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Abstract. Spectral-domain optical coherence tomography (SD-OCT) is a three-dimensional imaging technique that
allows direct visualization of retinal morphology and architecture. The various retinal layers may be affected differ-
entially by various diseases. An automated graph search algorithm is developed to sequentially segment 11 retinal
surfaces in SD-OCT volumes using a three-stage approach. In stage 1, the four most easily discernible and/or distinct
surfaces are identified in four-times-downsampled images and are used as a priori information to limit the graph
search for the other surfaces in stage 2. Eleven surfaces were then detected in two-times-downsampled images in
stage 2, and refined in the original images in stage 3 using the graph search integrating the estimated morphological
shape models. Twenty macular SD-OCT volume scans from 20 normal subjects are used in this initial study. The
overall mean and absolute mean differences in border positions between the automated and manual segmentation
for the 11 surfaces are −0.20� 0.53 voxels (−0.76� 2.06 μm) and 0.82� 0.64 voxels (3.19� 2.46 μm), respec-
tively. Intensity/reflectivity and thickness properties in various retinal layers are also investigated. This investigation
in normal subjects may provide a comparative reference for subsequent adaptations in eyes with diseases. © 2013
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1 Introduction
Spectral-domain optical coherence tomography (SD-OCT) is a
three-dimensional (3-D) in vivo imaging technique, which per-
mits direct visualization of retinal morphology and architecture.1

In the setting of retinal or optic nerve disease, the retinal layer
thickness may be affected either locally or globally depending
on the specific disease; the three most important being age-
related macular degeneration (AMD), diabetic retinopathy,
and glaucoma.2–4 The identification of the retinal layers and
the quantification of their layer-specific properties may facilitate
the understanding of the presence and progression of various
retinal diseases.

Manual tracing of the multiple retinal layers in volumetric
SD-OCT images is extremely tedious and time consuming, and
thus, automated detection of the multiple retinal layers is
attractive. However, the automated detection is not trivial
due to the complexity of the layer structures, relatively low-
image contrast (especially in the deeper retinal layer bands),
and the disturbances produced by various eye diseases.
Existing commercial layer segmentation algorithms have
largely focused on a few selected inner layers such as the
nerve fiber layer (NFL) and ganglion cell layer (GCL). Li
et al. developed a graph search framework for the automated
multiple layer segmentation of mutually interacting surfaces in
3-D volumetric images.5 This approach was subsequently
adapted for multiple retinal layer segmentation in SD-OCT

volumes, and has demonstrated a great suitability in several
applications.6–10 For instance, Garvin et al. adapted the tech-
nique for seven-layer segmentation in retinal SD-OCT vol-
umes.9 Abràmoff et al. applied a fast multiscale scheme to
segment four retinal layers.8

However, recent improvements in SD-OCT technology, such
as the frame averaging, despeckling techniques, zero delay
inversion, and image contrast enhancement, have provided
even better definition of the retinal morphology, especially
for the deeper posterior segment structures such as the choroidal
stroma and choroidal vasculature.11 These high-quality images
now provide a broader array of retinal layers that may be the
target of segmentation strategies, particularly at the outer aspect
of the retina. The outer bands are of particular importance in the
pathogenesis and progression of many retinal diseases.

Another limitation of most existing layer analysis approaches
is an exclusive focus on layer thickness. However, the reflected
coherent light carries more potentially valuable information
characterizing the optical properties of tissue. The changes in
layer intensity/reflectivity may provide further information on
the status of the retinal layer in the setting of disease. For in-
stance, our group12 and others13 have recently shown that the
reflectivity characteristics may be useful for characterizing
and classifying lesions in AMD12 and diabetic retinopathy.13

Thus, as a preliminary investigation, this paper presents an
automated graph-based multilayer approach to segment 11
retinal surfaces, including the various retinal bands, in normal
SD-OCT images. The intensity/reflectivity and thickness of the
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various retinal layers were investigated. This investigation in
normal subjects may provide a comparative reference for
subsequent studies in eyes with diseases.

2 Materials and Methods

2.1 Materials

Twenty eyes of 20 normal subjects with healthy eyes were
enrolled in this study at the Doheny Eye Institute of the
University of Southern California. The absence of any ocular
disease in either eye was confirmed by ophthalmoscopic exami-
nation. All subjects provided with written informed consent.
The study was approved by the Institutional Review Board
of the University of Southern California and adhered to the ten-
ets set forth in the Declaration of Helsinki.

For each subject, both eyes underwent volume OCT imaging
using a Heidelberg Spectralis HRAþ OCT (Heidelberg
Engineering, Heidelberg, Germany) SD-OCT in accordance
with the existing standardized image acquisition protocol uti-
lized by the Doheny Imaging Unit. All volume scans
consisted of macular cube scan patterns of 496 × 1024 × 37
(height × width of a single B-scan × number of B-scans) vox-
els corresponding to the z-, x-, and y-directions, respectively.
The physical scan dimensions of each volume varied slightly
between cases, but were on average 1.92 × 5.90 × 4.57 mm3

(height × width of a single B-scan × width of a single A-scan)
corresponding to the z-, x-, and y-directions, respectively. The
volume scans were obtained with nine frame averaging with the
scan oriented for vitreous zero delay. The voxel depth was 8 bits
in grayscale. For each subject, one eye was randomly chosen for
the subsequent segmentation and analysis. To provide consis-
tency for the quantitative analysis of the retinal layer properties
among different volume scans, all the right eyes were horizon-
tally flipped in the x-direction.

2.2 Retinal Layer Segmentation

Overall, a multistage multisurface graph search segmentation
approach5–10 was applied to segment 11 retinal surfaces in
the SD-OCT volume scans. The graph search approach used
in this study was an evolution of the strategy previously
described by Li et al.5 The segmentation of multiple surfaces
could be considered as an optimization problem with the
goal being to find a set of surfaces with the minimum cost
such that the found surface set was feasible. To find a set of
surfaces with the minimum cost, a graph with a subset of graphs
corresponding to each individual surface was constructed. The
cost function was a signed edge-based term, favoring a dark-to-
bright or bright-to-dark intensity transition based on different
surfaces. It was achieved by applying two different 3 × 3
Sobel kernels in the vertical direction convolving with the
original SD-OCT image to calculate the vertical derivative
approximations. Surface feasibility constraints, i.e., smoothness
constraints within a particular surface and interaction constraints
between the different surfaces, were applied to limit the neigh-
borhood searching. Thus, the smoothness and the interaction
constraints played an important role in accurately segmenting
the multiple layers. In Li’s5 previous approach, both the smooth-
ness and the interaction constraints were of a constant value. In
our adaptation, the smoothness constraints for both the single
surface and double graph search were still constant, which
were predefined manually in a similar way as in Ref. 9.

However, for the interaction constraints of the double-surface
graph searches, the varying constraints with the estimated mor-
phological shape models were employed.

More specifically, based on the image intensity features
(dark-to-bright and bright-to-dark transition) across the retinal
layers, the segmentations of the 11 surfaces were performed in
the following sequence: the internal limiting membrane (ILM)
and inner—outer segment (IS-OS) junction; outer retinal pig-
ment epithelium (RPE) and choroid-sclera (C-S) junction; inner
RPE; the ILM and nerve fiber-ganglion cell (NF-GC) junction;
inner plexiform-inner nuclear (IP-IN) and outer plexiform-outer
nuclear (OP-ON) junction; GC-IP junction; IN-OP junction; and
external limiting membrane (ELM). The detection of the surfa-
ces of the ILM and IS-OS, RPE and C-S, ILM and NF-GC, and
the IP-IN and OP-ON junctions used a simultaneous double-
surface graph search. The detection of the inner RPE, GC-IP
junction, IN-OP junction, and ELM used a single-surface graph
search. The ILM was segmented twice for the purpose of help-
ing a better surface detection of the NF-GC junction. To sum-
marize, four simultaneous double-surface graph searches were
used to identify seven surfaces, and four single-surface graph
searches were used to identify the rest of the four surfaces.

For the interaction constraints of the double-surface graph
searches, they were still constant for the double surfaces of
the ILM and IS-OS junction.9 For the interaction constraints
between the ILM and NF-GC junction, based on the observa-
tion, in the x-direction, the layer thickness in the nasal side has
a tendency to be larger and gradually decrease toward the foveal
center. In the temporal side, the layer thickness tends to be more
constant than that on the nasal side. In designing the interaction
constraints for the region of the fovea using the foveal center as a
reference, in the nasal side, we applied a mathematical model on
the interaction constraints, which had the smallest value at the
fovea center and linearly increased along x-direction toward the
nasal side. In the temporal side, the interaction constraints kept
a constant value. In the y-direction, the interaction constraints
have the same value. In the region outside the fovea, the inter-
action constraints were also constant.

For the double-surface graph search of the IP-IN junction and
the OP-ON junction, based on the observation in the region of
the fovea, it has the smallest thickness at the foveal center and
the thickness gradually increases when moving away from the
center. In the design of the interaction constraints, using the foveal
center as a reference, a mathematical model was applied on the
interaction constraints with the smallest value at the center and
linearly increased when moving away from it. In the region out-
side the fovea, the interaction constraints kept a constant value.

For the choroidal band segmentation, based on a recent study
from our group14 which evaluated topographical changes in pos-
terior pole choroidal thickness in a cohort of 55 normal eyes, we
were able to infer normal, expected regional changes in the
choroidal thickness. Specifically, relative to the foveal center,
the choroidal thickness shows a significant reduction nasally
(−15%) and temporally (−14%). In contrast, it shows a slight
increase superiorly (þ4%) and is relatively stable/consistent
inferiorly (−1% decrease). To summarize, the choroidal thick-
ness varies markedly relative to the foveal center in the nasal-
temporal direction (x-direction in the OCT images) at a range of
−15% to −14%, but is relatively stable in the superior-inferior
direction (y-direction in the OCT images) at a range of þ4%

to −1%. The normal datasets included in our present study dem-
onstrated a similar regional trend in choroidal thickness. In
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designing the interaction constraints, in the x-direction using
the foveal center as a reference, we applied a mathematical
model on the interaction constraints, which had the greatest
value at the foveal center and linearly decreased bilaterally at
each B-scan. In the y-direction, the interaction constraints have
the same value.

To facilitate the multiple surfaces detection, the algorithm
performed the segmentation in three different stages by down-
sampling the raw SD-OCT images in the z-direction by a factor
of 4, 2, and 1, respectively. Figure 1(a) is an original raw SD-
OCT volumetric image. For stage 1 [Fig. 1(b)], the original raw
OCT images were downsampled to four times, and the four most
detectable and/or distinct surfaces (i.e., ILM, IS-OS junction,
outer RPE, and C-S junction) were identified in the four-times-
downsampled images using the graph search. The segmented
four surfaces were then used as a priori positional information
to limit the graph search for the other surfaces at stage 2. In stage
2 [Fig. 1(c)], the original raw OCT images were downsampled
to two times, and 11 surfaces were then detected in the two-
times-downsampled images using the graph search by incorpo-
rating the estimated morphological shape models. In stage 3
[Fig. 1(d)], the segmented 11 surfaces were refined using the
same graph search strategy as applied in stage 2, but in the

original full resolution image space. Finally, a thin-plate spline
fitting15 was applied to smooth the segmented surfaces. The
fitting was applied mainly to correct the small localized seg-
mentation errors, most notably in regions of vessel shadows
cast by overlying large retinal vessels. Figure 1 illustrates the
multistage multilayer segmentation.

2.3 Validation and Characterization

To evaluate the accuracy of the automated layer segmentation,
the 11 surfaces for each case were manually traced by a certified
OCT grader (AH) from the Doheny Image Reading Center, who
was masked to the automated results. There was no any refine-
ment by semiautomatic methods before the comparison with
manual tracing. Because we desired a high-level of precision,
even a single voxel discrepancy in the position of the border
at any location was deemed to constitute a discrepancy. The
reading center medical director (SS) re-reviewed and confirmed
the gradings and boundaries for each case.

The accuracy of the automated surface segmentation was
evaluated in terms of the mean and absolute mean differences
in the z-direction between the segmented surfaces and the cor-
responding manually traced surfaces from the grader. For the

Fig. 1 Multistage layer segmentation. (a) Original spectral-domain optical coherence tomography (SD-OCT) volume. (b–d) Eleven surface segmenta-
tion in stages 1 to 3, respectively. Note: The aspect ratio in the figure does not correspond to the real ratio in order to have a better layer visualization.
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mean differences, a negative value indicated that a segmented
surface was located above the corresponding manually traced
surface, and a positive value indicated that a segmented surface
was located below the corresponding manually traced surface.

The thickness and intensity/reflectivity properties of the retinal
layers defined by the 11 adjacent segmented surfaces were inves-
tigated. To provide consistency for the quantitative analysis, the
SD-OCT volumetric images were aligned along their foveal cen-
ters. For the purpose of the layer thickness analysis, since only the
posterior portion of the vitreous was included in volume OCT
images, the vitreous was not included in the thickness analysis,
and thus resulted in 10 layers of the NFL, GCL, IPL, INL, OPL,
ONL, IS, OS, RPE, and choroid layer. The layer reflectivity was
normalized against the vitreous and NFL. More specifically, the
mean reflectivity of the vitreous was set to zero (i.e., subtracting
the mean vitreous intensity from the intensity of the layer of inter-
est), and all the layers were then normalized to the NFL, which
had the maximummean intensity value in the dataset in this study.
The vitreous and NFLwere specifically chosen because they were
consistently the darkest and the brightest layers on the scans. The
RPE band is also an intensely bright layer on OCT, but it may be
disrupted in various retinal diseases. Thus the NFLwas deemed to
be a more appropriate choice for normalization for the most reti-
nal diseases of interest. Except for the above 10 layers used in the
layer thickness analysis, the visible vitreous was also included in
the layer reflectivity analysis.

To visualize the thickness and intensity/reflectivity properties
in various layers, the mean thickness and normalized mean
intensity/reflectivity maps in square grids with a physical size
of 1 × 1 mm2 for each grid subfield were created. Because
the SD-OCT volumes used in this study had an unsymmetrical
size (average size of 1.92 × 5.90 × 4.57 mm3), to better illus-
trate the grids, we truncated them to a symmetrical size
of 4 × 4 mm2.

3 Results
Twenty normal eyes of 20 healthy subjects were included in this
analysis. The mean age of the subjects was 28.00� 7.79 years
(range: 20 to 40 years). Twelve were female and eight were
male. Table 1 shows the mean and absolute average border posi-
tion differences of the 11 surfaces from the ILM to the choroid-
sclera junction from the automated segmentation and the manual
delineation. The overall mean thickness from the 10 layers
between every two adjacent segmented surfaces excluding the
vitreous and the overall normalized mean intensity/reflectivity
from the 11 layers between every two adjacent segmented sur-
faces including the vitreous are presented in Fig. 2. The mean
thickness grid maps of the 10 layers are shown in Fig. 3, and the
normalized mean intensity/reflectivity grid maps of the nine
layers (excluding the vitreous and NFL) are shown in Fig. 4.

4 Discussion and Conclusion
In this paper, an automated approach was developed to segment
11 retinal surfaces including various retinal bands within the
retina on SD-OCT images. The algorithm featured three differ-
ent stages with various levels of downsampling in order to facili-
tate the segmentation. The estimated morphological shape
models were incorporated to the interaction constraints to con-
strain the graph search of the retinal surfaces. The overall mean
and absolute mean differences in border positions between the
automated and manual segmentation for all the 11 segmented
surfaces were −0.20� 0.53 voxels (−0.76� 2.06 μm) and
0.82� 0.64 voxels (3.19� 2.46 μm), respectively, which
were both within a subvoxel accuracy, highlighting the robust-
ness of the proposed algorithm for this dataset. While several
papers have reported the automated layer segmentation in 3-D
SD-OCT images,5–9 to our best knowledge, this is the first
study to automatically segment 11 visible retinal layers (now
more consistently with current SD-OCT instruments), and is

Table 1 Mean and absolute mean border position differences of the automated and manual segmentations.

Surfaces Mean (voxels) Mean (μm) Absolute mean (voxels) Absolute mean (μm)

ILM 0.04� 0.09 0:16� 0:36 0.05� 0:11 0:19� 0:42

NF-GC −0:85� 0:94 −3:29� 3:65 0:96� 0:89 3:72� 3:46

GC-IP −0.05� 0:19 −0:21� 0:75 0:69� 0:20 2:65� 0:79

IP-IN 0:13� 0:17 0:51� 0:65 0:49� 0:29 1:89� 1:14

IN-OP −0.08� 0.07 −0:32� 0:29 0:36� 0:16 1:38� 0:61

OP-ON −0:15� 0:10 −0:57� 0:40 0:46� 0:21 1:80� 0:82

ELM −0.06� 0:23 −0:22� 0:88 0:14� 0:27 0:56� 1:06

IS-OS 0:22� 0:79 0:85� 3:08 0:42� 0:77 1:61� 2:99

Inner RPE −0:58� 1:07 −2:26� 4:14 1:98� 0:27 7:67� 1:06

Outer RPE 0:12� 0:81 0:45� 3:13 0:73� 0:68 2:81� 2:62

C-S −0:89� 1:38 −3:44� 5:34 2:80� 3:12 10:83� 12:04

Overall −0:20� 0:53 −0:76� 2:06 0:82� 0:64 3:19� 2:46

Note: The negative value of the mean differences indicates a segmented surface was located above the corresponding manual delineation, and a
positive value indicates the segmented surface was below the corresponding manual delineation.
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the first to investigate both the thickness and the intensity/reflec-
tivity properties of these layers.

The ability to extract these multiple layers provides an
opportunity for more in depth analysis of the features and
characteristics of the various layers. For example, Figs. 3 and 4
demonstrate the mean thickness and intensity/reflectivity grid
maps with a 1 × 1 mm2 grid subfield. The central coordinate
of (0, 0) indicates the foveola location. It is interesting to note
that both the mean thickness and normalized mean intensity/
reflectivity of the most retinal layers are distributed symmetri-
cally relative to the foveal center. However, for the NFL layer,
the mean thickness [Fig. 3(NFL)] is greater nasally compared
with that of temporally. For the choroid layer, the mean thick-
ness [Fig. 3(Choroid)] is greater superiorly than inferiorly and
is greater temporally than nasally, with the maximum value
superiorly and the minimum value nasally. However, for the
normalized mean intensity/reflectivity [Fig. 4(Choroid)] of the
choroid layer, it is greater nasally than temporally. Changes
in both retinal layer thickness2–4 and intensity/reflectivity12,13

may be the indicators of the presence of various eye diseases.
Traditionally, the Early Treatment Diabetic Retinopathy Study
(ETDRS) grid centered at the foveola was widely used for the
analysis of the retinal thickness changes. While an ETDRS
grid may be appropriate for neurosensory retinal thickness
as a whole, it may not be the optimum choice for layers
which are not symmetric relative to the fovea such as the
choroid. An ETDRS grid may also not be optimal for pre-
senting regional layer intensity/reflectivity data. The square

checkerboard grid presented in Figs. 3 and 4 may be one
possible solution. This type of grid may be particularly useful
when correlating retinal layer data with functional datasets such
as microperimetry-derived retinal sensitivity values.

In terms of the speed of the algorithm, the mean segmenta-
tion time for all the 11 surfaces was 4.7� 0.5 min per volume
using a Windows 7 workstation with a 2.80 GHz Intel(R)
Core(TM) i7 CPU. The segmentation was run on a 64-bit oper-
ating system with approximately 8 GB of RAM. In comparison
with previous approaches, Garvin et al.10 reported a seven-
retinal surface segmentation approach on SD-OCT images,
which we believe is comparable with our 11-surface segmen-
tation. The SD-OCT data used in Garvin’s paper was from
the Cirrus HD-OCT machines (Carl Zeiss Meditec, Inc.,
Dublin, California) with an image size of 1024 × 200 × 200

(height × width of a single B-scan × number of B-scans) vox-
els. As reported, their method was implemented to run on a
64-bit operating system with approximately 10 GB of RAM,
requiring hours of processing time per volume to segment all
seven surfaces. The images used in this study were obtained
from a Spectralis HRAþ OCT machine with an image
size of 496 × 1024 × 37 (height × width of a single B-scan×
number of B-scans) voxels. As mentioned above, the total
processing time to segment all 11 surfaces was about 4.7 min.
Assuming the processing time has a linear relationship with the
surface and voxel numbers, we would project that our multistage
algorithm would take approximately 6.5 min to process the
Cirrus volume scans in Garvin’s study. Thus, we believe the
multistage algorithm described in our study has potential to
greatly speed up the segmentation of multiple surfaces in
OCT volume scans.

The algorithm evaluated in this study generally performed
well. However, there are several potential targets for further
refinement of the technique. For example, structures such as reti-
nal blood vessels may cause optical shadows across the retinal
layers, which may confound the detection of surfaces and con-
tribute to layer segmentation errors. This problem, however,
could potentially be managed by first identifying the vessel loca-
tion and performing an interpolation from the surrounding non-
vessel region.16–18 We have previously reported a unimodal
vessel segmentation approach16 for optic nerve head (ONH)
centered SD-OCT images, and a multimodal vessel segmenta-
tion approach17,18 for ONH-centered SD-OCT images and color
fundus images. Both can be modified for the segmentation of
the blood vessels in the macular volumetric scans, and this is
a natural target for future studies. In addition, as can be seen
from Table 1, the segmentation performance in the outer
most bands (inner RPE, outer RPE, and choroid) was worse
overall compared with the inner bands. We suspect that this
was in part a reflection of the inherent loss of sensitivity
with depth at the center wavelength used by the most current
commercial SD-OCT devices (870 nm for the Spectralis
OCT). The loss of sensitivity would generate increased noise,
which would be expected to degrade algorithm performance.
This problem may be mitigated by the next generation of
swept-source OCT instruments, which feature less sensitivity
roll-off and longer wavelengths (e.g., 1050 nm).

Our study is not without limitations. First, our study sample
was relatively small. Thus, without evaluation in a larger cohort,
we cannot be certain that the algorithm will generalize. On
the other hand, detailed manual segmentation of 11 surfaces
on every B-scan in dense volume OCT scans is exhaustive

Fig. 2 Mean layer thickness and mean layer intensity normalized to
nerve fiber layer (NFL). Upper: mean thickness of the 10 retinal layers
excluding the vitreous. Bottom: normalized mean intensity of the 11
retinal layers by setting the mean vitreous intensity to zero and normal-
izing to NFL layer.
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and difficult to perform for a very large datasets. Second, our
sample only included normal eyes. The methods necessary to
adapt or tune the algorithm to function in the setting of retinal
disease are still uncertain. However, starting with normal is
important as it provides an opportunity to collect a normative
database of values for future comparison with disease. Third,
this pilot study only included normal subjects and with a

relatively narrow age range (mean age: 31.25� 5.92 years
old; 24 to 42 years old). However, the layer thickness may
vary with age. For instance, it is known that the choroid thick-
ness decreases with age.19 It is possible that the layer reflectivity
may change as well. Fourth, in this study, the foveal center was
simply defined as the lowest position of ILM surface. This
worked well for this normative data study with horizontally

Fig. 3 Grid maps of the mean thickness of the 10 layers excluding the vitreous. The position (0, 0) represents the foveal center.
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Fig. 4 Grid maps of the normalized mean intensity of the nine layers. The position (0, 0) represents the foveal center. Note: The vitreous and NFL layer
were excluded.
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oriented scans. This simple solution may not suffice in the set-
ting of disease or severely tilted scans (e.g., in high myopes),
and may require a different solution for foveal detection.
Despite these limitations, our study has many strengths as pre-
sented above for the automated segmentation, and also including
the use of meticulous manual segmentation by expert reading
center-certified OCT graders.

In summary, we present an automated graph-based multi-
stage multilayer approach integrating the estimated morpho-
logical shape models to segment 11 retinal surfaces in normal
SD-OCT images. The overall mean and absolute mean
differences in border positions between the automated and
manual segmentation were both under the subvoxel level, indi-
cating an excellent segmentation accuracy of the proposed
algorithm on this dataset. This investigation in normal subjects
may provide a comparative reference for subsequent adaptations
in eyes with diseases.
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