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Abstract. Current fluorescence diffuse optical tomography (fDOT) systems can provide large data sets and, in addi-
tion, the unknown parameters to be estimated are so numerous that the sensitivity matrix is too large to store.
Alternatively, iterative methods can be used, but they can be extremely slow at converging when dealing with
large matrices. A few approaches suitable for the reconstruction of images from very large data sets have been
developed. However, they either require explicit construction of the sensitivity matrix, suffer from slow compu-
tation times, or can only be applied to restricted geometries. We introduce a method for fast reconstruction in fDOT
with large data and solution spaces, which preserves the resolution of the forward operator whilst compressing its
representation. The method does not require construction of the full matrix, and thus allows storage and direct
inversion of the explicitly constructed compressed system matrix. The method is tested using simulated and exper-
imental data. Results show that the fDOT image reconstruction problem can be effectively compressed without
significant loss of information and with the added advantage of reducing image noise. © 2013 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.18.8.086008]
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1 Introduction
Fluorescence diffuse optical tomography (fDOT) is an imaging
modality that aims at reconstructing three-dimensional (3-D)
distributions of fluorescent markers embedded within biological
tissues.1 This technology has facilitated monitoring of molecular
activity, tumor growth, response to drug therapy, etc., mostly in
small animals.

In fDOT, a near-infrared (NIR) light source at excitationwave-
length is illuminated onto the subject under study at different
positions. Fluorophores absorb the excitation light and re-emit
part of the energy at a longer wavelength. In most modern non-
contact fDOT systems, light intensity measurements (CW) at the
emission, and possibly, excitation wavelengths are collected by a
charged-coupled device (CCD) camera placed opposite to the
light source, which is rotated around the object of study.2

The image reconstruction consists of the inversion of a linear
operator (sensitivity matrix), mapping the fluorescence yield of
the fluorophore, which is linearly related to its concentration, to
the measured data. However, due to the diffusive nature of light
propagation in biological tissue the image reconstruction is an
ill-posed inverse problem, meaning that noise in the data may
give rise to significant errors in the reconstructed image.

The ill-posedness of the problem can be reduced by using
large data sets.3,4 The use of CCD cameras produces large
amounts of data, typically of the order of nmeas ∼ 107.
However, this makes the problem large scale and more

challenging to solve. Furthermore, the parameters to reconstruct
are so numerous, nrecon ∼ 106, that the sensitivity matrix is
extremely large. The large matrix size poses a problem for stor-
age, as well as computation time required for inversion.
Therefore, specialized algorithms that can handle problems
with large dimensions are required.

Markel and Schotland3,5 proposed a series of algorithms for
the reconstruction of images from extremely large data sets,
which exploit symmetry properties of simple geometries.
Konecky et al.6 reconstructed diffuse optical tomography
(DOT) images using a fast inversion method, which combines
plane wave illumination7 with analytic image reconstruction
methods. The reconstruction method exploits the block structure
of the linear operator that couples themeasurements to the optical
properties of the object of study, and hence, instead of inverting a
largematrix, the problem is reduced to inverting a set of relatively
small matrix blocks. Lukic et al.8 used a similar method, but
replaced point sources by structured illumination (Fourier encod-
ing), and hence, data are directly measured in the Fourier space.
Since DOT suffers from low spatial resolution, only a few low
Fourier components retain relevant information. In this approach,
the inverse problem is fully Fourier encoded, i.e., sources, detec-
tors, and solution space are represented in the Fourier space.
Ducros et al.9 used a similar approach, but based on wavelet
encoding methods. Ripoll10 proposed a hybrid approach,
where only the measurements are Fourier encoded, while the
sources and solution space are kept in the real space.
However, most of these approaches are based on analytical
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For complex geometries, an alternative is to use a matrix-free
Krylov-subspace approach, in which the storage of the sensitiv-
ity matrix is replaced by vector-matrix products, i.e., solving the
forward and adjoint problems where the solutions are computed
numerically using the finite element method (FEM).11 The
matrix-free method relies on iterative Krylov-subspace methods,
such as generalized minimal residual method, which may suffer
from slow convergence. Therefore, the method overcomes the
storage problems of large data sets at the expense of computa-
tional efficiency.

Multigrid methods offer the capability of reconstructing
images at lower spatial scales by solving smaller instances of
the problem, which allows approximate solutions to be com-
puted quickly at low resolution and progressively refined. Zhu
et al.12 developed a wavelet-based multigrid approach. The rows
and columns of the sensitivity matrix are wavelet transformed
and the system at a coarser resolution is solved. Solutions at
coarser resolutions are used as the initial guess for solving sys-
tems at finer resolutions. It is also possible to select regions of
interest at smaller scales based on coarse level reconstructions.
However, in order to maintain reconstruction resolution, this
approach requires reconstructions at many scales, and thus,
does not result in significant reduction in computation time.
Furthermore, it requires the full sensitivity matrix to be calcu-
lated and stored.

Another approach is to use the wavelet-Galerkin method to
generate the forward model, instead of using the more time con-
suming FEM (Ref. 13). However, unlike FEM, this method is
only applicable to simple geometries, but the fictitious domain
method is used to overcome this limitation.14 In the wavelet-
Galerkin method, the wavelet scaling functions are used as a
basis on a regular grid. This allows a more compact represen-
tation of the problem and the use of multigrid techniques. As
before, solutions can be obtained at progressively higher wave-
let resolution scales, terminating when appropriate. Although
this is an efficient way to compute the full matrix for large sol-
ution spaces, it is not suitable for large data sets.

Wavelets were also used in Ref. 15 to reduce the fDOT for-
ward model computation time by projecting the original FEM
matrices into a series of wavelet bases.

This paper proposes a method that reduces significantly the
size of the sensitivity matrix by compressing its rows and col-
umns using wavelets, allowing it to be stored explicitly while
maintaining the spatial resolution and accuracy of the recon-
structed images and low-computational time. This method is
an extension of the work in Ref. 16, where wavelet compression
is applied to a very large data sets in order to reduce data space
dimensions. Here, a similar approach is used to reduce the sol-
ution space dimensions. Therefore, given the reduced dimen-
sions of the image reconstruction problem, the solution can be
found using direct inversion methods. The performance of the
method is assessed using simulations and experimental phantom
data. The effect of incorporating a priori structural information
into the compressed image reconstruction is also analyzed.

2 Methods

2.1 Forward Problem

In CW-fDOT, the forward model is described by a set of coupled
diffusion equations in a domain Ω:17

−∇ · κe∇Φe þ μeaΦe ¼ 0; (1)

−∇ · κf∇Φf þ μfaΦf ¼ Φef; (2)

with boundary conditions on ∂Ω

Φe þ 2Rκen̂ · ∇Φe ¼ J−; (3)

Φf þ 2Rκfn̂ · ∇Φf ¼ 0; (4)

Γe;f ¼ −κe;fn̂ · ∇Φe;f; (5)

where J− is the excitation source flux,Φ is the photon density, R
is a boundary term that incorporates the refractive index mis-
match, Γ is the boundary measurement on ∂Ω, and n̂ is the
outer normal vector. The diffusion coefficient is given by
κ ¼ ð1∕3Þðμ 0

s þ μaÞ−1, where μa and μ 0
s are the absorption

and reduced scattering coefficients, respectively. The superscript
e and f indicates the excitation and emission wavelengths λe and
λf, respectively. The fluorescence yield coefficient f is related to
the quantum yield of the fluorophore η and its absorption coef-
ficient at λf. For CCD camera based measurements we have

ye;f ¼ M½Φe;f� ¼ ΘPð∂Ω → ΣÞΓe;f; (6)

whereM is a measurement operator that gives the data, Θ is the
unknown source and detector coupling coefficients and the oper-
ator P represents the projection from the domain boundary ∂Ω
to the camera Σ.

The forward problem is computed numerically using the
FEM on a tetrahedral mesh based on the geometry being con-
sidered, and then mapped into a Cartesian voxel grid. In the
FEM, the domain Ω is divided into P elements, joined at N
nodes. The solution of the diffusion equations is approximated
by the piecewise function Φe;f ¼ P

N
j¼1 Φ

e;f
j uj, where uj is the

basis functions. In the FEM framework, Eqs. (1)–(5) can be
expressed as

KeΦe ¼ Q; (7)

KfΦf ¼ H; (8)

where

Ke;f ¼
Z
Ω
ðκe;f∇ui · ∇uj þ μe;fa uiujÞdΩ

þ
Z
∂Ω

1

2R
uiujdð∂ΩÞ; (9)

Q ¼
Z
∂Ω

1

2R
J−uidð∂ΩÞ; (10)

H ¼
Z
Ω
ΦefuidΩ: (11)

Therefore, the solution Φe;f can be found by inverting the
matrix Ke;f .

Normalizing the measured fluorescence photon density
M½Φf� by the measured excitation photon density M½Φe�
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reduces the effects of Θ.18 The normalized forward problem in
fDOT is given by

ŷ ¼ yf

ye
¼ M½ΦeΦf��

M½ΦeΦe�� ¼ Jf; (12)

whereΦe;f� is the solution to the adjoint diffusion equation for a
source located on the boundary ∂Ω,19 f is the fluorescence yield
coefficient, and J is the Jacobian or sensitivity matrix. For a set
of Ms source-detector positions, where the detector is a camera
with Mx ×My pixels, it follows that the measurements ye;f are
vectors of size Ms ×Mx ×My and J is a matrix of dimensions
ðMs ×Mx ×MyÞ × N, where N is the dimension of the solution
space that, once mapped into a regular grid, has dimen-
sions Nx × Ny × Nz.

2.2 Image Reconstruction Problem

The image reconstruction in fDOT consists in solving the prob-
lem

f ¼ minimise

�
1

2
kŷ − Jfk2 þ αΨðfÞ

�
; (13)

where α is the regularization parameter and Ψ is a regularizing
functional that represents a priori information. The previous
equation can be solved using zero-order Tikhonov regulariza-
tion, i.e., Ψ ¼ ð1∕2Þkfk2, or iteratively using the split operator
method with anisotropic diffusion regularization and structural a
priori information (ADSP) introduced in Ref. 20:

fkþ1∕2 ¼ fk þ JTðJTJ þ λIÞ−1ðŷ − JfkÞ; (14)

fkþ1 ¼ fkþ1∕2 þ ΔtLðfkþ1∕2Þfkþ1∕2; (15)

where the first step is the Levenberg–Marquardt method, where
λ is the damping factor that changes at each iteration; and the
second step is the nonlinear anisotropic diffusion method,21

where Δt is the time step and L is the anisotropic diffusion func-
tion given by LðfÞ ¼ −∇ · ½Sðj∇fstjÞgðj∇fjÞ∇�. Here, gðj∇fjÞ ¼
1 − Pðj∇fj ≤ XÞ is the exceedance function, which is the prob-
ability of an edge of interest being present and can be calculated
using the normalized cumulative histogram (NCH) of the image
gradient.20 The NCH indicates the probability P of a gradient
taking on a value less than or equal to the value X that the
bin represents, i.e., Pðj∇fj ≤ XÞ. In a multimodality framework,
Sðj∇fstjÞ is a weighting factor related to the structural informa-
tion.20 It is an edge detection function that stops the diffusion
process across edges. The additive operator splitting scheme is
used to discretize the nonlinear anisotropic diffusion equation.20

2.3 Fast Wavelet Transform

The fast wavelet transform (FWT) decomposes a signal or func-
tion f0 into different frequency subbands.22 It uses a low-pass
filter h and a high-pass filter g to obtain the approximation Wc
and detail Wd coefficients. The approximation coefficients re-
present the approximation of the signal at a resolution 2j, where
j is an integer that specifies the resolution level. The detail coef-
ficients contain the details of the original signal, i.e., the high-
frequency information. For a signal fðnÞ ¼ Wðjþ 1; nÞ, with n
samples and at a starting scale jþ 1

Wcðj; nÞ ¼ hð−nÞ �Wcðjþ 1; nÞ ↓ 2; (16)

Wdðj; nÞ ¼ gð−nÞ �Wdðjþ 1; nÞ ↓ 2: (17)

Thus, the FWT consists of a convolution, followed by down-
sampling by a factor of 2 (↓ 2), i.e., keeping the even index sam-
ples. The wavelet transform can be implemented as a
decomposition filter bank, where the initial signal goes through
a series of filters. The synthesis filter bank can be used to per-
form the inverse transform (IFWT) and reconstruct the signal f0.
First, the signal is upsampled by a factor of 2 (↑ 2), i.e., adding a
zero between samples, followed by convolution with the inverse
filter. Note that the filters are related to each other by
gðnÞ ¼ ð−1Þnhð1 − nÞ. Figure 1 shows a one-level decomposi-
tion and synthesis filter bank.

The separability property of the two-dimensional (2-D)
wavelet transform means that performing a 2-D wavelet trans-
form is equivalent to performing two one-dimensional (1-D)
transforms, i.e., one 1-D transform along with the columns of
the image fðm; nÞ (n-axis) and another 1-D transform along
with the rows of fðm; nÞ (m-axis) (Fig. 2). Analogously, per-
forming a 3-D wavelet transform is equivalent to performing
three 1-D transforms. The same applies to the IFWD in higher
dimensions.

2.3.1 Data compression

Data compression is used to reduce the dimensions of the data
for computational efficiency,16 while simultaneously reducing
the redundancy of the data. We apply a four-level 2-D FWT
(W2-D) to the projection image ye;fi captured by a CCD camera,
where i ¼ 1; 2; : : : ;Ms. The obtained wavelet coefficients are
W ¼ fWcðj − 3; x; yÞ;Wd1ðj − k; x; yÞ;Wd2ðj − k; x; yÞ;Wd3
ðj − k; x; yÞ∶j ¼ 7 and 0 ≤ k ≤ 3g, where Wd1, Wd2, and Wd3
are the detail coefficients that passed through a high-pass filter at
least once. We keep the coefficients that are larger than a thresh-
old TM , set to theMψ largest coefficients (i.e.,Mψ ¼ W > TM),
which contain most of the relevant information, and hence, the

Fig. 1 One-level 1-D FWT and IFWT.
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dimensions of the vectorized compressed data ỹ are reduced to
Ms ×Mψ . For example, if WT ¼ 128 × 128 is the total number
of wavelet coefficients, then TM ¼ WsortðP ×WTÞ, where Wsort

are the wavelet coefficients sorted in descending order and P is
the percentage of coefficients to be removed. If P ¼ 0.98, then
Mψ ¼ 328 and the compressed data ỹ has dimensions 18 × 328.
Similarly, the size of the row compressed Jacobian J̃ is reduced
to ðMs ×Mψ Þ × N. The resulting compressed forward problem
is ỹ ¼ J̃ f̃.

2.3.2 Solution compression

In this paper, we extend the work in Ref. 16 by applying a sim-
ilar wavelet compression to each row of the Jacobian, thus
reducing the dimensions of the solution space. Each row ri
of the Jacobian represents the sensitivity of one measurement
ŷ (matrix J) or compressed measurement ỹ (matrix J̃) to changes
in f. Both f and ri represent 3-D images of dimensions
Nx × Ny × Nz, and therefore, a 3-D FWT (W3-D) is performed
on the rows of the sensitivity matrix. Two methods are inves-
tigated, one where the sensitivity matrix is sparse and another
where the matrix is fully compressed.

Sparse matrix: A highly sparse matrix J̆ can be obtained by
keeping the wavelet coefficients V larger than a threshold TN ,
set to the Nth

Ψ largest coefficient in each row, and setting the
remaining coefficients to zero

J̆ij ¼
�
Vij; if Vij > TN

0; elsewhere
; (18)

where the subscript i is the row index and j is the column index.
For example, if WT2 ¼ 64 × 64 × 64 is the total number of
wavelet coefficients, then TN ¼ VsortðP ×WT2Þ, where Vsort

are the wavelet coefficients sorted in descending order. If we
consider P ¼ 0.98, then NΨ ¼ 5243.

The resulting forward problem, using data and solution com-
pression, is ỹ ¼ sparseðJ̆Þf̆. The solution is a sparse image of
size Nx × Ny × Nz and NΨ nonzero elements. The matrix J̆
has dimensions ðMs ×Mψ Þ × ðNx × Ny × NzÞ and ðMs ×MψÞ×
NΨ nonzero elements. The solution is obtained by solving the
inverse problem and performing a 3-D IFWT (W−1

3-D) to f̆.
Fully compressed matrix: Alternatively, if only NΨ wavelet

coefficients are kept, then the size of the compressed Jacobian J̄

is reduced to ðMs ×MψÞ × Nψ. The forward problem is
ỹ ¼ ðJ̄Þf̄, where f̄ is a vector of size NΨ. Therefore, the solution
is a compressed image of size NΨ, which is converted into a
sparse Nx × Ny × Nz image and inversely wavelet transformed.
Consider Ai ¼ W3-Dfrig and AM ¼ meanðAiÞ (average along
the rows), the wavelet coefficients kept correspond to the jN
location of the Nth

Ψ largest AM elements: J̄i;j ¼ Ai;jN . Unlike
the sparse matrix method, where the jN location corresponds
to the location of the Nth

Ψ largest coefficients in each row
and, therefore, the jN locations are different for each row, in
the fully compressed method the jN locations are the same in
all the rows of the wavelet transformed matrix A.

2.4 Computation Procedure for Compression of the
Solution Space

The FWT is used to efficiently compute the compressed matrix
J̆, without explicitly computing the matrix or a wavelet trans-
form matrix. The matrix J̆ is calculated row by row; and
hence, an FWT is performed on each row of the sensitivity
matrix and only the Nth

Ψ largest components are kept. To com-
pute the fully compressed matrix J̄, one needs to first explicitly
compute the wavelet transformed matrix A of size ðMs ×MψÞ×
ðNx × Ny × NzÞ. The computational procedure is described in
Algorithms 1 and 2 for the sparse matrix and fully compressed
matrix, respectively.

2.5 Evaluation

The performance of our data and solution compression method
is evaluated through simulations and a phantom study. The
matrix J is calculated using TOAST, which is an FEM based
software developed at University College London (UCL).
Images are reconstructed (a) using zero-order Tikhonov regu-
larization and solving the linear problem directly and (b) itera-
tively using our ADSP method.20 Solutions are computed on a
tetrahedral mesh and mapped into a regular 64 × 64 × 64 grid
covering the domain of the mesh.

In the following sections, we refer to the data compression
method as DC, sparse matrix method as Sx and the fully com-
pressed matrix method as FCx, where x represents the number of
coefficients NΨ.

Wavelet filters: After experimenting different wavelet fil-
ters, we choose to use the Battle–Lemarié wavelet filters,

Fig. 2 One-level 2-D FWT.
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which appear to be suitable for this type of application. The
Battle–Lemarié wavelets are symmetric, orthonormal, and
smooth. These wavelets are attractive since they have good
time and frequency localization properties and can approximate
smooth solutions.22 Other popular wavelets, such Daubechies,
are not smooth enough and do not possess good frequency
localization.23

Battle–Lemarié wavelet filters are built from polynomial
splines of order 2pþ 1. Let ϕðωÞ be the Fourier transform
of the wavelet scaling function ϕðtÞ. The low-pass quadrature
mirror filter HðωÞ can be obtained from the following relation
in the Fourier domain22

ϕð2ωÞ ¼ HðωÞϕðωÞ; where HðωÞ
X∞
n¼−∞

hðnÞe−inω: (19)

Lemarié has shown that the scaling function can be written as

ϕðωÞ ¼ 1

ωn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ2nðωÞ

p ; where n ¼ 2þ 2p; (20)

and where

ΣnðωÞ ¼
X∞
k¼−∞

1

ðωþ 2kπÞn : (21)

Alternatively, one can calculate ΣnðωÞ by computing the n − 2

derivative of the formula:

Σ2ðωÞ ¼
1

4 sin2ðω∕2Þ : (22)

For an approximation built from cubic splines, i.e., p ¼ 1,
and thus, n ¼ 4, it follows from the previous equations that

ϕðωÞ ¼ 1

ω4
ffiffiffiffiffiffiffiffiffiffiffiffi
Σ8ðωÞ

p and HðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ8ðωÞ

28Σ8ð2ωÞ

s
: (23)

Figures of merit: The relative error (RE) and contrast-to-
noise ratio (CNR) are used to evaluate the quality of the recon-
structed images. The RE between the true image ftrue and the
reconstructed image frecon is defined as RE ¼ kftrue − freconk2∕
kftruek2. The CNR is calculated as follows:24

CNR ¼ μROI − μB
½wROIσ

2
ROI − wBσ

2
B�1∕2

; (24)

where μROI is the mean value of the region of interest (ROI); μB
is the mean value of the background (B); σROI and σB are the
standard deviations of the ROI and background, respectively;
and wROI ¼ AROI∕ðAROI þ ABÞ and wB ¼ AB∕ðAROI þ AreaBÞ
are noise weights, where AROI and AB are the ROI and B

Algorithm 1 Sparse matrix.

Initialize an empty sparse matrix J̆ of dimensions
ðMs ×Mψ Þ × ðNx ×Ny ×Nz Þ

for i ¼ 1; ...; ðMs ×Mψ Þ do

ri ¼ M½ΦeΦf��∕M½ΦeΦe��

R3-D ¼ W3-D frig

R1-D ← R3-D

Rs←sortR1-D in descending order (and store their location j)

Rt ← keep the Nth
Ψ largest components (and locations jN )

J̆i ← set elements jN of J̆i to their corresponding Rt values.

end for

Solve the inverse problem for f̆1-D:

Set tolerance value ε and maximum iteration number Nk

while kỹ − J̆f̆1-Dk2 < ε ∨ k < Nk do

f̆kþ1∕2
1-D ¼ f̆k1-D þ J̆T ðJ̆T J̆þ λIÞ−1ðỹ − J̆f̆k1-DÞ

f̆kþ1∕2
1-D ¼ f̆kþ1∕2

1-D þ ΔtLðf̆kþ1∕2
1-D Þf̆kþ1∕2

1-D

end while

f̆3-D←f̆1-D

f ¼ W−1
3−D ff̆3-Dg

Algorithm 2 Fully compressed matrix.

Initialize an empty matrixA of dimensions ðMs ×Mψ Þ × ðNx ×Ny ×Nz Þ

Initialize an empty matrix J̄ of dimensions ðMs ×Mψ Þ ×NΨ

Initialize an empty vector f̄s of size ðNx ×Ny ×Nz Þ

for i ¼ 1; : : : ; ðMs ×Mψ Þ do

ri ¼ M½ΦeΦf��∕M½ΦeΦe��

R3-D ¼ W3-Dfrig

R1-D←R3-D

Ai←R1-D

end for

Rs←sort meanðAiÞ in descending order and store locations jN
corresponding to the Nth

Ψ largest elements

J̄ ← elements jN of A.

Solve the inverse problem for f̄1-D:

Set tolerance value ε and maximum iteration number Nk

while kỹ − J̄f̄1-Dk2 < ε ∨ k < Nk do

f̄kþ1∕2
1-D ¼ f̄k1-D þ J̄T ðJ̄T J̄ þ λIÞ−1ðỹ − J̄f̄k1-DÞ

f̄kþ1∕2
1-D ¼ f̄kþ1∕2

1-D þ ΔtLðf̄kþ1∕2
1-D Þf̄kþ1∕2

1-D

end while

f̄s ← set elements jN of f̄s to their corresponding f̄1-D values.

f̄ 3-D ←f̄s

f ¼ W−1
3-D ff̄ 3-Dg
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areas, respectively. The ROI is defined as the region where vox-
els have attained at least half maximum intensity and the remain-
ing voxels represent the background B.

2.5.1 Simulation

The geometry used in the simulation is similar to the phantom
geometry. The MATLAB package Iso2mesh25 was used to generate
a tetrahedral mesh from the X-ray computed tomography (XCT)
image of a cylindrical phantom (see Sec. 2.5.2 and Fig. 3). The
FEM mesh has 8449 nodes, 49,797 elements and dimensions
28 × 28 × 42 mm3. Similar to the phantom, the optical proper-
ties are μa ¼ 0.01 mm−1 and μ 0

s ¼ 0.8 mm−1, and the fluores-
cent targets are two vertical cylinders placed parallel to each
other (Fig. 3) with contrast f ¼ 2. Projection images of size
128 × 128 pixels are calculated for 18 evenly spaced source-
camera positions over a full 360 degrees range at z ¼ 0 mm
(Fig. 3). Data consist of fluorescence and excitation projections

with 2% Gaussian random noise. The data space is compressed
by setting Mψ ¼ 32 and solutions are computed with
NΨ ¼ f8192;4096;1024;256g. For the reconstructions using
zero-order Tikhonov regularization the damping factor is ini-
tially set to λTik ¼ a traceðJcJTc Þ and for reconstructions using
ADSP regularization it is set to λADSP ¼ 10a traceðJcJTc Þ,
where a ¼ 3 × 10−4 and Jc are the different types of compressed
Jacobian matrices.

2.5.2 Phantom

Data are acquired using the rotating fDOT–XCT system
described in Ref. 2. The optical and XCT images are acquired
sequentially. The solid phantom consists of a mixture of Agar,
Intralipid, and ink. The stock solution is 4.56 ml Intralipid 20%
(Sigma–Aldrich Co. LLC, St. Louis, USA), 0.256 ml India ink,
100 ml deionized water and 2.8 g Agar (Sigma–Aldrich Co.
LLC, St. Louis, USA). The phantom is a cylinder with diameter
∅ ¼ 28 mm, height L ¼ 65 mm and optical properties
μa ¼ 0.01 mm−1 and μ 0

s ¼ 0.8 mm−1, which were measured
using a spectrometer (USB4000-VIS-NIR, Ocean Optics,
London, UK). Two translucent tubes with an inside diameter
of 3 mm (and outside diameter 4 mm) are inserted parallel to
its long axis and filled with an optically matched fluid contain-
ing a fluorescent dye (Alexa 750) at 500 nM (molar) concen-
tration. Excitation and fluorescence data images of size
512 × 512 (resized to 128 × 128) are recorded at 18 angular
positions (same than the simulations). The FEM mesh is the
same than the one used in the simulation study. We use the com-
pression Mψ ¼ 32 and NΨ ¼ f1024;256g (NΨ ¼ 256 when
ADSP regularization is used). The damping factor is initially
set to λTik ¼ a traceðJcJTc Þ and λADSP ¼ 10a traceðJcJTc Þ, where
a ¼ 8 × 10−3.

3 Results
Profile plots across the reconstructed fluorescence targets
(z ¼ 0 mm and y ¼ 0 mm) are shown in Figs. 4 and 5 for
images obtained using Tikhonov regularization for the sparse
and fully compressed matrix cases, respectively. Similarly,
Figs. 6 and 7 show the profile plots for images obtained using
ADSP regularization. Figures 4 and 6 also show the profile plots
for the data compression case.

Fig. 3 Geometry used in the simulations. The FEM mesh is generated
from X-ray CT images of the experimental phantom. The asterisk mark-
ers indicate the source positions.

Fig. 4 Profile plots across the fluorescence images (z ¼ 0 mm and y ¼ 0 mm) reconstructed from simulated data using Tikhonov regularization and
data compression, a sparse matrix with different compression levels, and the true solution.
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Fig. 5 Profile plots across the fluorescence images (z ¼ 0 mm and y ¼ 0 mm) reconstructed from simulated data using Tikhonov regularization and a
fully compressed matrix with different compression levels, and the true solution.

Fig. 6 Profile plots across the fluorescence images (z ¼ 0 mm and y ¼ 0 mm) reconstructed from simulated data using ADSP regularization and data
compression, a sparse matrix with different compression levels, and the true solution.

Fig. 7 Profile plots across the fluorescence images (z ¼ 0 mm and y ¼ 0 mm) reconstructed from simulated data using ADSP regularization and a fully
compressed matrix with different compression levels, and the true solution.
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Fig. 8 Fluorescence yield f reconstructed from simulated data using
Tikhonov regularization and data compression in (left) 3-D and
(right) 2-D cross section at z ¼ 0 mm.

Fig. 9 Fluorescence yield f reconstructed from simulated data using
Tikhonov regularization and S1024 in (left) 3-D and (right) 2-D cross sec-
tion at z ¼ 0 mm.

Fig. 10 Fluorescence yield f reconstructed from simulated data using
Tikhonov regularization and S256 in (left) 3-D and (right) 2-D cross sec-
tion at z ¼ 0 mm.

Fig. 11 Fluorescence yield f reconstructed from simulated data using
Tikhonov regularization and FC1024 in (left) 3-D and (right) 2-D cross
section at z ¼ 0 mm.

Fig. 12 Fluorescence yield f reconstructed from simulated data using
Tikhonov regularization and FC256 in (left) 3-D and (right) 2-D cross
section at z ¼ 0 mm.

Fig. 13 Fluorescence yield f reconstructed from simulated data using
ADSP regularization and data compression in (left) 3-D and (right)
2-D cross section at z ¼ 0 mm.

Fig. 14 Fluorescence yield f reconstructed from simulated data using
ADSP regularization and S256 in (left) 3-D and (right) 2-D cross section
at z ¼ 0 mm.

Fig. 15 Fluorescence yield f reconstructed from simulated data using
ADSP regularization and FC256 (left) 3-D and (right) 2-D cross section
at z ¼ 0 mm.
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Fig. 16 Fluorophore concentration (nM) reconstructed from phantom
data using Tikhonov regularization and data compression in (left)
3-D and (right) 2-D cross section at z ¼ 0 mm.

Fig. 17 Fluorophore concentration (nM) reconstructed from phantom
data using Tikhonov regularization and S1024 in (left) 3-D and (right)
2-D cross section at z ¼ 0 mm.

Fig. 20 Fluorophore concentration (nM) reconstructed from phantom
data using Tikhonov regularization and FC256 in (left) 3-D and (right)
2-D cross section at z ¼ 0 mm.

Fig. 21 Fluorophore concentration (nM) reconstructed from phantom
data using ADSP regularization and data compression in (left) 3-D
and (right) 2-D cross section at z ¼ 0 mm.

Fig. 18 Fluorophore concentration (nM) reconstructed from phantom
data using Tikhonov regularization and S256 in (left) 3-D and (right)
2-D cross section at z ¼ 0 mm.

Fig. 19 Fluorophore concentration (nM) reconstructed from phantom
data using Tikhonov regularization and FC1024 in (left) 3-D and
(right) 2-D cross section at z ¼ 0 mm.

Fig. 22 Fluorophore concentration (nM) reconstructed from phantom
data using ADSP regularization and S256 in (left) 3-D and (right) 2-D
cross section at z ¼ 0 mm.

Fig. 23 Fluorophore concentration (nM) reconstructed from phantom
data using ADSP regularization and FC256 in (left) 3-D and (right)
2-D cross section at z ¼ 0 mm.
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Since the profiles across the fluorescent inclusions do not
differ significantly for the different types of compression,
particularly when ADSP regularization is used, only results
obtained without solution compression and high levels of sol-
ution compressions are shown. Therefore, reconstructions
obtained using ADSP are shown for data compression and sol-
ution compression with NΨ ¼ 256. Reconstructions obtained
using Tikhonov regularization and solution compression with
NΨ ¼ f1024;256g are displayed for comparison with the
case where only data compression is used, to show the effect
of the solution compression on the noise in the reconstructions.

The fluorescence distribution images reconstructed from
simulated data using zero-order Tikhonov regularization are
shown in Figs. 8–12. The reconstructions are displayed as 3-D
isosurfaces (70% of the maximum value) together with the
structural volumetric image. Additionally, a 2-D cross section of
the reconstructed volume is taken at z ¼ 0 mm and thresholded
at 70% of the maximum value. The thresholded images are over-
laid onto the structural image. Figures 13–15 show the images
reconstructed using ADSP regularization and thresholded at
50% of the maximum value. The threshold value is lower since
these images are not as contaminated with noise as the pre-
vious ones.

Similarly, the images reconstructed from phantom data using
zero-order Tikhonov regularization are shown in Figs. 16–20
and using ADSP regularization are shown in Figs. 21–23. Their
respective profile plots are shown in Figs. 24 and 25.

Figures 26 and 27 show the RE and CNR, respectively, of the
images reconstructed from simulated and phantom data using
Tikhonov and ADSP regularization for the different compres-
sion methods. Figure 28 shows the condition number of the
matrices in the data compression, compressed sparse, and fully
compressed format.

The reconstructions are faster when a fully compressed
matrix is used, and the sparse matrix method is faster than
using data compression only, with a ratio of 9.3∶3.9∶1.

4 Discussion and Conclusion
In fDOT, the data and solution spaces can be quite large, and
hence, the sensitivity matrix may be too large to store. Even
if this matrix can be stored, it may not be possible to directly

invert it, and thus, iterative methods must be employed.
However, these are computationally expensive and may take a
long time to converge. The method we proposed reduces the
dimensions of the sensitivity matrix allowing the storage and
direct inversion of the matrix and, for the sparse matrix case,
without requiring the construction of the full matrix. Both sparse
and fully compressed matrix representations allow storage of
large amounts of data generated from CCD-based fDOT sys-
tems, rather than keeping redundant data and solution
components.

The performance of our method was tested on simulated and
experimental phantom data. Our simulations show that our sol-
ution compression approach can help to suppress noise in the
reconstructed images (Figs. 8–12). This result is not surprising,
since wavelet transforms are a common and efficient technique
for denoising. The use of structural a priori information in the
image reconstruction greatly improved the quality of the images
(Figs. 6, 7, and 13–15). The images reconstructed using the dif-
ferent types of compression are qualitatively very similar.
However, the fluorescence yield was underestimated when
both data and solution compression were used with ADSP regu-
larization. The images reconstructed from experimental data are
similar (Figs. 16–20). The target locations and dimensions were
accurately estimated by all the methods when structural infor-
mation was incorporated into the image reconstruction
(Figs. 21–23). The profiles plots in Figs. 24 and 25 also
show that the use of structural information can greatly improve
the quality of the reconstructions.

Our results show that the sensitivity matrix can be effectively
compressed into a wavelet space by selecting the most signifi-
cant wavelet coefficients. The sensitivity matrix, which in our
studies has dimensions 576 × 262;144, can effectively be repre-
sented in a fully compressed form with dimension 576 × 256 or
sparse form with size 576 × 262;144 and 576 × 256 nonzero
elements.

Figure 26 shows that the RE decreases with increasing level
of compression, i.e., the quality of the reconstruction improves,
which is presumably a consequence of the decrease of the con-
dition number (Fig. 28). The fully compressed matrix with
NΨ ¼ 1024 has a higher condition number, and hence, one
should expect a higher RE. Nevertheless, the denoising

Fig. 24 Profile plots across the fluorescence images (z ¼ 0 mm and y ¼ 0 mm) reconstructed from phantom data using Tikhonov regularization and
DC, S256, FC256, and the true solution.
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characteristic of the wavelets seems to compensate for this
effect. Figure 27 shows that the CNR of the images recon-
structed from simulated data improves when solution compres-
sion is used, whereas the CNR of the images obtained from
phantom data decreases. Overall, the simulation results using
Tikhonov regularization with data and solution compression
are quite similar, but the lowest RE was achieved with the
FC256 method and the highest CNR using FC1024. For the phan-
tom study, the best results were obtained with the FC256. The
images reconstructed using ADSP and S256 had the lowest
RE and highest CNR.

The sparse matrix compression method has the advantage
that the problem becomes less ill-conditioned and it does not
require the explicit construction of the full matrix. The fully
compressed matrix method provides images that are visually
quite similar, but it underestimates the fluorescence yield more
than the latter when ADSP is included. This method requires the
construction of the full matrix and the wavelet coefficients kept
in the compressed form are all in the same jN locations in all the
rows of the matrix. These are not necessarily the most relevant
coefficients, which may explain the lower qualitative accuracy.
Nevertheless, this method allows a faster inversion process and,

Fig. 25 Profile plots across the fluorescence images (z ¼ 0 mm and y ¼ 0 mm) reconstructed from phantom data using ADSP regularization and DC,
S256, FC256, and the true solution.

Fig. 26 RE of images reconstructed from (left column) simulated data and (right column) phantom data using (top row) Tikhonov regularization and
(bottom row) ADSP regularization, for the different compression cases.
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when Tikhonov regularization is used, provides images with the
lowest RE and highest CNR.

The disadvantage of using ADSP regularization is that the
solution depends on the parameter λ value and the number of
iterations until convergence is reached, i.e., it depends on the
convergence criteria, and thus, there is still potential for
improvement. Nevertheless, the results obtained using data
and sparse matrix compression are quite satisfactory.

In this work, we map from the FEM mesh to a regular grid,
which is then transformed into the wavelet space, with no regard
to the irregular boundary of the object. In future work, we will

attempt to apply a similar compression directly on the FEM
mesh, so that the reconstruction is performed on the mesh
and to avoid error propagation resulting from these mappings.
Furthermore, the boundary of the object introduces sharp edges
in the images, which may lead to artifacts in the compressed
representation.

There is a large diversity of available wavelet filters, and
hence, we performed a simple qualitative comparison of the suit-
ability of some of the most popular ones (e.g., Haar, Daubechies,
Coiflet, Symmlets, Battle–Lemarié, etc.) for use in fDOT.
However, improved results can be expected if wavelet filters

Fig. 27 CNR of images reconstructed from (left column) simulated data and (right column) phantom data using (top row) Tikhonov regularization and
(bottom row) ADSP regularization, for the different compression cases.

Fig. 28 Condition number of the data compressed, sparse, and fully compressed matrices.
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more adequate for the fDOT problem are designed and the ideal
number of wavelet coefficients to keep is identified.

In summary, image reconstruction using data and solution
compression can greatly reduce the dimensions and ill-condi-
tioning of the problem, allowing fast and less noisy
reconstructions.
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