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Abstract. We evaluated the potential of the Cramér—Rao lower bound (CRLB) to serve as a design metric for
diffuse optical imaging systems. The CRLB defines the best achievable precision of any estimator for a given
data model; it is often used in the statistical signal processing community for feasibility studies and system
design. Computing the CRLB requires inverting the Fisher information matrix (FIM), however, which is usually
ill-conditioned (and often underdetermined) in the case of diffuse optical tomography (DOT). We regularized the
FIM by assuming that the inhomogeneity to be imaged was a point target and assessed the ability of point-target
CRLBs to predict system performance in a typical DOT setting in silico. Our reconstructions, obtained with a
common iterative algebraic technique, revealed that these bounds are not good predictors of imaging perfor-
mance across different system configurations, even in a relative sense. This study demonstrates that agreement
between the trends predicted by the CRLBs and imaging performance obtained with reconstruction algorithms
that rely on a different regularization approach cannot be assumed a priori. Moreover, it underscores the impor-
tance of taking into account the intended regularization method when attempting to optimize source—detector
configurations. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this
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1 Introduction

A persistent topic in diffuse optical imaging has been how best
to design source and detector configurations. Although it is
always possible to simulate data with different source-detector
configurations and evaluate the image reconstruction results
according to various metrics (e.g., bias and variance,! mutual
information®), doing so can be very time- and resource-inten-
sive. For these reasons, there has been enduring interest in meth-
ods that allow one to optimize the design of these configurations
without having to repeatedly solve the inverse problem. One
such approach that has proven popular is singular value analysis
(SVA), which involves computing the singular value spectrum
of the Jacobian (sensitivity matrix of the forward problem) asso-
ciated with a particular system configuration and counting
the number of singular values above a given threshold.*”
While SVA is conceptually straightforward, it does not make
use of the information contained in the singular vectors of
the Jacobian, which can lead to errors in performance predic-
tions.!*!! It also does not exploit knowledge of the covariance
of the measurements. In part to address these shortcomings,
some have proposed using the Cramér-Rao lower bound
(CRLB) as an alternative design guide.'>™'* The CRLB defines
the best achievable precision of any estimator for a given data
model and has long been used in the statistical signal processing
community—especially in the radar and sonar signal processing
communities—to perform feasibility studies and system design.
Like SVA, computing the CRLB does not require solving
the inverse problem and should therefore be independent of
the method selected to do this in practice. But unlike SVA,

*Address all correspondence to: Vivian Pera, E-mail: pera.v@husky.neu.edu
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which can give only a relative indication of system performance
overall, the CRLB can in principle yield numerical values of
precision as a function of parameters of interest (e.g., inhomo-
geneity depth). Although other metrics have been recently pro-
posed to optimize the design of data collection strategies for
diffuse optical (DOT)" and fluorescence-mediated tomography
(FMT),'® to our knowledge only the CRLB can potentially
provide the significant advantage of quantitative estimates of
performance. We note that despite yielding a lower bound on
theoretically available precision, the CRLB does not guarantee
that any particular image reconstruction algorithm will be able
to reach or even approach the bound. However, in many settings,
including the diffuse optical imaging work cited above,
differences in the CRLB are used as a surrogate measure of
potential reconstruction accuracy. Thus, to be useful for system
design, the CRLB should predict performance trends of reason-
able reconstruction algorithms as imaging configurations vary.

Obtaining the CRLB requires inverting the Fisher informa-
tion matrix (FIM), however, which is usually ill-conditioned
(and often underdetermined) in the case of DOT and FMT.
Here, we consider the impact of regularizing the FIM (so that
it may be inverted) on the ability of so-computed CRLBs to pre-
dict system performance in a typical DOT setting. To the best of
our knowledge, this issue has not been previously addressed
in the diffuse optical imaging community. As we discuss in
Sec. 2.1, one way of regularizing the FIM is to assume that
the inhomogeneity to be imaged is a point target—an approach
that initially appears reasonable since this is often a first step in
the analysis of more complex problems (i.e., analogous to using
the point spread function (PSF) to characterize instrument per-
formance in optical microscopy). In what follows, we probe the
often unexamined assumption that the CRLBs computed for
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a point target are good predictors of imaging performance
obtained with traditional image reconstruction algorithms. We
illustrate that the utility of the CRLB for ill-posed problems
such as DOT is limited, even under ideal conditions, and that
a proper interpretation of the results requires taking into account
the methods used to regularize the FIM and the inverse problem.

This article is organized as follows: in Sec. 2, we discuss the
computation of the CRLB and the challenge that an ill-condi-
tioned FIM matrix presents. We review two types of strategies
to cope with this challenge and further explore the point-target
approach with simulations. The results of our investigation are
presented in Sec. 3, and we conclude in Sec. 4 with a discussion
of the implications for the utility of the CRLB in diffuse optical
imaging system design and the importance of considering the
regularization method.

2 Methods
2.1 CRLB for the Linearized DOT Problem: General
Target

The CRLB considered here defines the lowest variance that any
unbiased estimator can achieve assuming a given probabilistic
data model.'” The basic idea is that the curvature of the log-like-
lihood function of the data model determines the accuracy with
which a particular unknown (e.g., position of an inhomogeneity)
may be estimated. Log-likelihood functions that are sharply
peaked about the unknown quantity permit a more accurate esti-
mate of its value, while the reverse is true for log-likelihood
functions that are rather flat in the neighborhood of the
unknown. The CRLB provides a measure of this curvature.
It is computed for a vector of unknowns by first calculating
the FIM, which consists of second derivatives (and first deriva-
tive cross products) of the log-likelihood function with respect
to each unknown, and then taking its inverse.

Consider the linearized DOT inverse problem for the case of
an absorbing inhomogeneity with differential absorbance distri-
bution du, and data model

y = b+ Jou, +n, @

where y denotes a vector of independent source-detector mea-
surements, b contains the known background values in the
absence of the inhomogeneity, J is the Jacobian or sensitivity
matrix, and n represents the additive Poisson noise associated
with each measurement. (Vector and matrix quantities appear
here in bold font.) The CRLB for estimating the values of
the differential absorbance over the imaging domain (i.e., the
elements of the vector dy,) is given by

C(bp,) = (JTR7'I), @)

where [+]T denotes the transpose, and R is a diagonal covariance
matrix containing the mean of the measurements on its diagonal
(.., [R];; = [b + J&p,],). This result is obtained by a simple
modification of the derivation in Ref. 18 to account for a non-
zero background signal. The matrix J'R™!]J is the FIM and is at
best ill-conditioned (if not low rank) in the case of diffuse optical
imaging. An ill-conditioned FIM signifies in this case that our
data alone do not contain sufficient information to extract all of
the unknown values that we desire from it in a numerically stable
manner.
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Two approaches for overcoming this roadblock to comput-
ing the CRLB have been adopted in the literature. The first
regularizes the FIM by adding to it a regularization matrix
as is common in, for example, Tikhonov regularization.12
However, because this regularized FIM has not been derived
directly from the data model, it is technically no longer a
CRLB. One might assume that it is possible to limit the amount
of regularization applied so that the bounds computed from this
“perturbed” FIM are in reasonable agreement with the true
CRLBs. This is an assumption that to our knowledge has not
been investigated in the context of ill-posed problems like dif-
fuse optical imaging. We note that in some cases, it might be
possible to associate a regularized FIM with an appropriate
data model. For example, if a Bayesian perspective is adopted
with a white noise Gaussian distribution serving as the prior
for du,, then the resulting FIM will have the same structure
as a Tikhonov-regularized matrix. The inverse of this matrix
is known as the Bayesian CRLB." Such a data model, however,
is not always useful; for example, it is known to produce overly
smooth solutions at the expense of image resolution. Moreover,
in the scenarios reported here, we found it impossible to choose
a physically meaningful regularization parameter for this
model that did not dominate the resulting CRLB estimate,
thus making the latter essentially a reflection of assumed prior
knowledge.

The second approach regularizes the FIM by reparameteriz-
ing the problem, which results in a reduction of the number
of unknowns to be estimated from the data. Approaches that
consider the inhomogeneity to be a point target'>?’ or a target
with a constant Sy, and an easily parameterized geometric
form (e.g., a sphere)' fall into this category. When such an
assumption is appropriate and this information is used to
solve the inverse problem, a maximum likelihood (ML)
algorithm can usually attain the CRLBs, resulting in perfor-
mance that is typically at least an order of magnitude better
than what can be achieved with standard reconstruction
approaches.?! Unfortunately, data models with a reduced num-
ber of unknowns can usually only model a limited subset of
scenarios of interest.

It is certainly the case, however, that the resolution of an opti-
cal imaging system is often characterized by its ability to image
a point target.” Moreover, using a point target as a proxy for a
more complex object is ubiquitous in science. In what follows,
we investigate whether CRLBs computed for the case of
a point target can be used to predict performance trends when
standard DOT reconstruction algorithms (that do not make use
of the point-target assumption) are used to solve the inverse
problem. Without making use of all of the information available
(i.e., that the inhomogeneity is a point target), it is unlikely
that any unbiased algorithm will approach the CRLBs, so the
resulting numerical estimates of precision will probably not be
meaningful per se. But we consider here to what degree they
might be useful as relative measures of performance amongst
different system configurations as a function of parameters of
interest (e.g., inhomogeneity location, dy,,, etc.).

2.2 CRLB for the Linearized DOT Problem: Point
Target

To compute the CRLB for a point target, we re-write dp, as the
product of a scalar du,, and a unit vector e;, which contains zeros
everywhere except for the i’th component which is equal to 1.
This component encodes the location of the point target in the
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imaging domain. Our vector of unknowns is ¢ = [r, 8, ou,],
where (r,6) denotes the position of the point target and Sy,
its differential absorbance. We use polar coordinates for position
here, since we consider a circular imaging geometry in Sec. 2.3
[see Fig. 1(a)]. The resulting CRLB given the Poisson noise
model specified by Eq. (1) is

C(dy)
SulJTRJ,6p, SpTITR ' Jyop, el J'R7J,6p, 7"
= | Opl IR Jobp, SulIGR ' Jobpu, e[ R Jobp, | .
e/JTR'J.op, elJ'R'Jou, elJ'R"!Je;
(3)

where ¢; denotes the vector of unknowns associated with a point
target at location specified by e;, J, = 0J/dr, and J, = 0J/00.
The diagonal components of the matrix C(¢y) represent
the lower bounds on the variance of the target’s radial
position, angle, and &y, estimates (i.e., &%(r) > [C(d;)];;>
a*(0) 2 [C(di)]ro. and 6% (8py) 2 [C(d)]33)-

2.3 Point-target DOT Simulations

We considered a continuous-wave DOT system with a transmis-
sive circular imaging geometry, although a similar investigation
could be carried out for other imaging geometries and modalities
(e.g., FMT) with minor modifications to Eq. (3). As shown in
Fig. 1(a), we modeled four source-detector configurations that
rotate about a 25-mm diameter sample obtaining measurements

(a) ‘ d ¢
) 35 deg @345 deg
S } S j S @j S

det3 det9_45
3 detectors 9 detectors
[-35,0,35] [-45,-35,-25,-10,0,
10,25,35,45]
— det3 -- det9_45

Standard deviation r (mm)

r (mm)
Increasing depth—>

Standard deviation du, (mm)

every 5 deg. This resulted in a total of 3 X 72 = 216 measure-
ments for the sparsest configuration (det3), and 37 X 72 = 2664
for the densest (det37). The source, detectors, and absorbing
inhomogeneity (point target) were assumed to lie in the same
plane. We employed the diffusion approximation to the
Boltzmann transport equation for an infinite homogeneous
medium to compute J, assuming background optical properties
of pu,=0.02mm™" and /=15 mm™' typical of those
encountered in small animal imaging.”® The assumption of an
infinite homogeneous medium allowed us to rely on analytical
forms for the Green’s functions that comprise J, which permit-
ted us to side-step the potential complication of computing
derivatives of J numerically in Eq. (3).
The (noise-free) forward data was modeled as

Yo(rai-1y) = G (rg. xy) + Su.Je;, )

where y, is an M X 1 vector of measurements for each source-
detector pair, with ry and r, representing the locations of
the i’th detector and source, respectively; M is the total
number of measurements; f is a scale factor that determines
the signal-to-noise ratio (SNR); and G¢¥ (rg;, r,) is an M x 1
vector of continuous-wave Green’s functions for a three-
dimensional infinite homogeneous scattering medium. The
product Je; forms an M X 1 vector with each component
equal to —BG Y (ry,r)GV(r,r,)Av, where r represents
the location of the point target (encoded by e;), and Av is
the volume of a voxel in the reconstruction grid. The value
of Su, was set to 2 mm~' to produce sufficient contrast so

d (every 5 deg)

5 deg projection

det9_90 det37 angles
9 detectors 37 detectors
[-90,-55,-35,-20,0, [-90:5:90]
20,35,55,90]
--= det9 90 e det37
0.035
© ]
0.03 1 e
0.0251 o
s
K4
4
0.02 1 s

0.0157 /f"\ e
s e

r(mm)
Increasing depth—>

Fig. 1 (a) Schematic of four source-detector configurations considered; configurations rotate about
the sample obtaining measurements every 5 deg. Positions of source and detectors are denoted by
“s” and “d,” respectively; angular positions of detectors are listed in brackets. Point-target Cramér—
Rao lower bounds (CRLBs) for (b) target radial position and (c) du, as a function of target depth.
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that the target could be easily reconstructed. Although this is
100x the background value, we have explicitly defined our
data model as linear (after background subtraction) in
Eq. (4), so the use of the linear image reconstruction algorithm
described in the following paragraph is appropriate. We scaled
the maximum value obtained from each source-detector con-
figuration when no absorbing inhomogeneity was present to
10* counts, which could be considered the equivalent of adjust-
ing the source power so as to avoid saturating any detector in a
particular configuration. We then added Poisson noise to the
modeled data, yielding measurements with 1% to 4% noise.
Fifty realizations of measurements for each configuration
for an embedded point target at various depths (r =1, 4, 7,
and 10 mm) were generated. We used a grid size of 0.25-
mm pixels to compute the forward data, which effectively
placed a lower limit on the size of the point target, but
all two-dimensional reconstructions were performed with a
coarser Jacobian (0.5-mm pixels) to avoid inverse crimes.

To perform the image reconstructions, we used a common
algebraic iterative technique, the randomized Kaczmarz method
(also known as r-ART) implemented in Ref. 24. We employed
a relaxation parameter of 1.5 along with a non-negativity con-
straint and used 50 iterations per reconstruction. These param-
eters were selected to yield stable results of acceptable quality
for all source-detector configurations.

3 Results

3.1 Cramér—Rao Lower Bounds

The CRLBs computed for a point target as a function of target
radial position or depth are displayed in Figs. 1(b) and 1(c).
Figure 1(b) illustrates the CRLBs for target depth, while
Fig. 1(c) displays the CRLBs for target u,. The bounds for tar-
get angle as a function of target radial position are not shown;
they are essentially uniform for each detector configuration,
except in the immediate vicinity of r = 0 where angle is not
uniquely defined. (Because we collect measurements over
a full 360 deg, the CRLBs show no dependency on target
angle, so results as a function of target angle are also not
shown for brevity.) Since the bounds are reported as standard
deviations, lower values indicate better (i.e., more accurate)

Deep det3

0.02
0.015
0.01
0.005
0

Shallow

0.03
0.02
0.01

det9_45

-
K

performance. We see that as expected, all detector configura-
tions perform better with a shallow target than a more deeply
embedded one. From these plots, with respect to estimating
target depth, we expect the nine-detector configuration that goes
out to +45 deg (det9_45) to perform about as well as the 37-
detector configuration (det37), which has more than four times
the number of measurements. Surprisingly, the other nine-detec-
tor configuration (det9_90) is similar in performance to the
three-detector configuration (det3). With respect to estimating
target du,, performance as a function of depth is rather stable,
although the configurations with detectors at £90 deg (det9_90
and det37) seem to suffer when the target is deeper. We note that
the trends observed in these plots are in part a direct result of the
way that we have chosen to limit the maximum SNR for each
configuration, as detectors closer to 0 deg in configurations with
elements at 90 deg, see SNRs that are lower than than what
they measure in the +35 or £45 deg configurations. If we did
not equalize the the maximum SNR across configurations, those
with detectors at 90 deg would have the advantage, since
being closer to the source, these detectors would measure higher
SNRs. In general, however, given our manner of capping SNR
per configuration, those detector arrangements without elements
that go out to 90 degrees appear to have a distinct performance
advantage.

3.2 Reconstructions

Example reconstructions with the randomized Kaczmarz method
(which does not assume a point target) from the four detector
configurations for a deep (r = 4 mm) and shallow (r = 10 mm)
target are displayed in Fig. 2. In Tables 1 and 2, we summarize the
reconstruction results of the 50 realizations per configuration
using a number of metrics. (Although we have chosen to
focus on the results for » = 4 mm and » = 10 mm as exemplars
of a deep and shallow target, respectively, similar conclusions can
be drawn from the data at » = 1 mm and » = 7 mm, which is not
shown for brevity.) In Table 1, we compare the standard deviation
of the radial position estimate (columns 4 and 5), defined as the
location of the peak value of each reconstruction, with the CRLBs
(columns 2 and 3) for the deep and shallow targets. We display
normalized values in columns 3 and 4 to make comparing relative
performance easier. We also include the bias and the average

det9_90 det37

0.08
0.03

0.06
0.02 0.04
0.01 0.02
0 0
0.08
0.06 0.1
0.04

0.05
0.02
0 0

Fig. 2 Sample reconstructions for deep target (r = 4 mm, upper row) and shallow target (r = 10 mm,

bottom row).
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Table 1 Target radial position estimate: Cramér—Rao lower bound (CRLB) and reconstruction results. Sigma (¢) denotes the standard deviation.
Results for deep target (r = 4 mm) are in upper half; shallow target (r = 10 mm) in lower half. Normalized o(r) results (columns 3 and 4) were
obtained from o(r) (columns 2 and 5) by dividing by the maximum & (r) value (deep and shallow targets considered separately). Bias is the average
reconstruction position estimate minus the true value; the FWHM denotes the average area enclosed by the half-max contour.

CRLB Reconstruction
Deep/Shallow o(r) (mm) Normalized (r) Normalized o(r) o(r) (mm) Bias (mm) FWHM (mm?)
det3 0.080 1.00 1.00 0.21 1.39 16.68
det9_45 0.050 0.63 0.57 0.12 0.97 .00
det9_90 0.080 1.00 0.97 0.20 -0.07 9.73
det37 0.042 0.53 0.00 0.00 0.00 4.02
det3 0.030 1.00 1.00 0.32 1.87 8.77
det9_45 0.019 0.64 0.00 0.00 0.50 6.63
det9 90 0.026 0.90 0.22 0.07 0.49 479
det37 0.014 0.47 0.55 0.18 0.43 2.93

full-width half-maximum (FWHM) area of the reconstructed
spots. We show similar metrics in Table 2 for the du, estimate,
which is defined as the peak value of each reconstruction. In
Table 2, we notice that the precision estimates for du, computed
from the reconstructions are lower than the CRLBs. This is not an
inconsistency, since we see from column 6 that the §u, estimates
are significantly biased, so in this case, we would not expect
lower bounds computed for unbiased estimates to apply. Overall,
we see a lack of correspondence between columns 3 and 4 in both
tables, which represent the normalized predicted (from the
CRLBs) and computed (from the reconstructions) values for the
precision of target radial position and dy,, estimates. We also note
that no single measure seems to be able to capture imaging
performance for a point target. For example, although the recon-
structed position estimate for the shallow target with det37
has the smallest bias, the standard deviation for this detector

configuration is larger than that of det9_45, which has a larger
bias but a standard deviation of 0.

Within the three-detector configuration (det3), we did find
a correspondence between the average FWHM area and the
CRLB for the precision of target radial position as a function
of depth, as shown in Fig. 3(a). Such a relationship did not
hold up, however, when comparing different detector configu-
rations for the same target depths, as seen in Table 1, nor was it
as strong in other source-detector configurations [e.g., det37 in
Fig. 3(b)].

4 Discussion and Conclusions

In this work, we evaluated the potential of the CRLB to serve as
a design metric for diffuse optical imaging systems. In the case
of DOT and FMT, computing the CRLB requires inverting

Table 2 Target 6u, estimate: CRLB and reconstruction results. Sigma (¢) denotes the standard deviation. Results for deep target (r = 4 mm) are
in upper half; shallow target (r = 10 mm) in lower half. Normalized o(5u,) results (columns 3 and 4) were obtained from o(5u,) (columns 2 and 5) by
dividing by the maximum o(8u,) value (deep and shallow targets considered separately). Bias is the average reconstruction u, estimate minus

the true value.

CRLB Reconstruction
Deep/Shallow o(pg) (mm1) Normalized o(5u,) Normalized ¢(5u,) o(pg) (mm1) Bias (mm~')
det3 0.015 0.51 0.66 0.0011 -1.98
det9_45 0.010 0.33 0.88 0.0014 -1.96
det9_90 0.030 1.00 0.83 0.0014 -1.96
det37 0.015 0.51 1.00 0.0016 -1.92
det3 0.016 1.00 0.54 0.0041 -1.96
det9_45 0.010 0.64 0.36 0.0027 -1.94
det9_90 0.015 0.95 0.66 0.0049 -1.91
det37 0.008 0.49 1.00 0.0075 -1.84

Journal of Biomedical Optics

025002-5

February 2014 « Vol. 19(2)



Pera, Brooks, and Niedre: On the use of the Cramér—Rao lower bound for diffuse optical imaging system design

11 (@)
=]
()]
S 08
T
>
B 06
N o
=
€ 04
o
=
0.2
o n n n n
12 10 8 6 4 2
r(mm)

Increasing depth —>

1} (b) a
0.8
0.6

0.4

Normalized value

0.2

o n n n L
12 10 8 6 4 2 0
r (mm)
Increasing depth—>

Fig. 3 Comparison of normalized FWHM area from reconstructions to normalized CRLB for target depth
for (a) three-detector configuration and (b) 37-detector configuration. The FWHM areas (symbols) and
CRLB (curve) were each normalized separately by dividing by their maximum value. Standard errors for
the FWHM values are similar in magnitude to the symbol size and are therefore not shown.

a matrix that is usually ill-conditioned (if not rank deficient), so
a decision about how to regularize the problem must be made
before the bound can be determined. Our choice to regularize by
employing a point-target model was motivated by the fact that
imaging systems are frequently characterized by their ability to
resolve point targets (e.g., the imaging PSF), and the approach
had been previously reported in the literature.'* We reiterate that
we did not expect to obtain imaging performance that quantita-
tively approached the CRLBs, since we relied on a common
inversion algorithm (randomized Kaczmarz method) that did
not make use of the point-target assumption. Rather, we tested
the hypothesis that point-target CRLBs could be used to predict
relative instrument performance. Although we did see some rel-
ative agreement between the FWHM values and the CRLB for
radial position as a function of target depth, overall our results
indicate that point-target CRLBs are not good predictors of im-
aging performance across different system configurations when
standard reconstruction algorithms are employed. This is likely
because the impact of regularization across the different system
configurations varies depending on the regularization method,
e.g., point-target assumption or randomized Kaczmarz method.
The agreement seen within a detector configuration suggests
that both of these methods share a similar sensitivity to target
depth. Although an examination of the effects of the different
regularization schemes on the CRLB might shed further light
on our results, this represents a substantial analysis in its
own right and is beyond the scope of the present paper. We
point out that because our investigation was conducted in silico,
there were no unmodeled sources of error present aside from the
coarser Jacobian used in the reconstructions. That the point-tar-
get CRLBs did not prove useful in this situation calls into ques-
tion their predictive value under more realistic circumstances
(e.g., when the inhomogeneity is not a point target).

The point-target CRLBs as computed here are for unbiased
estimators, and since one of the consequences of regularization
is the introduction of bias in order to stabilize the solution of an
ill-posed inverse problem, one might wonder why these bounds
would apply to the case of diffuse optical imaging in the first
place. Although some have argued that DOT reconstructions
are unbiased in the limit of sufficient iterations and high
SNR'? or a large number of source—detector pairs,14 this is cer-
tainly a valid objection in our case, as our reconstructions do
exhibit notable bias in the Sy, estimate. But incorporating
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bias into the CRLB -calculation often requires information
that in practice is not usually available, so this does not appear
to be a useful alternative.

It is also the case that the CRLB represents the best achiev-
able performance for a given data model and therefore not nec-
essarily the expected performance with a particular algorithm.
To check whether our results would hold up using a different
reconstruction algorithm, we modeled and reconstructed the
same data using NIRFAST® (results not shown), an FEM-
based package for modeling light transport in tissue that uses
a modified Tikhonov regularization scheme to perform image
reconstruction. This also did not produce trends that agreed
with the point-target CRLBs. Since we only considered two
image reconstruction algorithms here, our results do not pre-
clude the possibility of obtaining agreement with the CRLBs
using a different algorithm and/or imaging geometry or modal-
ity, as others have reported.'>'* But they do establish that such
agreement cannot be assumed a priori when the method of regu-
larizing the inverse solution (e.g., iterative algebraic or modified
Tikhonov approaches) does not match the one used to compute
the CRLBs (e.g., point-target assumption). From a Bayesian
perspective, this outcome is not surprising, since according to
this view, a different way of regularizing the inverse solution
corresponds to a different data model, and CRLBs are specific
to the data model assumed. Of course, a CRLB that applies only
to estimators that employ a particular regularization strategy is
certainly less powerful and useful than one that applies to the
class of all unbiased estimators. Moreover, it is not clear how
the regularizing effect of iterative techniques like the random-
ized Kaczmarz method or modified Tikhonov approach (with
a regularization parameter that depends on the iteration number)
could be incorporated into the CRLB calculation. Progress in
this area could expand the range of reconstruction algorithms
for which appropriate CRLBs might be determined.

Despite these issues, the CRLB can be successfully
employed in diffuse optical imaging if the regularization of
the FIM and inverse problem are properly considered. For exam-
ple, in Ref. 21, we used point-target CRLBs to characterize the
performance of a ML estimator designed to localize a single flu-
orescently-labeled cell in the field of view—effectively a point
target given the reconstruction grid. For this application, point-
target CRLBs can be employed to optimize the source-detector
configuration, since the ML estimator used in the reconstruction
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relies on the point-target assumption. In Ref. 26, regularization
was achieved by reparameterizing the problem using a spherical
harmonic basis, which reduced the number of unknowns to be
estimated from the data to an object center position and various
shape parameters. The CRLB for the shape parameters was sub-
sequently computed and used to provide confidence limits for
the shape estimates. The important caveat in both of these cases
is that the FIM was regularized by an assumption appropriate to
the problem wherein the CRLB was to be employed.

The larger question that our study raises is whether it is pos-
sible, even in principle, to optimize the design of an imaging
system independently of the regularization scheme when regu-
larization is an integral part of image formation. If our goal had
been to image a point target using a reconstruction algorithm
that made use of this assumption (e.g., an ML approach, as
in Ref. 21, capable of achieving the CRLBs), the det9_45 con-
figuration would offer us performance as good as or better
than any of the other source-detector configurations considered
here [see Figs. 1(b) and 1(c)]. But, if we rely on more common
image reconstruction algorithms like the randomized Kaczmarz
method or the modified Tikhonov approach, then our simula-
tions demonstrate that in this case, the det37 configuration
delivers markedly improved performance (see Fig. 2 and
Tables 1 and 2). Given the necessity of regularization in diffuse
optical imaging and the strong impact it can have on results, our
study argues for the importance of taking this aspect of image
formation into consideration when attempting to optimize
source—detector configurations.
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