filled silastic rubber tube. The volume change of tissue induced by the flow of blood, mainly through skeletal muscle, but also through skin and bone, stretches and contracts the gauge. \(^4\) By using the SPG, several indices of arterial and venous functions related to vasodilatation—such as arterial inflow, peripheral vascular resistance, and venous capacitance—can be calculated from the changes in limb volume due to the changes in blood flow. \(^5\) Arterial inflow is calculated from an increase in the rate of change in blood volume immediately after venous occlusion, and it reflects the arterial contribution to vasodilatation. Vascular resistance can be calculated by dividing the mean arterial pressure by the arterial inflow. The assessment of vascular resistance has been performed for patients with spinal cord injury \(^7\) and for hypertensive patients \(^8\) based on the arterial inflow measured by the SPG. On the other hand, venous capacitance is the term used to describe the ability of the veins to stretch, and it is given as the change in blood volume after venous occlusion. The SPG recording demonstrated that venous capacitance is significantly less in diabetic patients than in non-diabetic subjects. \(^9\) It was also lower in patients with spinal cord injury than in able-bodied subjects and in sedentary subjects compared with the active-lifestyle subjects. \(^10\) Although the SPG has been used to investigate the vascular functions as mentioned above, it often suffers from errors due to limb movement because the mercury rubber strain-gauge is directly attached to the area being measured. Moreover, the measurements are usually limited to limbs and digits.

Laser-Doppler blood flowmetry has also been employed to measure the cutaneous blood perfusion for evaluating peripheral vascular function. \(^11\) Both arterial inflow and venous capacitance have been estimated from the cutaneous blood flow by using a laser-Doppler system to investigate the influence of physical activity on the response to leg compression. \(^12\) Combinations of laser-Doppler flowmetry and iontophoresis of tissue-simulating drugs have been performed to measure the cutaneous...
blood perfusion for the evaluation of endothelium-mediated vasodilatation. Although laser-Doppler flowmetry has been used in many applications, its inability to be implemented clinically can be attributed to its high cost and low spatial and temporal resolutions when investigating large areas.

Diffuse reflectance spectroscopy (DRS) has been widely used for the evaluation of human skin chromophores. The multispectral imaging technique is a useful tool for extending DRS to the spatial mapping of the chromophores in skin tissue. This can be simply achieved by a monochromatic charge-coupled device (CCD) camera with narrowband filters and a white light source, which has been used to investigate the hemoglobin perfusion in living tissue. In clinical conditions, simpler, more cost-effective, and more portable equipment is needed. The digital RGB imaging technique is a promising tool for satisfying these demands for practical application. Imaging with broadband filters, as in the case of digital RGB imaging, can also provide spectral images without mechanical rotation of a filter wheel. Several approaches have been reported for visualizing the concentration of skin chromophores and the subsurface microcirculation of skin by a digital RGB camera. We have previously proposed a method by which to visualize the concentrations of melanin, oxygenated blood, and deoxygenated blood distributed in the skin tissue using a digital RGB image. In this method, the RGB values are converted into the tristimulus values in the Commission Internationale de l’Éclairage XYZ (CIEXYZ) color system, which is compatible with the common RGB working space of the National Television Standards Committee (NTSC), the standard RGB (sRGB), etc. A Monte Carlo simulation (MCS) of light transport for the human skin model is used to specify the relationship among the tristimulus XYZ values and the concentrations of melanin, oxygenated blood, and deoxygenated blood. Images of total blood concentration and oxygen saturation can also be reconstructed from the results of oxygenated blood and deoxygenated blood. Using this method, the concentrations of chromophores and tissue oxygen saturation in the skin of the human hand have been investigated for healthy adult subjects during upper limb occlusion at pressures of 50 and 250 mmHg.

In the present study, we newly propose a method to visualize the vasodilative indices of the arterial inflow, the vascular resistance, and the venous capacitance in the skin tissue based on the previously developed technique. The arterial inflow and the venous capacitance in the skin tissue are visualized from the increase in the rate of change in the total blood concentration and the change of the total blood concentration during upper limb occlusion at a pressure of 50 mmHg. The resultant arterial inflow with the measured mean arterial pressure provides the image of vascular resistance in human skin. The proposed method based on DRS has the advantage of using a standard digital RGB camera, thus providing a low-cost imaging system with high spatial and temporal resolutions for evaluating the peripheral hemodynamics. In order to confirm the feasibility of the method to evaluate peripheral vascular function in human skin, in vivo experiments are performed for subjects with active and sedentary lifestyles during upper limb venous occlusion at a pressure of 50 mmHg. The vasodilative indices obtained from the proposed method are compared with those measured by a conventional SPG. The principal goal of this work is the investigation of a more cost-effective imaging solution of peripheral vasodilative indices in human skin.

2 Principle

2.1 Relationship Between RGB Values and Skin Chromophore Concentrations

RGB values of a pixel on a skin surface image acquired by a digital camera can be expressed as

\[
\begin{bmatrix}
 R \\
 G \\
 B
\end{bmatrix} = L_4 \begin{bmatrix}
 X \\
 Y \\
 Z
\end{bmatrix},
\]

where \(X, Y,\) and \(Z\) are the tristimulus values in the CIEXYZ color system and are defined as

\[
X = k \sum E(\lambda)\bar{x}(\lambda)O(\lambda),
\]

\[
Y = k \sum E(\lambda)\bar{y}(\lambda)O(\lambda),
\]

\[
Z = k \sum E(\lambda)\bar{z}(\lambda)O(\lambda).
\]

\(L_4\) is a transformation matrix to convert \(XYZ\) to the corresponding RGB values. In Eqs. (1) and (2), the summation can be carried out using data at 10-nm intervals, from 400 to 700 nm. Assuming that the skin tissue consists primarily of the stratum corneum, epidermis containing melanin, and dermis containing oxygenated and deoxygenated blood, the diffuse reflectance of skin tissue \(O\) can be expressed as

\[
O = \frac{I}{I_0} = \int_0^\infty P_{sc}(\mu_s, g_s, l_s) \exp(-\mu_a l_s) dl_s \times \int_0^\infty P_e(\mu_s, g_e, l_e) \exp(-\mu_a l_e) dl_e \times \int_0^\infty P_o(\mu_s, g_o, l_o) \exp(-\mu_a l_o) dl_o.
\]
deoxygenated blood, the stratum corneum, epidermis, and
dermis, respectively. The absorption coefficient of each chromo-
phore is expressed as the product of its concentration \(C \) and the
extinction coefficient \(\varepsilon \), i.e., \(\mu_a = \varepsilon C \). Therefore the RGB values
are expressed as functions of \(C_m, C_{ob}, \) and \(C_{db} \).

2.2 Estimation of Skin Chromophore Concentrations
Based on RGB Image

Figure 1 shows the flow of estimation using the proposed
method. The proposed method means a solution of the inverse
problem to deduce \(C_m, C_{ob}, \) and \(C_{db} \) from the measured RGB
values. The way to solve this is by transforming the measured
RGB values to XYZ values with the matrix \(N_1 \), and assumes a
linear relation between XYZ values and \(C_m, C_{ob}, \) and \(C_{db} \). The
linear terms define the matrix \(N_2 \). First, RGB values in each
pixel of the image are transformed into XYZ values by a matrix
\(N_1 \) as

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} = N_1 \begin{bmatrix}
R \\
G \\
B
\end{bmatrix} \tag{7}
\]

We determined the matrix \(N_1 \) based on measurements of a
standard color chart (ColorChecker, X-Rite Incorporated, Michi-
gan) that has 24 color chips and is supplied with data for the
CIELAB values for each chip under specific illuminations and
Corresponding reflectance spectra. To determine the matrix \(N_2 \),
we calculated 300 diffuse reflectance spectra \(O(\lambda) \) in a wave-
length range of from 400 to 700 nm at intervals of 10 nm by
MCS for light transport in skin tissue. We used the skin baseline
absorption coefficient for that of the stratum corneum. The
absorption coefficient of the epidermis depends on the volume
concentration of melanin in the epidermis \(C_m \). We used the
absorption coefficient of melanin given in the literature as
the absorption coefficient of melanin \(\mu_{a,m} \). This corresponds
to the absorption coefficient of the epidermis for the case in
which \(C_m = 100\% \). We subsequently derived the absorption
coefficients of the epidermis for 10 different lower concentra-
tions of \(C_m = 1 \) to 10% at intervals of 1%, by simply pro-
tioning it to that for \(C_m = 100\% \), and the absorption coefficients
were input for the epidermis. The sum of the absorption coeffi-
cient of oxygenated blood for \(C_{ob} \) and that of deoxygenated blood for \(C_{db} \) were considered for the dermis. This summation
provides the total blood concentration \(C_b = C_{ob} + C_{db} \) and
oxygen saturation \(SO_2\% = (C_{ob}/C_b) \times 100 \). The absorption
coefficients of blood having a 44% hematocrit with
150 g/liter of hemoglobin were assumed to be that of the
dermis for the case in which \(C_m = 100\% \) and were input for
the dermis as \(\mu_{a,db} + \mu_{d,db} \). Then the absorption coefficients of
the dermis were derived for five different concentrations of
\(C_b = 0.2, 0.4, 0.6, 0.8, \) and 1.0% for six different cases of
\(SO_2 = 0, 20, 40, 60, 80, \) and 100%. Typical published values
for \(\mu(\lambda) \) and \(g(\lambda) \) were input for the stratum corneum, epi-
dermis, and dermis, which are provided as a function of wave-
length. The layer thicknesses of the stratum corneum, epidermis,
and dermis were set to be 0.02, 0.06, and 4.92 mm, respectively.

The refractive index of the stratum corneum was set to be
1.47. The refractive index of the epidermis was set to be 1.37,
which is the average value of the volar side of the lower arm,
the granular layer of the palm of the hand, and the basal layer of the
palm of the hand. The refractive index of the dermis was set to
become 1.42, which is the average value of the volar side of the lower
arm and the arm of the hand. The optical parameters used in
the MCS for the skin tissue model were summarized in Ref. [3].
The X-Y-Z values were then calculated based on the simulated
\(O(\lambda) \). The above calculations were performed for various
combinations of \(C_m, C_{ob}, \) and \(C_{db} \) in order to obtain the data sets of
chromophore concentrations and XYZ values. Multiple regression
analysis with 300 data sets established three regression equations
for \(C_m, C_{ob}, \) and \(C_{db} \):

\[
C_m = a_0 + a_1 X + a_2 Y + a_3 Z, \tag{8}
\]

\[
C_{ob} = b_0 + b_1 X + b_2 Y + b_3 Z, \tag{9}
\]

\[
C_{db} = c_0 + c_1 X + c_2 Y + c_3 Z. \tag{10}
\]

The regression coefficients \(a_i, b_i, \) and \(c_i \) \((i = 0, 1, 2, 3)\)
reflect the contributions of the XYZ values to \(C_m, C_{ob}, \) and
\(C_{db} \).
Arterial inflow. The slope of the arterial inflow and venous capacitance in skin as a function of time was calculated based on the well-known standard equation:

\[
\text{MAP} = \text{DP} + \left(\frac{\text{SP} - \text{DP}}{3} \right),
\]

where SP mmHg and DP mmHg are measurements of systolic pressure and diastolic pressure, respectively. Vascular resistance VR mm Hg · 100 mL · min/mL can be calculated by dividing MAP by AI as

\[
\text{VR} = \frac{\text{MAP}}{\text{AI}}.
\]

Venous capacitance is defined as the percent change in volume of the limb after inflation of the occlusion cuff and can be determined by the difference between the baseline volume established prior to inflation of the cuff and the volume after the 2-min occlusion as VC mL/100 mL.

![Fig. 2 Derivation of skin arterial inflow Al and venous capacitance VC, from a time course of a ∆C/100 mL, during upper arm occlusion at 50 mmHg.](image)

3 Experiments

3.1 Imaging System

Figure 3 schematically shows the experimental configurations for the in vivo imaging system and in vivo experiments with upper arm occlusion. A metal halide lamplight (LA-180Me-R, Hayashi, Japan) illuminated the surface of a sample via a light guide with a ring illuminator. The light source covered a range from 380 to 740 nm. Diffusely reflected light was captured by a 24-bit RGB CCD camera (DFK-21BF04, Imaging Source LLC, North Carolina) and a camera lens (Pentax/Cosmica, Japan; f 16 mm, 1 : 1.4) to acquire an RGB color image of 640 x 480 pixels. The field of view of the imaging system was 360 x 270 mm. The lateral resolution of the images was estimated to be 0.56 mm. This indicates the best resolution with a nonscattering object. An IR-cut filter in the camera rejects unnecessary longer-wavelength light (>700 nm). A standard white diffuser with 99% reflectance (SRS-99-020, Labsphere Incorporated, North Carolina) was used to correct for the inter-instrument differences in the output of the camera and the spatial nonuniformity of the illumination. The RGB images were acquired at 15 frames per second (fps) and an average of 16 frames was stored in a personal computer at 4-s intervals and analyzed according to the visualization process described above. The standard deviation of RGB values between the 16 frames that are obtained from a subject under the normal condition was 0.15 in average, which indicate no significant difference between the 16 video frames.
3.2 Upper Arm Occlusion Experiments

A pressure cuff was applied to the upper arms of 17 subjects (13 men and four women, mean age: 23 ± 1 years) without any history or physical findings of venous or arterial diseases, as shown in Fig. [3a]. The five male subjects who exercised vigorously for two or more days per week and/or participated in daily physical training for at least six years were regarded as the active group (subject 1, subject 2, subject 3, subject 4, and subject 5). The remaining subjects with no or irregular physical activity (usually exercising less than one day per week) were regarded as the sedentary group. The systolic and diastolic blood pressures of the subjects were measured by the sphygmomanometer except for two of the sedentary male subjects. The data of blood pressure for the two of the sedentary male subject were unavailable owing to the experimental condition. Therefore, the mean arterial blood pressure and the vascular resistance were calculated for 15 subjects in this study. The SPG (EC6, D.E. Hokanson, Washington) and a rapid cuff inflator (E-20, D.E. Hokanson) were used to measure in vivo forearm volume change ΔV/V mL/100 mL. During the measurement, the subjects sat with their hands placed on a sample stage at approximately heart level. After a rest of 300 s, image acquisition and SPG recording were started and continued for 640 s at 4-s intervals. After 40 s of control, the cuff was inflated to 50 mmHg for 300 s by use of a rapid cuff inflator and subsequently deflated for 300 s. Inflation of the cuff to 50 mmHg prevents blood flow from leaving the measurement site but does not hinder arterial inflow. The SPG data was recorded for only 12 subjects whereas the acquisitions of RGB images were performed for all of the 17 subjects owing to experimental conditions. Analysis of both RGB images and forearm volume change ΔV/V were performed offline after measurements were completed. To derive the image of AI, we performed the linear least squares fitting to the time course of ΔCin/Cin,i (t = 0–16 s) for each pixel of a sequential image. This derivation process of AI image is relatively time consuming. The computation time for the images of AI, VC, and VR were 1200, 7 and 1200 s, using the Intel Core 2 CPU, 2.66 GHz when the RGB color image of 640 × 480 pixels was analyzed.

Use of a camera with a large number of pixels will improve the spatial resolution of resultant images, but it will increase computation time. A region of interest (ROI) was placed in a part of an image for each resultant image, as shown in Fig. [3b]. Simple linear regression analysis was used to describe the correlation coefficient R between the SPG recordings and the results obtained by the proposed method. An unpaired Student’s t-test was used for statistical analysis when comparing the active group and sedentary group. The normality of the averaged value over the ROI for each group was tested by the Shapiro-Wilk test before the Student’s t-test. A P value <0.05 was considered statistically significant.

4 Results and Discussion

4.1 Responses of the Blood Volume to Cuff Occlusion

Figure 4 shows the forearm volume change ΔV/V measured by the SPG for the cuff pressure of 50 mmHg and depicts differences among subjects. In Fig. 4, ΔV/V rises quickly after the
inflation of the cuff, and the rate of increase in $\Delta V/V$ then slows. A rapid decrease in $\Delta V/V$ occurred after deflation of the cuff, and $\Delta V/V$ then returns to its baseline level. Figure 5 shows an example of the in vivo results obtained from one subject during cuff occlusion at 50 mmHg. The first increase in C_{ob} appeared after the cuff was inflated, which caused an increase in C_{tb}, probably due to the blockage of venous outflow and the continuous arterial inflow. After peaking, C_{ob} and C_{tb} became constant, whereas C_{db} increased during occlusion. These changes in C_{ob}, C_{db}, and C_{tb} indicate the decrease of the arterial inflow rate and the deoxygenation of hemoglobin resulting from the consumption of oxygen by the local tissue, respectively. The rapid decreases in C_{ob}, C_{db}, and C_{tb} immediately after the deflation of the cuff suggest the outflow of venous blood. The tendency of the response in C_{tb} to the upper arm occlusion at 50 mmHg corresponds to the results for $\Delta V/V$ shown in Fig. 4. Although there are some artifacts due to the shade originating from the curved and irregular surfaces of the hand, the lateral distribution of C_{tb} and the response to the venous occlusion were successfully observed. The average value over the area corresponding to ROI (White box) in Figs. 7, 8, and 9 is used to compare the results from the proposed method to the SPG recordings and to evaluate the difference.

4.2 Visualizations of Arterial Inflow, Vascular Resistance, and Venous Capacitance in Human Skin

Figures 7, 8, and 9 show the images of A_{is}, V_{rs}, and V_{cs}, obtained from the method, respectively. The color coded pixel values over the skin area in each image shown in Figs. 7, 8, and 9 represent the estimated values of A_{is}, V_{rs}, and V_{cs}, respectively. They are used to evaluate the spatial distribution of the vasodilative indices and the differences among individuals. The average value over the area corresponding to ROI (White box) in Figs. 7, 8, and 9 is used to compare the results from the proposed method to the SPG recordings and to evaluate the difference.
between the active group and sedentary group. In Figs. 7, 8, and 9, it is clearly demonstrated that AIs, VRs, and VCs differ among individuals. The spatial heterogeneities can also be seen in the images of AIs, VRs, and VCs, which is indicative of spatial differences in the quantity and density of microvasculature in skin tissue. In the preliminary experiments, the repeatability of the measurements was evaluated for one subject. The results for five repeated measurements were 0.97 ± 0.12 mL/100 mL·min, 1.11 ± 0.04 mL/100 mL, and 81.7 ± 10.4 mmHg·100 mL·min/mL for AIs, VRs, and VRs, respectively. We have also confirmed that the measurements are not affected by variations in the orientation of the hand.

Figure 10 shows a comparison of the results obtained from the proposed method and measurements from the SPG for arterial inflow, vascular resistance, and venous capacitance. The estimated AI, VR, and VC are well correlated with the measurements of AI, VR, and VC by the SPG, respectively. The correlation coefficients \(r \) between the estimated values by the method and the measurements by the SPG were calculated to be 0.83 (\(P < 0.001 \)) for the arterial inflow, 0.77 (\(P < 0.01 \)) for the vascular resistance, and 0.77 (\(P < 0.01 \)) for the venous capacitance, which revealed a significant relationship between the proposed method and measurements using the conventional SPG.

Figure 11 shows the comparison of mean values between the active group and the sedentary group for (a) AIs, (b) VRs, and (c) VCs. The mean arterial inflow AIs in the active group [1.50 ± 0.29 mL/(100 mL·min)] was significantly higher than that in the sedentary group [0.66 ± 0.32 mL/(100 mL·min)] (\(P < 0.001 \)). The mean vascular resistance VRs in the active group (66.1 ± 13.4 mmHg·100 mL) was significantly lower than that in the sedentary group (164.7 ± 90.5 mmHg·100 mL·min/mL) (\(P < 0.05 \)). The mean venous capacitance VCs in the active group (0.87 ± 0.15 mL/100 mL) was significantly higher than that in the sedentary group (0.69 ± 0.14 mL/100 mL) (\(P < 0.05 \)).

Previous studies have demonstrated that the peripheral vascular functions are related to the levels of physical activity and fitness. It has been reported that the venous capacitance was reduced in patients with spinal cord injury compared with the able-bodied subjects, which was attributed to the combination of sympathetic derangement and the absence of regular orthostatic challenge. Lower venous capacitance was also observed in the sedentary subjects compared with the active subjects, suggesting that the level of activity contributes to the magnitude of venous distensibility by enhancing vasodilatory responsiveness of the vessels. The influence of physical activity on the cutaneous blood flow during leg compression has been investigated previously for the active-lifestyle subjects and the sedentary subjects. A higher arterial inflow was demonstrated in the active subjects compared with the sedentary subjects, which was indicative of the adaptive physiologic change by the venous system to accommodate increased arterial inflow due to exercise. A significant increase in vascular resistance in subjects with spinal cord injury was demonstrated by using the SPG recording. The enhanced vascular resistance was discussed in terms of structural changes in vasculature, such as a decrease in the number of arterioles and capillaries and/or a decrease in the diameter of the resistance vessels as well as functional changes due to variations in endothelium-derived factors and/or sympathetic vascular regulation. In the present study, the arterial inflow and the venous capacitance were significantly higher in the active group compared with the sedentary group, whereas the venous capacitance was significantly lower in the active group compared with the sedentary group. Therefore the differences in AIs, VRs, and VCs among individuals demonstrated in Figs. 7, 8, and 9 may reflect the variations in the level of lifestyle activity.

![Fig. 8 Images of vascular resistance VR obtained by the proposed method (n = 15).](image1)

![Fig. 9 Images of venous capacitance VC obtained by the proposed method (n = 17).](image2)
might be possible to separate the active and sedentary groups based on the measurements of AIs, VRs, and VCs by doing discriminant analysis such as leave-one-out method. This will be useful for clinical diagnosis of various vascular dysfunctions related to the lifestyle and should be investigated in the future.

In the present study, all experiments were performed in a dark room to prevent interference from the ambient light. If the main light source is used under the ambient artificial light, the skin surface will be illuminated by the mixture of two types of lighting. In such a case, the ambient artificial light may be a source of misestimation in Cdb, Cdb, and Cm. To estimate Cdb, Cdb, and Cm accurately, the measurements of color standard for adjusting the RGB responses to XYZ values should be performed under the mixture of main light source and ambient artificial light. The ambient natural light should be avoided because it is often unreliable and variable. The RGB values of skin with darker color will be very small at very low resolution, and the conversion to XYZ color space could compound likely artifacts in measurement. In this case, the conversion from RGB color space to XYZ color space may cause misestimation of total blood Cdb in the dermis. Therefore, the measurements of AIs, VRs, and VCs could be affected by variations in skin color. Experiments involving individuals of African or Indian descent should be performed in the future.

5 Conclusions

In the present study, we proposed a method to visualize the arterial inflow, the vascular resistance, and the venous capacitance in the skin tissue from RGB digital color images. The arterial inflow and the venous capacitance in the skin tissue were significantly higher in the active group compared with the sedentary group, whereas the vascular resistance was significantly lower in the active group compared with the sedentary group. The results demonstrated in the present study imply the possibility of using the proposed method to evaluate the peripheral vascular functions in human skin. Since the proposed method visualizes both the hemodynamic response and the vasodilatory properties in skin tissue, it may be useful for evaluating the vascular function in a surgical skin flap as well as in the diagnosis of several diabetic diseases, such as peripheral neuropathy, peripheral angiopathy, and skin ulcers. Expect to further extend this method in order to investigate vasodilatory responses in diabetic vascular diseases and endothelial dysfunction.

Acknowledgments

Part of this work was supported by the JGC-S Scholarship foundation, Japan and by a Grant-in-Aid for Scientific Research from the Japanese Society for the Promotion of Science.

References

