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Abstract. Photoacoustic section imaging reveals optically absorbing structures within a thin slice of an object. It
requires measuring acoustic waves excited by absorption of short laser pulses with a cylindrical acoustic lens
detector rotating around the object. Owing to the finite detector size and its limited depth of focus, various arti-
facts arise, seen as distortions within the imaging slice and cross-talk from neighboring areas of the object. The
presented solution aims at avoiding these artifacts by a special design of the sensor and by use of a model-
based reconstruction algorithm that improves section images by incorporating information from neighboring sec-
tions. The integrating property of the cylindrical detector, which exceeds in direction of the cylinder axis the size
of the imaged object, avoids the lateral blurring that normally results from the finite width of a small detector.
Applying a maximum likelihood reconstruction method for the inversion of the imaging system matrix to the
temporal pressure signals yields line projections of the initial energy distribution, from which section images
are obtained by applying the inverse Radon transform. By using data from few sections, a significant reduction
of artifacts related to the imperfections of the sensor is demonstrated both in simulations and in phantom experi-
ments. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in

whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.19.2.026014]
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1 Introduction
Photoacoustic [(PA) or optoacoustic] imaging is a technique for
visualization of structures with optical absorption contrast in
light scattering media. It is based on the excitation of acoustic
waves by the thermoelastic effect, when nanosecond duration
electromagnetic pulses are absorbed in an object. The distribu-
tion of absorbed energy is obtained from broad band ultrasound
signals measured outside the object, from which structures with
preferential light absorption can be localized. Because of the
ability to visualize the interior of optically scattering objects
with ultrasound resolution and the good contrast of blood ves-
sels, PA methods have been recognized as a promising imaging
tool for biological tissue.1

Depending on the kind of detector, the size of the object, and
the reconstruction method various implementations have been
developed.1 PA tomography uses small unfocused detectors
that receive acoustic signals at many positions around the object.
The distribution of absorbed energy density is obtained by
applying a tomographic reconstruction algorithm to the signals.
PA microscopy techniques, on the other hand, use detectors
combined with an acoustic lens to limit the sensitivity of the
sensor to a line of sight along the symmetry axis of the lens.
Positions of light-absorbing objects along this line can be
obtained from the time of flight of the acoustic waves. No tomo-
graphic reconstruction is required as the single amplitude scans
can be combined to an image plane or volume for two-dimen-
sional (2-D) and three-dimensional (3-D) imaging, respectively.

PA sectional imaging can be seen as a combination of the
aforementioned methods.2–4 It uses detectors combined with a
cylindrical lens to limit the detector sensitivity to a selected
plane in an object. After acquisition of signals from many posi-
tions around the region of interest, a tomographic reconstruction
yields the distribution of absorbed energy within the section. It is
possible to stack many such sections to a 3-D PA image. Due to
the limited aperture of the cylindrical lens, a 3-D image con-
structed from a stack of 2-D slices is expected to have inferior
resolution in direction perpendicular to the slices compared to a
full 3-D tomographic image, where signals are taken from all
directions around the object. However, in situations where a
defined region of interest within a large object can be covered
with several section images, a significant advantage in terms of
data acquisition time and computational effort can be achieved
compared to full 3-D tomography. This has led to the develop-
ment of PA tomography arrays, which allow for acquisition of
real-time 2-D images from data collected around an object.5,6

Also, with a single detector that rotates around an object, section
images can be acquired within a reasonable time owing to the
moderate amount of data needed for a 2-D image compared to 3-
D imaging.3,4 Moreover, single detector scanning is an easy-to-
implement and cost-effective way to create high-resolution PA
images.

PA section imaging requires acoustic sensors that are
equipped with some kind of cylindrical lens. Typical implemen-
tations are flat piezoelectric sensors combined with a concave
cylindrical acoustic lens or lens less detectors, where the sensor
itself has the shape of a cylindrical area.4 Recently, the combi-
nation of an optical line sensor with a cylindrical acoustic reflec-
tor was also reported.7 For data acquisition, either the sensor is
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scanned on a circular line around the object or the object is
rotated in front of the sensor. Cylindrical lens detectors can
be characterized by their focal length, the numerical aperture
(NA), and the width in direction of the cylinder axis. These sen-
sor properties determine the quality of the reconstructed image.
For instance, it has been demonstrated that the finite width of the
sensor gives rise to a progressive deterioration of lateral resolu-
tion for points with increasing distance from the center of
the circular scanning curve.8 This effect is attributed to the
assumption of point-like detectors in the reconstruction,
which is based on radial back-projection. Proposed corrections
of the blurring employ model-based reconstruction that takes the
finite size of the detector into account9,10 or some kind of decon-
volution or deblurring method.11

The NA has an effect on the out-of-plane resolution. For the
imaging of extended objects, there is a trade-off between out-of-
plane resolution and field of view since with a high NA only a
narrow region around the rotation axis, to which the sensor is
focused, can be imaged with high resolution.

The effect of the sensor width on the lateral resolution can be
avoided by using an integrating cylindrical detector.4 In the
direction of the cylinder axis, this detector is larger than the
imaged object. Due to integration of the incoming acoustic
waves over this direction, the recorded signals are related to
the Radon transform of the initial pressure distribution in the
object.12 Applying the inverse Radon transform to the signals
leads to a reconstruction without the lateral blur that is seen
in reconstructions from finite-width detectors. The difference
between point-like, finite-width detectors and integrating detec-
tors is demonstrated in Fig. 1. In a simulation, a PA section
image is reconstructed from the center plane of a phantom
that consists of nine homogeneously heated spheres with
0.5 mm diameter arranged in three planes, 1 mm apart. A sensor
with NA ¼ 0.5 and a focal length of 20 mm was assumed.

A sensor with a width of 5 mm resolves only the sphere
lying close to the center of the image. The outer spheres are
strongly blurred in lateral direction due to the point detector
assumption in the radial back-projection algorithm. By contrast,
a detector with 50 mm width creates an image after inverse
Radon transform where all objects lying in the plane of interest
appear with good lateral resolution. However, this result shows
artifacts related to the imperfect focusing properties of the cylin-
drical lens. These are blurring of objects in radial direction,
especially for the outermost sphere at position ð−3;−3Þ, and
cross-talk from the neighboring planes.

In the present study, we demonstrate how these artifacts
can be avoided by employing a model-based, iterative re-
construction algorithm. The aim is to improve the quality of sin-
gle section images by incorporating information from neighbor-
ing sections, rather than a full 3-D imaging technique. For full
3-D imaging, there exist techniques based on unfocused either
point-like or line detectors, which yield very good image quality.
Our approach is inspired by similar techniques for fluorescence
microscopy,13 where the task is to deblur optical sections from
out-of-focus light by using information from several section
images.

In the following, first the model of the forward problem is
introduced, followed by the reconstruction algorithm. After out-
lining the experimental procedures, results from simulations, the
experimental verification of the system matrix, and phantom
measurements are presented.

2 Methods

2.1 Cylindrical Detector Model

Figure 2 shows the cylindrical detector used for this study. The
active sensor area has a concave cylindrical shape, determined
by its radius of curvature R, its width xd in x-direction, and its
height zd in z-direction. Its NA is given by NA ¼ zd∕ð2RÞ. For
acquiring a section image, the object is rotated about an axis
parallel to the z axis. Several sections can be imaged by trans-
lating the object or the sensor in z-direction.

The width xd exceeds the size of the object to be imaged. To
analyze the properties of such an integrating detector, we define
a coordinate system relative to the detector and describe its
surface as an arrangement of parallel lines, perpendicular to

detector 1
5 mm widthdetector 2

50 mm width

focal length: f = 20 mm
NA = 0.5

(a)

(c)(b)

Fig. 1 Simulated section images from a phantom consisting of nine
spherical photoacoustic sources arranged in three planes. (a) Signals
are detected with cylindrical sensors having a numerical aperture of
NA ¼ 0.5 and a width of either 5 or 50 mm. (b) Image of the center
plane [shaded in (a)] reconstructed by circular back-projection of sig-
nals from detector 1. (c) Image reconstructed by inverse Radon trans-
form of signals from detector 2.
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Fig. 2 Detector surface for section imaging. The detector is charac-
terized by its radius of curvature R, its width in x -direction, xd , and its
height in z-direction, zd . The coordinates relative to the detector are s
and z and a point on the detector cross-section is denoted as ðs 0; z 0Þ.
To acquire an image, the sample is rotated about an axis parallel to
the z-direction and is shifted by zm ¼ mΔz to cover the entire region
of interest. By shifting the object, a target point at zn moves across the
focus plane at z ¼ 0.
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the z axis. For a single line oriented along x direction, the
received signal Pϕðy; z; tÞ is the pressure field pϕðx; y; z; tÞ com-
ing from the object, integrated over the coordinate x. Subscript ϕ
means that the object has been rotated by an angle ϕ relative to a
reference orientation.

Pϕðy; z; tÞ ¼
Z

∞

−∞
pϕðx; y; z; tÞdx: (1)

Pressure wave pϕðx; y; z; tÞ is the solution of the acoustic
wave equation with pϕðx; y; z; 0Þ ¼ Γwϕðx; y; zÞ as initial con-
dition, where Γ is the Grüneisen parameter and wϕ is the
absorbed energy density in the rotated object. It can be
shown that the integrated pressure signal is a solution of the
2-D wave equation with source ΓWϕðy; zÞ,14 where Wϕðy; zÞ
is a 2-D Radon transform of wϕðx; y; zÞ and is given by

Wϕðy; zÞ ¼
Z

∞

−∞
wϕðx; y; zÞdx: (2)

Validity of the 2-D solution requires integration limits from
minus to plus infinity in Eqs. (1) and (2). It can also be shown,
however, that with a finite detector exact integrated signals are
measured, provided that the width xd is sufficiently large.

4 For a
perfectly focusing detector, the source can be described by
WϕðsÞδðzÞ and the detector by a single line in the plane at
z ¼ 0, located at position y0. Here, we use coordinate s ¼
y–y0, which is the distance between the line detector and a
point in the source. It is proportional to the arrival time
t ¼ s∕cs of the wave emanating from point y, where cs is
the speed of sound. The distribution of energy density in a sec-
tion can then be qualitatively reconstructed by applying the
inverse Radon transform to the measured pressure signals.12

However, it has to be taken into account that the pressure signals
from a finite source are bipolar, whereas the energy density is
purely positive. It is possible to obtain from p a quantity that is
proportional to the Radon transform of W by applying an Abel
transform.15

qϕðtÞ ¼ cst
Z

t

0

Pϕðt 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − t 02

p dt 0: (3)

For a single line detector, qϕðtÞ is proportional to the energy
density projected into the plane perpendicular to the line and
integrated over a circle with radius cst around the line position.

15

For the focusing detector, which receives signals only from the
slice at z ¼ 0, the inverse Radon transform of qϕðtÞ, measured at
a sufficient number of angular positions around the imaged slice,
directly reconstructs the energy density distribution in this
plane.16

Due to the imperfections of the real sensor, contributions
from sources outside the focus plane, i.e., at z ≠ 0, also have
to be taken into account. Furthermore, for sources at z ¼ 0,
but s ≠ R, the linear dependence between t and s is not
valid. To include all these properties of the real sensor, we
describe the forward problem by introducing a system matrix
that links the temporal signals qϕðtÞ measured by the detector
to the distribution of absorbed energy density Wϕðs; zÞ. Since
the imaging problem focuses on discrete sections, the z-position
of the sources is discretized in multiples of Δz, where Δz is the
increment between individual sections.

For the implementation of the iterative image reconstruction
algorithm, a discrete representation of the source distribution

wϕðx; y; zÞ is required. We use a representation in uniform
spherical expansion functions, as it has been done in similar
PA imaging algorithms before.10,17 The resulting system matrix
is obtained by calculating the response of the detector to single,
homogenously heated spheres residing at grid positions, having
a radius on the order of the grid spacing. A response to a single
spherical source is calculated by summing the analytical signals
received by an infinite line14 over all line positions (typically
200) forming the detector surface.

The system matrix is first defined in three dimensions as
ak;l;jm−nj. It contains the Abel transform and links signals mea-
sured at time tk to sources located at distance sl in the plane at
zn ¼ nΔz in the object, which has been shifted in z-direction by
distance zm ¼ mΔz. In our notation, where the sample is rotated
and shifted relative to the coordinate system of the sensor, zn is
defined relative to the unshifted sample (dashed contour in
Fig. 2). Both m and n are ranging from −N to þN. A signal
measured by the cylindrical detector at time tk ¼ kΔt, shift
position zm, and angular orientation ϕj is denoted by
qj;k;m ≡ qϕj

ðtk; zmÞ and is related to the 2-D initial energy den-
sity distribution Wj;l;n ≡Wϕj

ðsl; znÞ by

qj;k;m ¼
X
l

X
n

ak;l;jm−njWj;l;n: (4)

Due to the symmetry of the sensor, the system matrix
depends only on jm − nj. According to the discrete representa-
tion of the source distribution wϕ, the meaning of Wj;l;n is
actually the strength of a uniform, spherical voxel located at
position ðsl; znÞ in the object rotated by ϕj, which is integrated
over an infinite line in direction of the cylindrical detector axis.
The elements of the system matrix are thus given by

ak;l;jm−nj ¼ cst
Z

t

0

psphðsl; jm − njΔz; t 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − t 02

p dt 0
����
t¼kΔt

; (5)

where psphðsl; jm − njΔz; t 0Þ is the response of the detector to a
spherical source at position ðsl; jm − njΔzÞ, given by

psphðsl; jm − njΔz; tÞ ¼
Z
Cðs 0;z 0Þ

hðb; dl;jm−nj; tÞdC

with dl;jm−nj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsl − s 0Þ2 þ ðjm − njΔz − z 0Þ2

q
:

(6)

Here, hðb; dl;jm−nj; tÞ is the analytical signal of a homoge-
nously heated spherical source of radius b (on the order of
the spatial resolution), located at sl in the plane offset by
ðm − nÞΔz from the focus plane of the detector, integrated
over a line at position ðs 0; z 0Þ on the detector surface14 (see
Fig. 2). Integration over the detector surface is described by
the integral of this signal over the curve Cðs 0; z 0Þ, the circular
arc defining the cross-section of the cylindrical detector surface.

The above relation [Eq. (4)] contains one equation for each
rotation angle ϕj. The system matrix ak;l;jm−nj is written here in
three dimensions. Alternatively, all recorded signals at one
angular orientation ϕj can be written as a vector qðjÞ with ele-
ments qðjÞu and all sources in another vector WðjÞ with elements
WðjÞ

v . The single layers of ak;l;jm−nj (each of them having a differ-
ent m − n), denoted by 2-D matrices aðjm−njÞ, can then be
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arranged in a 2-D matrix A with elements Au;v, yielding a more
convenient way to write this relation.

qðjÞ ¼ AWðjÞ: (7)

The arrangement of submatrices aðjm−njÞ is

A ¼

0
BBBBBB@

að0Þ að1Þ að2Þ · · · að2NÞ

að1Þ að0Þ að1Þ

að2Þ að1Þ að0Þ ..
.

..

. . .
.

að2NÞ · · · að0Þ

1
CCCCCCA
: (8)

2.2 Reconstruction

The goal of image reconstruction is to find for each projection
angle a vector WðjÞ that minimizes the deviation of
qðjÞ ¼ AWðjÞ from the measured signals q̂ðjÞ. Once these values
are determined, the final step in image reconstruction is to cal-
culate the source distribution in all recorded sections by apply-
ing the inverse Radon transform to WðjÞ. For recovering WðjÞ
from q̂ðjÞ, we use the maximum likelihood-expectation maximi-
zation (ML-EM) algorithm,18–20 which is known to provide
solutions for problems with incomplete or noisy data. It further-
more preserves positivity of the solution, which is important for
reconstructing a physically meaningful WðjÞ. The calculation of
the iterations requires an adjoint system matrix, which has the
effect of a back-projection operator and is the transpose of the
real-valued matrix A. However, we observed a more rapid con-
vergence of the algorithm by using the following procedure for
calculating a modified back-projection operator B. In each sub-
matrix aðjm−njÞ, we seek the maximum value of each column and
store its index kmax. This gives the most likely arrival time tkmax

of a wave generated at position sl in the jm − nj’th neighbor
plane. “Most likely” in this context means, for instance, that
a wave generated by a point source at this position impinges
perpendicularly at the sensor surface, giving rise to the maxi-
mum detected signal by this source, even if it is not lying on
the focal line. Then we build a new matrix as in Eq. (8) that
only contains the column wise maxima of aðjm−njÞ.
Transposing this matrix yields the back-projection operator B
with elements Bv;u, which now links the temporal signals to
their most likely source positions. The product B qðjÞ then yields
a back-projection reconstruction of the data qðjÞ, similar to the
focal line concept proposed by Xia et al.21 The iterative
reconstruction algorithm for obtaining the (iþ 1)’th estimate
of element WðjÞ

v of vector WðjÞ is given by

WðjÞ;iþ1
v ¼ WðjÞ;i

v

X
u

q̂ðjÞu

ðAWðjÞ;i þ λÞu
Bv;u: (9)

To avoid a division by zero, a small scalar λ on the order of
one or two percent of the maximum of A WðjÞ;i is added to the
denominator on the right-hand side. This iteration is performed
for each rotation angle ϕj separately using the temporal signals
of all the recorded sections. It has to be taken into account that
the projectionsWðjÞ are not independent of each other since they
emanate from the same distribution of absorbed energy.
Therefore, at each iteration, the projectionsWðjÞ are normalized

in a way that their integral over distance s gives the same value
for each section, i.e., for each zn. This integral can be regarded
as a measure of the total energy absorbed in this section and
should be equal for all projections. Convergence of the algo-
rithm is monitored by calculating the norm of the residual
q̂ðjÞ − AWðjÞ;iþ1. After completion of the iterations, the final
distribution of the energy density in each of the zn sections
is obtained by applying the inverse Radon transform to the cor-
responding subsets of WðjÞ.

For comparison, we also used an alternative method for the
reconstruction of WðjÞ from the measured pressure signals q̂ðjÞ

using the lsqr function implemented in MATLAB®. This
method, which is suited for large and sparse system matrices,
provides a least squares inversion of matrix A.

2.3 Experiment

The model-based reconstruction was tested with a detector made
of a 110-μm-thick piezoelectric polyvinylidene fluoride (PVDF)
film (Measurement Specialties, Hampton, Virginia) glued onto
the concave cylindrical surface of a polyvinyl chloride backing.
Detector parameters were a radius of curvature of R ¼ 30 mm, a
width of xd ¼ 50 mm, and a height of zd ¼ 30 mm, giving a
numerical aperture of NA ¼ 0.5. A thin plastic sheet separated
the PVDF film from a water bath, where the sample was placed.
Illumination was provided from two sides parallel to the cylin-
der axis of the detector using pulses from a frequency-doubled,
Q-switched Nd:YAG laser (Spectron Laser Systems, Rugby,
UK) with a pulse duration of 10 ns.

In a first experiment, signals from a small absorber were
acquired for comparison with the calculated system matrix. A
small, spherical oil droplet with a radius of 150 μm containing
black dye was embedded in Agar gel (2% by weight) and was
scanned in the s-z-plane perpendicular to the cylinder axis. A
range from z ¼ −3 mm to z ¼ 3 mm (the position of the
focal line of the cylindrical detector is at z ¼ 0) and from s ¼
R–6 mm to s ¼ Rþ 6 mm was scanned with increments of
Δz ¼ 200 μm and Δs ¼ 200 μm.

For a tomography experiment, a phantom consisting of clear
Agar gel was prepared, containing black oil droplets in two
layers ∼2 mm apart. During data acquisition, the phantom
was scanned to 17 z-positions with an increment of 200 μm.
At each of the z-positions, the phantom was rotated by
360 deg with an angular increment of 1.8 deg. For the
reconstruction, the increment in s-direction was set to 50 μm.
Since it is important to obtain signals from all absorbers at
each position of the detector, the phantom was illuminated
with a wide beam that covered the whole phantom.

In the experiments it turned out that sometimes there
remained some negative signal values after the Abel transform.
To obtain the purely positive signal necessary for the
reconstruction algorithm, the following procedure was used.
First, the measured signals were Abel transformed. Then an
inverse Radon transform was calculated, yielding a first
image ofW, which contained both positive and unphysical neg-
ative components. In this image, the negative parts were set
equal to zero, and to the resulting image, the Radon transform
was applied. This gave purely positive signals q̂. Compared to
simply removing negative values from the Abel-transformed
signals, this procedure preserved more of the information con-
tent of the data because it avoided the deletion of features resid-
ing on negative parts of the signals.
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3 Results

3.1 Simulations

Reconstructions from simulated data are shown in Fig. 3. The
same phantom was used as in Fig. 1. Again, the central plane
with three spheres is shown. For the calculation, signals from
five planes were used: the three planes containing the spherical
absorbers and two additional planes at a distance of 1 mm below
and above the phantom. Figure 3(a) shows the result of a back-
projection, applying the operator B to the data, and Fig. 3(b)
shows the result after 20 iterations of the ML-EM algorithm
in Eq. (9). A reconstruction using 20 iterations of the lsqr algo-
rithm is shown in Fig. 3(c). The back-projection operator leads
to a slight improvement of the image quality compared to a
direct reconstruction from the Abel-transformed signals
[Fig. 1(c)], but only the model-based algorithms are able to
eliminate the artifacts. Comparing ML-EM and lsqr methods,
both perform similarly in terms of reducing cross-talk and in-
plane distortions. The latter, however, yields some residual neg-
ative values, as shown in Fig. 3(e). Here, a horizontal profile
through one of the sources is displayed together with the
reconstruction that is obtained by applying the inverse Radon
transform to Abel-transformed pressure signals. No negative
values are visible in the profile of the ML-EM reconstruction
shown in Fig. 3(d) due to the embedded positivity constraint
of this algorithm. The profiles also show a slightly better sup-
pression of cross-talk with the ML-EM algorithm than with the

lsqr method. This is seen at position x ¼ 3 mm, where the
reconstruction from the raw, Abel-transformed signals shows
high image values on the order of 0.6. At the same position,
the residual peak after lsqr reconstruction reaches a value of
∼0.1, whereas the ML-EM reconstruction yields a negligible
value on the order of 0.05. A number of merit for the comparison
of the algorithms is the total relative residual, defined as the
norm of q̂ðjÞ − AWðjÞ;iþ1 divided by the norm of q̂ðjÞ. This
residual is calculated for the entire measurement data, including
all projection angles ϕj. Assuming noise-less data as in the
shown simulations, the values for the total relative residual
are 0.04 for lsqr and 0.11 for ML-EM (both after 20 iterations).
Here the lsqr algorithm shows better convergence, although
other parameters, such as the reduction of cross-talk, indicate
better performance of the ML-EM algorithm. We repeated
the simulation with additive Gaussian noise with a standard
deviation of 5% of the signal maximum and found relative resid-
uals of 0.30 for lsqr and 0.13 for ML-EM. With these more real-
istic data the better performance of the ML-EM algorithm in the
presence of noise is demonstrated.

3.2 System Matrix

Experimental and theoretical signals from a small sphere
scanned in the s-z-plane are displayed in Fig. 4. The theoretical
signals were obtained by integrating the analytical signals
of a sphere with 150 μm radius over the detector surface. In
Figs. 4(a) and 4(b) the signals for m ¼ n are shown and in

Fig. 3 Simulation results showing section images of the phantom displayed in Fig. 1(a). (a) Applying
back-projection operator B to the data. (b) Twenty iterations with the maximum likelihood-expectation
maximization (ML-EM) algorithm. (c) lsqr reconstruction, all followed by the inverse Radon transform.
In (a) to (c) negative values are not displayed. (d) Normalized profiles through the spherical source
at ð−3;−3Þ mm, comparing a reconstruction from Abel-transformed raw signals [seen in Fig. 1(c)]
with the ML-EM reconstruction. (e) Comparison of profiles through the lsqr reconstruction, again com-
pared to the Abel-transformed raw signals.
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Figs. 4(d) and 4(e) the signals for jm − nj ¼ 6. In the latter case,
the distance between the focus plane and the source was
6Δz ¼ 1.2 mm. There is a good agreement between experiment
and calculation, showing that the parameters for the simulation
of the measurement were properly chosen. This justifies the use
of the calculated signal matrix, which was obtained by applying
the Abel transform to the columns of the matrix containing the
simulated signals. The submatrices withm ¼ n and jm − nj ¼ 6
are displayed in Figs. 4(c) and 4(f). Matrix að0Þ is close to diago-
nal with a maximum at the focus, which is located at
s ¼ 30 mm, and shows some spreading of values at positions
outside the focus. Matrix að6Þ has highest values for s-positions
outside the focus.

3.3 Phantom Experiment

For image reconstruction, signals from all 17 planes were used,
covering the range with the black dye droplets and some extra
sections that contained no absorbers. With the spatial increment
of 200 μm, the total z-range used for reconstruction was 3.2 mm.
Reconstructed images in Fig. 5 show one of the sections contain-
ing absorbing spherical droplets. Additionally, maximum ampli-
tude projections in x-direction reveal the spreading of the imaged
objects in direction perpendicular to the sections. A comparison
of three reconstruction methods is provided: direct reconstruction
applying the inverse Radon transform to Abel-transformed raw
data, ML-EM reconstruction, and lsqr inversion. In all images,
only positive values are displayed. To quantify the resolution
achievable with the different reconstruction methods, Fig. 6(a)
compares profiles in z-direction through one of the small spheres
seen at position x ¼ 3.5 mm, y ¼ −3 mm, z ¼ 1 mm. This
sphere has subresolution size in z-direction and is suited for esti-
mating the out-of-plane resolution. In the reconstruction from

raw, Abel-transformed pressure signals, the spreading in z-direc-
tion is largest and amounts to 1.35 mm (FWHM). The two iter-
ative techniques yield better resolution, with 0.86 mm using lsqr
and 0.51 mm using ML-EM. Also, a significant improvement of
resolution in radial direction becomes evident when plotting the
radial intensity profiles of the same sphere, as shown in Fig. 6(b).
The radial direction goes through the point (0,0) in the x − y-sec-
tions displayed in Figs. 5(a) to 5(c).

4 Discussion
The goal of this study is to provide artifact-free images from a
cylindrical lens detector in PA section imaging. Using the inte-
grating detector concept, where the receiving sensor has a width
exceeding the size of the object, it is possible to eliminate the
transversal (or tangential) blur that is seen when finite-size
detectors are used as an approximation of point detectors.
This is a consequence of the relation of the received signals
to the Radon transform of the absorbed energy density distribu-
tion W in the sample. The pressure signal at a given time t is an
integral of the acoustic pressure field along the direction of the
cylindrical lens axis and can be regarded as emanating from a
line integral of W at distance of cs t from the detector surface.

The reconstruction of a slice image from the inverse Radon
transform of the Abel-transformed signals still, however, con-
tains artifacts, which can be classified in in-plane distortion
and out-of-plane cross-talk. The former is due to the aperture
of the cylindrical lens detector, which leads to a limited
depth of field. During a full rotation, objects lying in the
focus plane at some distance from the rotation axis move in
and out of focus, whereas objects near the rotation axis always
stay in focus. This description assumes that the rotation axis is
located at or near the focal distance, which was the case in our

Fig. 4 Detected signals, system, and back-projection matrices for z ¼ 0 (upper row) and z ¼ 1.2 mm
(lower row). (a) and (d) Experimental signals for a black oil droplet with 0.15 mm radius. (b) and
(e) Simulated signals for an absorbing sphere with 0.15 mm radius. (c) System submatrix að0Þ.
(f) System submatrix að6Þ, both calculated from simulated signals by applying the Abel transform.
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experiments. If a PA source lies at an out-of-focus position, sig-
nals from waves emanating at a point in the source are spread
over time, leading to a radial blurring in the final image. Cross-
talk between sections is due to signals from positions outside the
focus plane, which are nevertheless recorded with sufficient
strength to create ghost images in the observed section. The
two kinds of artifacts are linked because both become worse
with distance from the focus. It is not possible to reduce
these artifacts by modifications of the imaging hardware. The
temporal spreading of signals recorded from out-of-focus
sources, which causes the radial blurring, could be reduced
by using a smaller NA of the lens, leading to a larger depth
of field. However, at the same time, this would enhance
cross-talk artifacts owing to the weaker focusing capability of

the low-NA lens. For a reduction of cross-talk, the excitation
light pulses could be focused into the imaged section, which
is usually not possible in strongly light scattering biological tis-
sues. Finally, a large NA means a tight acoustic focus and seems
to be able to avoid cross-talk, but only in the narrow region
within the focal depth, preventing imaging of extended objects.

In the presented experiment, we chose a worst case situation
since no optical focusing was applied in sample illumination and
at the same time a large NA of 0.5 was chosen for an object that
was larger than the depth of field of the lens. Nevertheless, by
applying iterative methods, a clear improvement could be
obtained compared to the reconstruction from raw data. As in
the simulations, both the in-plane distortion and the cross-
talk were clearly reduced by applying the model-based

Fig. 5 Experimental imaging. Sections in an x − y -plane [(a) to (c)] and maximum amplitude projections
along x -direction [(d) to (f)] from Abel-transformed raw signals [(a) and (d)], using ML-EM [(b) and (e)],
and using lsqr [(c) and (f)].

Fig. 6 Profiles across the spherical source located at x ¼ 3.5 mm, y ¼ −3 mm, z ¼ 1 mm along
(a) z-direction and (b) radial direction.
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reconstruction. Comparing the out-of-plane resolution in Figs. 5
and 6, it appears that the ML-EM reconstruction yields better
results than the lsqr method.

With the integrating cylindrical detector the reconstruction of
several slices can be decomposed into 2-D problems. As first
step the reconstruction of each projection separately, which
gives a source distribution depending on coordinates z and s.
Due to the integrating property of the sensor, this requires
the same system matrix for each projection. Since there is no
dependence on the coordinate in direction of the cylinder
axis, the corresponding system matrix has a number of elements
given by the number of z − s-positions multiplied by the number
of temporal samples at all z-positions of the detector. The former
is given by Ns, the number of positions along s, multiplied by
the number of sections Nz. The latter is given by the number of
temporal samples Nt multiplied again by Nz. The second step of
the reconstruction is the inverse 2-D Radon transform, which is
applied to each 2-D section separately. The computation of the
system matrix for the 17 planes in the phantom experiment
(using MATLAB® R2010b on a dual core 2.67 GHz CPU)
required 150 s. This time could be reduced by integrating
over a smaller number of line elements on the detector surface.
We found that already 100 lines gave a sufficiently smooth
response. Storage of the submatrices of A and B required
21 MB of memory. Reconstruction of the phantom required
30 s per iteration of the ML-EM algorithm.

For a narrow, nonintegrating detector, the full 3-D problem
has to be considered at once. The dependence of detected signals
on source position along the cylinder axis has to be taken into
account, as well as the number of angles at which signals are
taken around the object. This leads to a significantly larger sys-
tem matrix.9

5 Conclusion
Imaging of selected slices or sections of an extended object
using an acoustic cylindrical lens detector is a cost-effective
yet accurate method for PA tomography. The combination of
a large, integrating cylindrical lens detector and a model-based
reconstruction algorithm leads to a significant reduction of arti-
facts related to the finite size and imperfect focusing capability
of the sensor. Owing to the integrating property of the detector,
the reconstruction has to deal with 2-D problems, lowering the
computational effort compared to full 3-D reconstruction. Even
with a small number of sections, the employed maximum like-
lihood algorithm yields a significant improvement of image
quality compared to direct reconstruction.
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