
Raman and coherent anti-Stokes
Raman scattering microscopy studies
of changes in lipid content and
composition in hormone-treated
breast and prostate cancer cells

Mariana C. Potcoava
Gregory L. Futia
Jessica Aughenbaugh
Isabel R. Schlaepfer
Emily A. Gibson



Raman and coherent anti-Stokes Raman scattering
microscopy studies of changes in lipid content and
composition in hormone-treated breast and prostate
cancer cells

Mariana C. Potcoava,a Gregory L. Futia,a Jessica Aughenbaugh,a Isabel R. Schlaepfer,b and Emily A. Gibsona,*
aUniversity of Colorado Denver, Department of Bioengineering, Anschutz Medical Campus, Mail Stop 8607, 12700 East 19th Avenue, Aurora,
Colorado 80045
bUniversity of Colorado Denver, Department of Pharmacology, Anschutz Medical Campus, Mail Stop 8303, 12801 East 17th Avenue, Aurora,
Colorado 80045

Abstract. Increasing interest in the role of lipids in cancer cell proliferation and resistance to drug therapies has
motivated the need to develop better tools for cellular lipid analysis. Quantification of lipids in cells is typically
done by destructive chromatography protocols that do not provide spatial information on lipid distribution and
prevent dynamic live cell studies. Methods that allow the analysis of lipid content in live cells are therefore of
great importance. Using micro-Raman spectroscopy and coherent anti-Stokes Raman scattering (CARS)
microscopy, we generated a lipid profile for breast (T47D, MDA-MB-231) and prostate (LNCaP, PC3) cancer
cells upon exposure to medroxyprogesterone acetate (MPA) and synthetic androgen R1881. Combining Raman
spectra with CARS imaging, we can study the process of hormone-mediated lipogenesis. Our results show that
hormone-treated cancer cells T47D and LNCaP have an increased number and size of intracellular lipid droplets
and higher degree of saturation than untreated cells. MDA-MB-231 and PC3 cancer cells showed no significant
changes upon treatment. Principal component analysis with linear discriminant analysis of the Raman spectra
was able to differentiate between cancer cells that were treated with MPA, R1881, and untreated. © The Authors.
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1 Introduction
Breast cancer is the most common malignancy and second lead-
ing cause of cancer deaths among women in the United States.1

Additionally, prostate cancer is the most commonly diagnosed
solid tumor in US men.2 Although the etiology of both diseases
is not fully understood, hormones have been found to play a
driving oncogenic role and prominent current therapeutic
options involve targeting the estrogen (ER)/progesterone (PR)
receptor and androgen receptor (AR) signaling axes, respec-
tively. Consequently, much of the research into breast and pros-
tate cancers has focused on genes that are involved in the
estrogen/progesterone and androgen signaling pathways.

Despite extensive research efforts, the precise molecular
events leading to the initiation and progression of these diseases
are still largely unknown. One of the most common striking
effects of hormones on the both human breast and prostate
cancer cell lines (T47D and LNCaP) is the synthesis and accu-
mulation of lipids. Most of the cancer cells exhibit high rates of
de novo lipid synthesis. The lipid synthesis plays an important
role in membrane formation to allow for cell proliferation, cell
cycle progression, and cytokinesis.3 Cancer cells require more

energy than normal cells, being dependent on aerobic glycolysis
and increased glutaminolysis.4

In addition to these mechanisms, cancer cells have very well
defined pathways to facilitate fat metabolism. Fatty acids are
obtained from endogenous de novo biosynthesis or from dietary
sources and can be used for energy storage in the form of cyto-
plasmatic lipid droplets (LDs). These LDs contain neutral lipids,
such as triacylglycerides (TAG) and steryl esters, and are sur-
rounded by a monolayer of phospholipids and proteins.5–7

The fatty acid biosynthesis requires the activation of enzymes
that lead to the production of a 16-carbon chain of saturated
fatty acid (16:0, palmitate),4,8,9 which serves as a precursor
for the generation of longer chain and unsaturated fatty acids
such as oleic acid (18∶1). Hormones that bind steroid receptors
in cancer cells (such as AR and PR) are known to induce the
lipid synthesis program inside the cells.10,11 Palmitic and
oleic acids are abundantly made by the cancer cells in response
to hormone treatment, and pharmacological inhibition of their
synthesis has been shown to decrease cancer cell viability
and resistance to chemotherapy agents.12 Thus, accumulation
of LDs inside cancer cells seems to be a hallmark of cancer
metabolism and growth that can be exploited for biomarker
discovery.

Lipid content is usually analyzed by using gas chromatogra-
phy/mass spectroscopy,12 but the cellular dynamics and the
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lipids distribution are lost during the homogenization process.
Moreover, these techniques cannot be used in vivo or for live
cell studies. With the development of the laser, Raman spectros-
copy became a powerful tool for characterization of
biological samples. The Raman spectrum provides a measure
of the vibrational mode density of molecules that can be trans-
lated to biochemical content. In the spontaneous Raman process,
Fig. 1(a), a narrow band laser illuminates the sample and a por-
tion of the incident photons is scattered by interactions with
molecular vibrations, resulting in a shift to higher (anti-
Stokes) or lower frequency (Stokes) photons. The signal inten-
sity is very weak because of the extremely low scattering cross
section (∼10−30 cm2∕molecule) The region between 300 and
1800 cm−1, called the fingerprint region, gives the vibrational
modes associated with DNA, proteins, and lipids. The CH2

stretch occurs around 2850 cm−1 and it is associated with
lipid content. Raman spectroscopy can distinguish between
healthy and unhealthy cells and cancerous and nonmalignant
cells.13,14 Thus, Raman spectroscopy is a powerful technique
for label-free identification and characterization with potential
for translation to biomedical and clinical applications.

In order to study the size distribution of intracellular LDs, we
employed coherent anti-Stokes Raman scattering (CARS)
microscopy. CARS is a nonlinear optical method that combines
chemical and physical specificity with high-resolution three-
dimensional imaging, without labeling of the biological sam-
ple.15 In the CARS process, two laser beams with different
wavelengths (816 nm—pump/probe beams and 1064 nm—
Stokes beam) coherently excite a particular vibrational mode,
Fig. 1(b). In this case, the mode excited is the CH2 stretch vibra-
tional mode at 2856 cm−1, predominately from lipids.
Therefore, the signal intensity of CARS is a measurement of
the lipid concentration and occurs for LDs and the cell mem-
brane. CARS has been applied in biomedical microscopy to
image live cells at video rates without extrinsic fluorescence
dye labeling.16–19 With the capability to detect lipid-rich struc-
tures, CARS microscopy has been employed in numerous stud-
ies to measure lipid content in tissues and cells to study various
disease models.20–23 The lipid amount, LD number and size, and

lipid composition were determined by ex vivo and in vivo CARS
imaging of mice intestine during dietary fat absorption.24

In this study, we investigated whether the synthetic female
hormone medroxyprogesterone acetate (MPA) and the synthetic
androgen R1881 affect the lipid content and composition in
breast (T47D, MDA-MB-231) and prostate (LNCaP, PC3)
cancer cells. We observed abundant lipid accumulation in hor-
mone responsive breast and prostate cancers (T47D and
LNCaP) treated with MPA or R1881, respectively. As controls,
we used two cell lines (MDA-MB-231 and PC3) that lack hor-
mone receptors and therefore do not accumulate much lipid in
response to treatment. We characterized lipid composition using
Raman spectroscopy. Analysis of the Raman spectra acquired
from LDs provided the degree of unsaturation and relative con-
centrations of different fatty acid species. We characterized the
increase in quantity and size of intracellular LDs in hormone
responsive cells using CARS microscopy and image analysis.
Differences in these metrics between hormone treated and
untreated cells are presented and discussed.

2 Methods

2.1 Cell Preparation

Breast and prostate cancer cells were grown directly on cover-
slips (MatTek 35 mm glass bottom dishes no. 1, poly-D-lysine
coated) until they were ∼85% confluent. They were sub-
sequently treated with MPA at 10 nM (T47D cells and
MDA-MB-231) or with R1881 hormone at 10 nM (LNCaP
and PC3) or the vehicle (ethanol) as a control. After 4 days
of treatment, the cells were fixed with 4% formaldehyde for
10 min and rinsed with phosphate buffered saline (PBS). For
each cell sample, 28 to 32 individual cells were measured
with 10 to 20 Raman spectra acquired per cell. Data were
acquired with a custom built confocal Raman microscope
equipped with an automated scanning stage to acquire point
Raman spectra at different sample positions. The cancer cells
were provided by the Tissue Culture Core Facility at the
University of Colorado, Denver.

2.2 Experimental Setup

2.2.1 Confocal Raman microscope

Vibrational Raman spectra were acquired with a custom confocal
Raman microscope. The system was built in back-scattering
geometry using an Olympus IX70 inverted research microscope.
The excitation source is a narrow linewidth, 785 nm diode laser
(Innovative Photonic Solutions, Monmouth Junction, New
Jersey) that delivers 45 mW maximum power onto the sample.
The excitation laser beam is first expanded and collimated
using a telescope (f1 ¼ 15 mm, f2 ¼ 175 mm), reflected off
of a dichroic mirror (Semrock, 785 nm RazorEdge) into the
microscope to fill the back aperture of a water immersion IR
objective (Olympus, Center Valley, Pennsylvania, UPlanSApo
60 ×W IR, NA ¼ 1.2). The objective focuses the beam onto
the samplewith a focal spot measured to be∼1 μm. The scattered
radiation is collected and collimated by the same objective lens
and passes back through the dichroic. To further reject the inelas-
tically scattered photons, the collimated beam is passed through a
long-pass filter (Semrock, Rochester, New York, 785 nm Razor
EdgeUltrastep) with a cutoff at 786.7 nm and a rejectionODof 6.
The signal beam is then focused with a lens, f ¼ 180 mm, onto
the center of a pinhole of diameter, d ¼ 150 μm, to achieve

Fig. 1 Principle of Raman scattering mechanisms of (a) spontaneous
Raman and (b) narrowband CARS shown by Jablonski diagram
(energy level diagram). Arrows represent photons (longer length
denotes higher photon energy), V is the vibrational level, ΩR is the
resonant vibrational frequency of a given vibrational mode. For
CARS, the laser source consists of two time-locked pulse trains of
different wavelengths (pump + stokes) such that the difference in pho-
ton energy corresponds to the vibrational mode to be imaged. The
anti-Stokes photon is detected indicating the strength of the signal
at a given vibrational mode.
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confocal confinement. The pinhole is imaged with a demagnify-
ing telescope (f1 ¼ 75 mm, f2 ¼ 25 mm) onto the entrance slit
of a Czerny-Turner style imaging spectrograph (Acton SP2300
series, Princeton Instruments, Trenton, New Jersey). A
600 lines∕mm grating spectrally disperses the signal onto the
sensor plane of a back-illuminated, cooled CDD camera (Pixis
100, Princeton Instruments, Trenton, New Jersey). A flipper mir-
ror is inserted before the long-pass filter in order to obtain a white
light image of the sample on a CMOS camera for alignment.
Multiple micro-Raman point measurements were acquired on
intracellular LDs for each sample using a motorized scanning
stage (ASI Inc. Eugene, Oregon,MS-2000) controlled by custom
softwarewritten in C. Each point Raman spectra was obtained by
averaging five acquisitions each with an integration time of 20 s.

2.2.2 CARS and two-photon microscope

CARS microscopy was performed on a laser scanning confocal
microscope (Olympus FV-1000) optimized for CARS and two-
photon autofluorescence (TPAF) imaging. In the CARS process,
two time-locked pulsed laser beams with different wavelengths
coherently excite a particular vibrational mode. The particular
vibrational mode excited is given by the difference in photon
energy. For imaging lipids, laser wavelengths of 816 and
1064 nm are used to excite the 2856 cm−1 vibrational mode cor-
responding to the CH2 stretch vibration. The laser source used in
our setup is a combined optical parametric oscillator pumped by
a doubled pulsed 1064 nm laser (PicoEmerald, Berlin, Germany,
HighQ Lasers) operating at an 80 MHz repetition rate with the
pulse durations of ∼7 ps for the 1064 nm output and ∼5 to 6 ps
for the output at 816 nm. The laser power at the sample is
∼20 mW for the 816 nm laser beam and ∼40 mW for the
1064 nm laser beam. Repeated scanning over the same region
of the sample shows no change in the image, indicating that laser
damage does not occur at these powers. The Olympus FV-1000
microscope is an inverted microscope with four external nondes-
canned photomultiplier detectors—two detectors in the epi-
direction to detect back-scattered light and the other two detec-
tors in the forward direction (detecting forward scattered light).
Both the TPAF and CARS signals were measured in the epi-
direction by collecting back-scattered photons through the
objective. A dichroic mirror separates the TPAF signal from
the CARS signal and these are detected by the two epi-detectors,
respectively. Using an emission filter (hq470/100 m-2p, Chroma
Technology, Bellows Falls, Vermont) in front of the first epi-
detector, an autofluorescence signal between 420 and 520 nm
is detected. The CARS signal is measured with the second
epi-detector with a 40-nm wide emission filter centered at
660 nm (hq660/40 m-2p, Chroma Technology). The objective
used is a 60× 1.2 NA water objective (UPLSAPO 60× IR W,
Olympus). The typical pixel dwell time is 10 μs and the
image pixel size is 0.103 μm × 0.103 μm for all the acquired
images. A Kalman average filter of five times was used during
image acquisitions to improve the signal-to-noise ratio of the
acquired images.

2.3 Raman Spectra Processing

Micro-Raman data were processed in MATLAB using custom
routines and the bioinformatics toolbox. The acquired Raman
spectra contain not only the desired signal from the sample,
but also a background signal containing cosmic rays and the
signals from the glass coverslip and PBS solution. In order

to remove the various background signals, we performed the fol-
lowing data processing steps: (1) cosmic rays removal,25 (2) data
smoothing using a 5-point moving average filter, (3) background
removal by subtracting an average of several point Raman spec-
tra acquired off of the cell sample (glass and PBS only), (4) base-
line correction using bioinformatics tool routines (msbackadj
regression method with linear interpolation), (5) data normali-
zation by the area under the curve, and (6) wavenumber calibra-
tion using polystyrene reference spectra.

2.4 Least-Squares Fitting

To fit the Raman experimental data, we assume that each LD
spectra can be described by a linear combination of the spectra
of pure components. In this case, we wish to solve for the coef-
ficients of the linear equation: d ¼ P

icisi where d is the exper-
imental LD spectrum, ci are coefficients, and si are the pure
substance spectra. To solve, we performed a least-squares fit of
the data using built-in functions in MATLAB (Mathworks Inc.,
Natick, Massachusetts) in the Curve Fitting toolbox, constraining
the coefficients to positive values. The standard deviation was cal-
culated by fitting each individual Raman spectra acquired for a
given sample, assuming a normal distribution in fit coefficients.
Because the Raman signal is linearly dependent on concentration,
the coefficients determine the relative concentrations of the pure
species in the LDs.

2.5 Principal Component Analysis

Dimensionality reduction methods such as principal component
analysis (PCA) and linear discriminant analysis (LDA) have been
widely applied for classification of Raman spectra.26 PCA itself is
not optimal for data classification, partly because PCA builds
biases that are uncorrelated. The class label does not exist in
the PCA definition. The eigenvectors of the spectra covariance
matrix are calculated and those that explain greater than 99%
of the data variability are selected for further processing.

The first principal component (PC1) accounts for the most
variance among the data. We find we can elucidate differences
between similar spectra if we graph different PCs against each
other. When we think of a better algorithm to find discriminant
directions, then a good example is the Fischer’s LDA.27 This
model is based on finding the line that best separates the classes.
The variance between groups is maximized and the variance
within a group is minimized according to Fisher’s criterion.
Therefore, a combination of PCA and LDA gives a better per-
formance. The first N features (eigenvectors) extracted from
PCA are projected onto a lower dimensional space using
LDA to form a spectral clustered representation. The overall
test error is evaluated and the precision, sensitivity, and speci-
ficity are consequently calculated.

2.6 Lipid Size Distribution Analysis

TPAF and CARS images were processed in ImageJ for enumer-
ation and size analysis of intracellular LDs. All images were
taken under similar acquisition conditions; therefore, we used
the same parameters for each image when performing image
thresholding, filtering, edge detection, and counting. Using
the three-dimensional object counter function in ImageJ [with
a height of 0 for two-dimensional (2-D) images] we generated
the statistics for LD counts and surface voxel number (size). We
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further imported the statistical data into MATLAB to generate
plots of LD size distribution.

3 Results and Discussion

3.1 Lipids Biomarkers by Micro-Raman
Spectroscopy

Mean Raman spectra, Fig. 2, were obtained for low-wavenum-
ber (850 to 1800 cm−1) and high-wavenumber (2750 to
3050 cm−1) regions for two breast cancer cell lines, T47D

and MDA-MB-231, treated with MPA or ethanol (vehicle,
V), and two prostate cancer cell lines, LNCaP and PC3, treated
with R1881 or ethanol (vehicle, V) for 4 days. For each sample,
28 to 32 individual cells were measured with 10 to 20 spectra
measured for each cell. Figure 2 shows that significant spectral
differences between treated (MPA and R1881) and untreated (V)
cells exist in both wavenumber ranges for the cell lines LNCaP
and T47D. Differences were minimal for the cell lines MDA-
MB-231 and PC3, which did not respond to the treatment.
The specific Raman peaks responsible for the differences
observed in the spectra are readily assigned to known lipid

Fig. 2 Average Raman spectra of treated versus vehicle (control) cancer cells. Panels (a) and (b) are the
low- and high-wavenumber regions, respectively, of spectra acquired from the breast cancer cell lines
T47D and MDA-MB-231. Panels (c) and (d) are low and high wavenumber spectra, respectively, of pros-
tate cancer cell lines LNCaP and PC3. Also displayed at the bottom of each plot are the difference spec-
tra (mean subtraction). The most pronounced changes between spectra of treated and control cell
samples occurred for T47D and LNCaP cell lines in the 1250 to 1300 cm−1 region and the peak at
1439 cm−1 (panels a and c) as well as the high-wavenumber region (panels b and d). Raman spectra
of treated and control samples for MDA-MB-231 and PC3 cell lines did not show these pronounced
differences indicating minimal response to hormone treatment.
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vibrational modes (Table 1), and are sensitive to differences in
lipid composition within cytoplasmic LDs. The analysis of these
spectral features is described below.

3.2 Lipid Composition Analysis

LDs in cells consist of a neutral lipid core (primarily TAGs and
cholesteryl esters) enclosed by a phospholipid membrane. TAGs
consist of a glycerol molecule joined by an ester bond to three
fatty acid molecules. The Raman signal from cellular LDs
occurs primarily from the chemical bonds, C─O, C─C,

C═C, and C─H.28–33 Unsaturated fatty acids contain more
C═C bonds (represented by the 1655 cm−1 band), while satu-
rated fatty acids contain more CH2 groups and therefore have
larger Raman peaks for those vibrational modes associated
with CH2.

In order to identify significant Raman spectral features
associated with intracellular lipid composition, we studied
various Raman peak intensity ratios corresponding to particu-
lar lipid vibrational modes (Table 2). The degree of unsatura-
tion and chain length of fatty acid methyl esters can be well
determined by analysis of Raman spectra.31 Intracellular
LDs have more complex spectra than pure fatty acids (FA);
however, we can use similar analysis to infer relative changes
in lipid composition in our cancer cell samples. The band
intensity at 1655 cm−1 varies linearly with the number of
C═C bonds and for pure FAs can determine a molar unsatu-
ration value. Alternatively, the degree of unsaturation of a
pure sample can be characterized by the ratio of C═C

bonds to CH2 groups. This ratio has been shown to have a
near-linear relationship with the mass unsaturation, the number
of C═C bonds per gram. The mass unsaturation can be calcu-
lated by the ratio of the 1655 cm−1 (C═C stretching band) and
1440 cm−1 [δðCH2Þ scissor], or 1294 cm−1 [δðCH2Þ twist].
Note that these ratios vary with both the degree of unsaturation
and chain length. In our measurements on pure fatty acid sam-
ples (Table 3), the mass unsaturation value of oleic acid (18∶1)
is half that of linoleic acid (18∶2) and is 88% that of palmito-
leic acid (16∶1), as expected.

The ratio of total unsaturated fatty acids (3015 cm−1, olefinic
═CH stretching) to the total amount of fatty acids (2851 cm−1,
CH2 symmetric stretch) termed TUFA/TFA34 has been reported
and proposed as a molecular marker for normal and tumor cells.
This ratio shows similar trends for pure fatty acid samples as an
indicator of the number of C═C to CH2 species. We observe that
this ratio decreases upon treatment for T47D-MPA and LNCaP-
R1881 cancer cells, indicating increased saturated lipid content.
Indeed, the ratio values for mass unsaturation and TUFA/TFA
all indicate that for the hormone responsive cancer cell lines
(T47D and LNCaP), there is an increase in saturated lipid con-
tent after treatment while the cell lines that are not hormone

Table 1 Band assignments of cancer cell lipids.28,29

Peak
number

Wavenumber
(cm−1) Assignment

1 1064 to 1125 νðC─CÞ mode

2 1263 δð═C─HÞ in-plane cis

3 1294 δðCH2Þ twisting

4 1440 δðCH2Þ scissor

5 1455 δðCH2Þ

6 1655 νðC═CÞ cis double bond stretching mode

7 1710–1775 νðC═OÞ ester carbonyl stretching mode

8 2851 CH2 symmetric stretching (lipids)

9 2873 CH3 symmetric stretching (lipids, proteins)

10 2920–2930 CH2 antisymmetric stretching (lipids)

11 2959 CH3 antisymmetric stretching (lipids,
proteins)

12 3015 Olefinic ═CH stretching (unsaturated lipids,
cholesterolesters)

Note: ν and δ indicate stretching and deformation vibrations,
respectively.

Table 2 Summary of Raman characteristics of intracellular lipid droplets.

Cell line-
hormone

1655∕1440
νðC═CÞ∕δðCH2Þsc

1655∕1294
νðC═CÞ∕δðCH2Þtw δðCH2Þsc∕νðC═OÞ

1740
νðC═OÞ (103 cm−1)

2930∕2959
CH2∕CH3
antisymm.

3015∕2851
═CH str∕CH2 sym.

Mass unsaturation sc. Mass unsaturation tw. Chain length Position

T47D-MPA 0.342� 0.009 0.614� 0.017 9.439� 0.181 1.7407� 0.0004 2.111� 0.011 0.069� 0.001

T47D-V 0.400� 0.015 0.837� 0.024 8.479� 0.254 1.7382� 0.0011 1.973� 0.012 0.123� 0.004

231-MPA 0.427� 0.018 1.137� 0.052 12.816� 0.879 1.7331� 0.0012 1.671� 0.013 0.187� 0.009

231-V 0.485� 0.016 1.161� 0.073 13.112� 0.82 1.731� 0.0017 1.685� 0.143 0.225� 0.009

LNCaP-R1881 0.437� 0.006 0.845� 0.013 12.321� 0.174 1.7426� 0.0003 1.998� 0.009 0.0914� 0.001

LNCaP-V 0.466� 0.009 0.902� 0.024 12.417� 0.337 1.7422� 0.0005 1.989� 0.013 0.136� 006

PC3-R1881 0.447� 0.014 0.966� 0.049 11.93� 0.762 1.7298� 0.0016 1.665� 0.016 0.263� 0.022

PC3-V 0.474� 0.019 1.047� 0.057 12.844� 1.189 1.7329� 0.0015 1.732� 0.025 0.231� 0.017
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responsive (MDA-MB-231 and PC3) show less relative change
in these ratio values upon treatment.

The ester carbonyl vibrational mode νðC═OÞ position has
been shown to determine the length of a fatty acid chain.31 A
shift to higher wavenumbers for longer chain length fatty
acids has been well characterized for fatty acid methyl esters.

In our results in cancer cells, the peak position was found to
vary mainly between different cell lines, but with minimal varia-
tion upon hormone treatment of the cell lines. Another measure
of chain length is the ratio of ½δðCH2Þscissor�∕νðC═OÞ and the
CH2∕CH3 ratio. Again, we observe more differences between
the different cell lines than changes associated with hormone
treatment.

3.2.1 Least-squares fitting

In order to further quantify the composition of the LDs, we per-
formed a least-squares fit utilizing the full experimental Raman
spectrum as opposed to ratios of values at particular bands. The
fit assumes the experimental spectra are a linear combination of
spectra of pure fatty acid components, cholesterol, and cyto-
plasm. A cytoplasm component is included in the fit because
some amount of cytoplasm signal will be recorded if the LD
size is smaller than the detection volume of the Raman micro-
scope. The Raman spectra of pure samples in the low- and high-
wavenumber regions are shown (Fig. 3).

We performed fits for low- and high-wavenumber regions for
hormone responsive cells (T47D and LNCaP) to compare
changes in intracellular lipid composition upon hormone treat-
ment. Results for low wavenumber fits are shown in Figs. 4(a)

Table 3 Summary of Raman characteristics of pure unsaturated fatty
acids.a

Pure
compound

1655∕1440
νðC═CÞ∕
δðCH2Þsc

1655∕1294
νðC═CÞ∕
δðCH2Þtw

2930∕2959
CH2∕CH3
ntisymm.

3015∕2851
═CH str∕CH2

sym.

Mass
unsaturation

sc.

Mass
unsaturation

tw.

OA 0.70727 1.1791 2.4712 0.10921

POA 0.80615 1.392 2.2313 0.12879

LOA 1.3996 2.3936 2.1685 0.26959

aAbbreviations: OA, oleic acid; POA, palmitoleic acid; and LOA, lino-
leic acid.

Fig. 3 Pure fatty acids, cholesterol, and measured cytoplasm Raman spectra, (a) and (b) are the low-
and high-wavenumber regions. The pure substances are, from the bottom to the top, oleic acid (Sigma,
>99.5% GC), palmitoleic acid (Sigma, >98.5%, GC liquid), linoleic acid (Sigma, >99%), palmitic acid
(Sigma, >99%), stearic acid (Sigma, >98.5%, Grade I, GC), and cholesterol (Sigma, >99%). The palmitic
and stearic acids were melted at 70°C.35
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and 4(b). The fit coefficients correspond to relative concentra-
tions of the given pure substance in the LDs. The low wavenum-
ber data resulted in fits with lower standard deviations. This is
likely due to the fact that the low wavenumber spectra have more
discrete peaks that can be better separated in the fitting routine.
We performed fits with and without the cytoplasm and choles-
terol spectra and did not observe any significant differences in
the relative concentrations of the fatty acids. When including
cholesterol spectra in our least squares fit, we observed a
trend of reduced cholesterol concentration in the LDs of
between 5% and 10%. We could not state accurately the relative
concentrations of cholesterol compared to fatty acids because
we were comparing Raman spectra in the solid state to estimate
the contribution in the LDs, which may have different density
values. It will take further investigation to determine if accurate
cholesterol concentrations can be obtained from Raman spectra
results.

As an additional metric, we looked at the relative concentra-
tions between the saturated fatty acids (palmitic and stearic) and
unsaturated fatty acids (oleic, palmitoleic, and linoleic). This
can be represented as a percent saturation (namely saturated
FA concentration divided by total FA concentration). For
T47D, the percent saturation was 63.2� 7.1 for vehicle (con-
trol) and 65.2� 8.3 for MPA treated. For the LNCaP cell
line, the percent saturation was 60.0� 5.8 for vehicle (control)
and 65.2� 8.3 for R1881 treated cells.

Results for T47D indicate an increase in the relative amount
of saturated fatty acids (palmitic and stearic) to unsaturated in
the LDs of MPA-treated cells. These results are in agreement
with our previous report,12 where treatment with MPA leads
to increased palmitate accumulation in triglycerides analyzed
by chromatography methods. We observed a similar trend for
the prostate cancer cell line LNCaP treated with R1881.

The decrease in cholesterol content with MPA or R1881
treatment was unexpected but may suggest that excess palmitic
and oleic acids are preferentially shunted to triglycerides instead
of cholesteryl esters, a concept already proposed in other models
of LD accumulation.36 The meaning of this change in choles-
terol distribution in cancer cells treated with hormones is cur-
rently unknown, but can open up interesting avenues for
further investigations into the role of cholesterol in cancer
malignancy.

3.3 Cancer Cell Line Classification

Multivariate statistical analysis is usually employed for Raman
spectra classification of different types of tissue samples for
diagnostic sensitivity and specificity assessment. We combined
PCA and LDA to obtain a performance of the cancer cells’ dis-
crimination as a function of various lipid signatures. PCA
reduces the dimensionality of the data set and builds up the var-
iables necessary for the LDA for a better explanation of the
differences among various classes. Fischer’s linear discriminant
algorithm is used for determining the parameters of LDA. The
Fischer algorithm uses a linear function to project the n-dimen-
sional data onto a line and to maximize the ratio of the variances
between each of the two classes to the variance within each
class.27 We performed PCA analysis for low and high wavenum-
bers to obtain the eigenvectors with the largest eigenvalues for
the greatest variations. We used half of the sample sets specified
in Table 4 as the actual group and the other half for the predicted
group. For the T47D breast cancer cell line, we chose the first 8

Fig. 4 Relative concentrations of fatty acids from least squares fit of experimental Ramanmeasurements
of lipid droplets (LDs) for T47D (a) and LNCaP (b) cell lines with (MPA and R1881) and without (vehicle)
hormone treatment. Standard deviations are shown. (Abbreviations: OA, oleic acid; POA, palmitoleic
acid; LOA, linoleic acid; Palm, palmitic acid; and Stear, stearic acid).

Table 4 Confusion matrix (a) for breast cancer cell lines using LDA
classifier in the 850 to 1800 cm−1 wavenumber region and (b) for
prostate cancer cell lines using LDA classifier in the 2750 to
3030 cm−1 wavenumber region.

(a) LDA classifier

Predicted group

T47D-MPA T47D-V Total

Actual group T47D-MPA 16 0 16

T47D-V 0 16 16

Total 16 16 32

(b) LDA classifier

Predicted group

LNCAP-R1881 LNCAP-V Total

Actual group LNCAP-R1881 15 0 15

LNCAP-V 1 10 11

Total 16 10 26
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Fig. 5 Autofluorescence and CARS images of treated versus vehicle control breast cancer cells. Panels
(a) T47D-MPA autofluorescence image, (b) T47D-MPA CARS image, (c) T47D-V autofluorescence
image, and (d) T47D-V CARS image, field-of-view ¼ 211 × 211 μm2 (scale bar 30 μm).

Fig. 6 Autofluorescence and CARS images of treated versus vehicle control prostate cancer cells.
Panels (a) LNCaP-R1881 autofluorescence image, (b) LNCaP-R1881 CARS image, (c) LNCaP-V auto-
fluorescence image, and (d) LNCaP-V CARS image, field-of-view ¼ 211 × 211 μm2 (scale bar 30 μm).

Fig. 7 The size distribution of LDs fromCARS-B images. The number of lipids was normalized to number
of total cells counted from two-photon images, T47D-MPA—# cells 339, T47D-V—# cells 597, LNCaP-
R1881—# cells 490, and LNCaP-V—# cells 492.
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to 10 eigenvectors and for the LNCaP prostate cancer cell line,
we used the first 8 to 12 eigenvectors. We imported the eigen-
vectors from PCA into the LDA classifier to form a cluster rep-
resentation of the components. For the T47D treated versus
untreated breast cancer cells, large differences in Raman spectra
were observed in the low-wavenumber region giving a classifier
accuracy, sensitivity, and specificity of 100% [Table 4(a)]. For
the high-wavenumber region, the sensitivity was 100% and
specificity 85.71%. The test error was 0.071. In the case of
LNCaP treated and untreated groups, the overall accuracy for
low-wavenumber region was 87.33% and the test error was
0.133. We calculated an accuracy of 96.88%, sensitivity of
100%, and specificity of 90.91% for the high-wavenumber
region [Table 4(b)]. Both classifiers have p < 0.05.

3.4 Label-Free Imaging of Lipid Dynamics Using
CARS and TPAF

We recorded simultaneous TPAF and CARS images for each of
the hormone responsive cancer cell lines, T47D (Fig. 5) and
LNCaP (Fig. 6), with and without hormone treatments. The
CARS signal in the epi-direction provides excellent contrast
for the intracellular LDs while autofluorescence allows individ-
ual cells to be identified. The CARS images were postprocessed
with custom routines developed in ImageJ to detect the centroid
of each LD and calculate the diameter. We noticed from these
images that T47D treated with MPA, Fig. 7(a), and LNCaP
treated with R1881, Fig. 7(b), contain an increased number
and size of LDs than the T47D and LNCaP treated with ethanol.
Although we only used 2-D images for our analysis, we were
able to well sample the intracellular LDs because cells were
grown in a single layer on the coverslip. With 2-D analysis,
we quantify the increase in number and size of LDs upon the
treatment for both cell lines. We conclude that changes in
LD size and quantity can be determined from CARS imaging
and that this provides a noninvasive means to study lipogenesis
in cancer cells.

4 Conclusions
CARS microscopy and micro-Raman spectroscopy were uti-
lized to investigate changes in intracellular lipids in breast
(T47D, MDA-MB-231) and prostate (LNCaP, PC3) cancer
cells upon exposure to the hormone MPA or the synthetic andro-
gen R1881, respectively. For the hormone responsive cell lines
T47D and LNCaP, differences were noted in the Raman spectral
regions at 830 to 1800 and 2800 to 3015 cm−1 due to hormone-
mediated lipogenesis. Hormone treatment of these cell lines
resulted in increases in the numbers and sizes of LDs and
increases in the relative amount of saturated lipids. The
increases in saturated lipid content were calculated by taking
the ratios of Raman peaks associated with C═C or CH2 vibra-
tional modes. In addition, least-squares fitting of the Raman
spectra of LDs using Raman spectra of pure fatty acids was per-
formed in order to determine the relative concentrations of dif-
ferent fatty acids within LDs. The changes in fatty acid content
and degree of saturation from Raman measurements are in
agreement with the previously reported measurements by chro-
matography methods.12 Importantly, we were able to capture the
differences in lipid composition inside the LDs using optical
spectroscopy, which can be applied nondestructively to study
live cells. PCA-LDA was performed on the Raman spectra of
individual cells showing an ability to differentiate between

hormone treated versus untreated T47D and LNCaP cancer
cells with high accuracy, sensitivity, and specificity.

The way hormones contribute to malignant growth is an area
of intensive research and progestins and androgens are known to
drive tumor growth development,37,38 partly through changes in
lipid metabolism. However, at the molecular level, there is a lack
of studies connecting the fat composition of LDs and the aggres-
siveness of the hormone-dependent cancer growth. Therefore,
our Raman-based analysis is important since hormone recep-
tor-positive cancers are most commonly diagnosed in the clinic
and their malignant growth is associated with high saturated fat
intake,39 but there is no data at the molecular level that associates
tumor growth and fatty acid composition. Further studies will
also allow us to investigate the role of cholesterol content in
breast and prostate tumors. Cholesterol is a precursor to hor-
mones such as progestins and androgens and allows cells to
make their own hormones and perpetuate their hormone-depen-
dent growth.40 A recent study using stimulated Raman scattering
imaging of human tissue biopsy samples found an increase in
cholesteryl esters for higher grade and malignant prostate
cancer.41 Therefore, Raman-based methods can play an impor-
tant role in determining how hormones and cholesterol content
affect the growth potential of cancers. Noninvasive Raman tech-
niques also hold promise to assist in clinical monitoring and
research studies of breast and prostate cancer.
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