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Abstract. Cochlear implantation offers the potential to restore sensitive hearing in patients with severe to pro-
found deafness. However, surgical placement of the electrode array within the cochlea can produce trauma to
sensorineural components, particularly if the initial turn of the cochlea is not successfully navigated as the array
is advanced. In this work, we present a robot-mounted common-path swept-source optical coherence tomog-
raphy endoscopic platform for three-dimensional (3-D) optical coherence tomography (OCT) registration and
preoperative surgical planning for cochlear implant surgery. The platform is composed of a common-path
600-μm diameter fiber optic rotary probe attached to a five degrees of freedom robot capable of 1 μm precision
movement. The system is tested on a dry fixed ex vivo human temporal bone, and we demonstrate the feasibility
of a 3-D OCT registration of the cochlea to accurately describe the spatial and angular profiles of the canal
formed by the scala tympani into the first cochlear turn. © The Authors. Published by SPIE under a Creative Commons
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1 Introduction
Cochlear implant surgery is an elective procedure capable of
restoring auditory sensing capability in patients with profound
to severe hearing loss.1–4 In patients presenting with profound
hearing loss due to damaged or absent cochlear hair cells,
implantation of a multichannel array aims to restore hearing
by directly stimulating residual fibers of the auditory nerve
via current injection, thus bypassing nonfunctional hair cells.
Surgical opening of the cochlea adjacent to the round window,
forming the cochleostomy, enables placement of an electrode
into the scala tympani. Figure 1(a) depicts the cochleostomy
site in a human temporal bone with the round and oval windows.
An electrode array placed within the scala tympani stimulates
auditory neurons to carry afferent traffic to the auditory brain
stem. The electrode is coupled to an internal processor that is
linked to an external microphone and speech processor to con-
vert sound into electrical impulses carried by the electrode array.
Figure 1(b) shows a drawing of the anatomy of the cochlea,
highlighting the features relevant to cochlear implant surgery.

Cochlear anatomy creates an environment which requires
extreme precision to avert cochlear damage.5,6 The scala tym-
pani is angulated in its proximal origin7 and tapers from 2 to
3 mm at the round window to <1 mm at the basal turn,

where the implant is placed. The scala tympani compartment
is bounded by a thin basilar membrane cephalically and
forms the foundation for the organ of corti. The basilar mem-
brane is tethered to the osseous spiral lamina housing peripheral
extensions of the auditory nerves. The intrascalar distance from
the round window to the initial curvature of the basal turn is on
average 6 to 7 mm in adults.8 Preoperative planning to find the
optimal insertion path for the electrode is important for proper
electrode placement, particularly given risks to the basilar mem-
brane with buckling or misdirection of the electrode array as it is
advanced through the basal turn.9

Current standards of care involve computed tomography
(CT) or magnetic resonance (MR) imaging to image cochlear
anatomy. However, these modalities do not have sufficient res-
olution to generate a detailed image of the cochlea and, in the
case of CT, the imaging procedure induces a dosage of radiation
in the patient. In addition to path planning, preoperative imaging
is necessary to determine if there are anomalies to be resolved
prior to the surgery. CTand MR imaging cannot easily detect if a
patient presents with an obliterated cochlea, wherein access to
the basal turn is blocked by bone or fibrous tissue, and
additional surgical drilling is needed to gain access to the coch-
lea.10 Proper anatomical information of a patient’s temporal
bone can reduce complications arising from improper insertion
trajectory or electrode placement. Such complications include
damage to the spiral ligament, facial nerve exposure, dura expo-
sure, damage to the chorda tympani, and long-term bacterial*Address all correspondence to: Saumya Gurbani, E-mail: sgurbani@jhu.edu
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infection.11–13 A 2004 study of 300 pediatric patients, an impor-
tant population for the procedure, showed major complications
occuring in 2.3% of patients and minor complications in 16%.14

Recent research into cochlear implant surgery assistance has
ranged from developing novel piezoresistive-sensing electrodes
to patient-customized drill guides.15,16 In this work, we focus on
a three-dimensional (3-D) optical coherence tomography (OCT)
image registration to navigate scala tympani anatomy and plan
the surgical procedure. OCT is an ideal modality for this aim as
it uses biologically safe infrared light and is capable of produc-
ing high-resolution 3-D images of biological tissue.17–19 With
specific regard to cochlear implant surgery, OCT has been
shown to be a useful modality for preoperative image registra-
tion. Research groups have used a Michelson-interferometer
OCT setup for imaging the cochlear lumen to determine its ori-
entation presurgically20 and for external imaging of the cochlear
canal through the cochlear promontory.21 Lin et al.22 demon-
strated rapid in vivo lumenal imaging of murine cochleae
using a rotating 350-μm distal OCT probe, signifying the poten-
tial of real-time catheter-based probes for otologic interventions.

In this work, we seek to demonstrate the use of a common-
path catheter-based OCT probe guided by a surgical robot for 3-
D image registration. Common-path OCT provides advantages
over traditional Michelson-based setups,23 especially in a surgi-
cal setting. A small optical fiber probe is capable of entering the
cochlear lumen through surgical entry points. With a single arm,
the probe functions as a highly accurate distance sensor. No
additional alignment is required and consequently catheter
probes can be quickly exchanged between surgeries. An in-
expensive, disposable common path probe could serve as a sur-
geon-held navigational tool in cochlear implant surgery. We
present a robot-mounted common-path swept-source OCT
(CP-SSOCT)-based fiber endomicroscope capable of imaging
the cochlear canal and guiding surgeons to the basal turn. To
the best of our knowledge, this is the first time that 3-D
image registration using a common path catheter probe guided
by a surgical robot has been employed for cochlear implant sur-
gery. We demonstrate the use of this system in dry ex vivo

human temporal bones to show a proof-of-concept for future
in vivo surgical planning and intraoperative guidance.

2 Materials and Methods

2.1 Optical System Setup

We use a CP-SSOCT because it yields many benefits in a sur-
gical setting.24 The ability to use a lensless fiber system yields
small imaging probes, which are capable of being used in the
restricted environment of the cochlear canal. Because probes
must be sterile for each operation, a single-optical arm is ben-
eficial. Furthermore, negating the additional alignment of a
reference arm and the low cost of polished fiber allows the
probes to be disposable between surgical procedures.
Additionally, the single-arm setup of CP-SSOCT prevents the
formation of complex-conjugate images of target tissue,
allowing for simplified image processing. The main advantage
of the common-path setup is that it allows accurate distal mea-
surements relative to the probe tip, allowing highly accurate
image registration. A schematic of our CP-SSOCT system is

Fig. 1 (a) Cadaveric temporal bone dissection demonstrating the transmastoid, transfacial recess view
of the round and oval windows of the cochlea. The oval windows position is superior to the round window
niche. The site of cochlear opening is demonstrated in the anteroinferior aspect of the round window
niche. The cochleostomy is positioned to avoid impaling the structures that separate the scala tympani
from the more-cephalad scala media. (b) Schematic of the cochlear canal from the entrance to the first
basal turn. The electrode is embedded in the scala typani at the basal turn to stimulate the auditory nerve
cells at the basilar membrane (BM).

Fig. 2 Schematic of common-path swept-source optical coherence
tomography (CP-SSOCT) system with a side-viewing rotary probe.
The system has the ability to run in either standard or common
path configurations, though the latter is chosen for this work.
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shown in Fig. 2. The system is built to have the ability to run in
both standard and common-path configurations, though the lat-
ter is chosen for this work to allow for multiple experiments
during a single session.25 The OCT engine is a 1310-nm
swept-source laser (Axsun Technologies, Inc., Billerica,
Massachusetts) operating at a 50-kHz A-scan rate with a 19-
μm axial resolution. Return signal is collected using a single
input on a balanced amplified photodetector (ThorLabs, Inc.,
PDB110C, Newton, New Jersey) and digitized (Alazar
ATS9350, Pointe-Claire, Quebec, Canada). Output light is
passed through an SC-connector rotary coupler (Princetel,
Inc., Hamilton, New Jersey), which is rotated at 5 to 10 Hz.
The distal fiber is SMF-28 (Gould Technology LLC,
Millersville, Maryland) with a buffered diameter of 250 μm
and a cladding diameter of 125 μm. In order to image “side-
ways,” perpendicular to the fiber axis, the fiber is polished to
a 45-deg angle26 using an aluminum oxide fiber-optic polishing
system (KrellTech, Morganville, New Jersey). Similar sideview-
ing schemes involving polishing, microprisms, and fused half-
ball lenses have been previously used by many groups.27–31 In
order to maintain a single-arm setup and to keep the probe sim-
ple for disposability, a bare-polished fiber is selected. Although
this lensless system cannot focus light at the distal end of the
probe, the reflected signal provides sufficient signal-to-noise
ratio (SNR) for imaging. To confirm the imaging capability
of the bare sideview probe, the SNR is calculated at various dis-
tances by translating a mirror from 0.5 to 3 mm. The overlaid A-
scans are shown in Fig. 3. The SNR decays from 50 dB at
0.5 mm to 30 dB at 3 mm, a sufficient distance given the
small diameter of the cochlear canal. The return interference sig-
nal from the OCT probe is passed through the circulator to an
unbalanced detector, from where it is digitized and processed in
custom C++ software.

The reference plane for the interferometer comes from the
cylindrical side of the bare fiber as a result of the Fresnel reflec-
tion from the polished surface. The reference level is highly

sensitive to the angle of polish. Sharma and Kang28 showed
the exponential decay of reference power at the side of the
fiber from ∼1% when polished at 45 deg to nearly 0% at
50 deg due to the imperfect coupling back into the fiber
core. Analysis of the profile of coupling is calculated using
ABCD matrix theory for a beam passing through a cylindrical
lens.32 With, relative to the fiber axis, x representing the curved
transverse plane, y representing the noncurved transverse plane,
and z representing the plane along the fiber axis, the electric
field of the recoupled beam is calculated to be

Eðx; y; zÞ ¼ E0
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where E0 is the maximum amplitude of the electric field, ω0 is
the mode field diameter of the fiber, k is the wave number of
light, MðzÞ ¼ ½1∕RðzÞ þ ð1∕zÞ þ ð1∕fÞ�, RðzÞ is the radius of
curvature, f is the focal length of the cylindrical lens, and
zforward is the distance the beam travels between the core and
the cladding-air interface on the side of the fiber. Figure 4(a)
shows a ray trace of the beam as it reflects off of the cylindrical
surface dependent on the polish angle. Polishing at nonperpen-
dicular angles produces imperfect recoupling into the fiber core.
Due to the cylindrical nature of the fiber, some astigmatism
occurs and increases with off-angle polishing. Using Eq. (1),
the eccentricity of the beam re-entering the fiber core is calcu-
lated to be 0.57 at 45 deg. Figure 4(b) shows a schematic of the
astigmatism of the reflected light, producing some additional
coupling loss into the fiber core. A 45-deg polish allows for

Fig. 3 Signal decay profile of a bare-fiber probe polished at 45 deg. A-scan signals from a mirror surface
showing the signal-to-noise ratio decay from 50 to 30 dB by translating the mirror from 0.5 to 3 mm.
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sufficient reflected power to generate a reference signal while
minimizing astigmatism. The Axsun laser has an average output
power of 20 mW, which yields an average of 10 mWat the probe
tip. Measured reflectance powers from the sideview probe pol-
ished at 45 deg were 22� 12 μW. Accounting for the return
loss through the 50–50 coupler, this yields a reflectance
power of 0.4%. The deviation from the theoretical 1% can be
accounted for by imperfections in fiber polishing and the slight
angular torque exerted on the fiber by the polishing pad. During
fabrication, the probe was polished while monitoring the
CP-OCT signal for a clear single-sinusoidal modulation.

The fiber is placed inside a 25-gauge (25G) hypodermic tube
(McMaster-Carr, Atlanta, Georgia) with a window cut into the
side to allow the beam to exit. The proximal fiber is glued using
UV curable epoxy to the needle, providing mechanical support
and smooth transmission of angular torque to the fiber when
connected to the rotary coupler. A 600-μm outer diameter poly-
imide sheath (Microlumen, Inc., Oldsmar, Florida) is placed
over the needle. This sheath prevents tissue and dust from enter-
ing the needle and damaging the fiber optic probe. Due to its
semitransparency in the near infrared range, the sheath allows
the light to pass without significant attenuation. The distal
end of the probe is sealed with epoxy. The distal end of the
probe is ∼20 cm long and 600 μm in diameter, which allows
it to be small enough to pass up to the basal turn of the cochlear
canal. Figure 5 shows a schematic and photograph of this side-
viewing probe.

2.2 Robot System

Due to the small working area within the cochlea (6 to 7 mm in
depth and down to <1 mm in diameter), it is crucial for surgeons

to precisely and accurately navigate the region of interest.
Toward this aim, we incorporate the “EyeRobot2” platform
developed by the Computer Integrated Surgical Systems and
Technology Engineering Research Center (CISST ERC) at
the Johns Hopkins University.33 EyeRobot2 is a five degrees
of freedom surgical robot to assist surgeons in various proce-
dures; it has previously been used with vitreoretinal surgical
tools, some of which are based on OCT.34 The robot is capable
of micrometer-scale precision movement of its surgical tool tip.
The tool tip is attached to a handle with force-sensing capabil-
ities. The robot is operated in cooperative mode, where the robot
senses the forces exerted by the surgeon on the tool handle and
moves the tool to comply. By mounting the rotary coupler to the
robot arm, a sixth degree of freedom is gained. Figure 6(a)
shows the setup of the probe mounted onto the EyeRobot2 plat-
form. The rotary coupler is encapsulated in a custom-built case,
which connects the coupler to a stepper motor (Maxon Precision
Motors, Fall River, Massachusetts). This casing also tightly cou-
ples the proximal end of the hypodermic needle of the imaging
probe with the motor. As a result, the motor, casing, and the
entire length of the needle probe rotate smoothly and concur-
rently. Figure 6(b) shows a close up of the rotary arm of the
robotic system attached to the needle probe. Video 1 shows
the robot and mounted probe as set up during an experiment
imaging a dry human temporal bone.

To reduce vibration, the needle probe is passed through two
additional short 21G tubes proximal to the length of needle

Fig. 4 Coupling loss of reflected light back into the fiber core is imper-
fect with a sideviewing probe, due to polish angle and astigmatism.
(a) Ray trace of the incident (red) and return (purple) beams showing
beam deflection away from the core based on polish angle, and
(b) astigmatism due to the focusing of light by the cylindrical surface
of the SMF causes additional recoupling loss.

Fig. 5 (a) Schematic of the bare SMF, polished at 45 deg, encapsu-
lated in a hypodermic needle and polyimide sheath. (b) Photograph of
the 600-μm probe next to a US dime.

Fig. 6 (a) Photograph of the EyeRobot2 platform with the imaging
probe mounted. (b) Close-up of the robot arm with the mounted rotary
motor (M), custom-built casing (C), 21G tubes for restricting lateral
motion (T), and CP-SSOCT needle probe (P). Video 1 (MOV,
8.58 MB) [URL: http://dx.doi.org/10.1117/1.JBO.19.5.057004.1]
shows this setup being used in imaging a dry temporal bone.
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which enters the temporal bone. These two tubes are affixed to
the robotic arm, as shown in Fig. 6(b). These two tubes restrict
the lateral movement of the needle probe as it rotates.
Experimental calibration of the probe by imaging the inside
of a smooth plastic cylinder showed the lateral vibrations
were insignificant and on the order of the axial resolution of
the probe.

2.3 Imaging and Analysis

The mounted probe was tested on a dry ex vivo human temporal
bone. The probe is position to be approximately coaxial to the
round window and is then passed through the round window
aperture. The positioning and rotation of the probe are con-
trolled by robotic software. Using the robot to restrict motion
along the probe’s axis, the probe is slowly navigated down
the cochlear canal, taking rotary OCT scans at increments
of 200 μm.

Software to acquire and analyze data is performed by using a
hybrid CPU and graphics processing unit (GPU) system. The
imaging software is synchronized with the motor controller
such that the system collects A-scans concurrent with motor
rotation, experimentally calculated to be accurate within
10 ms. A double buffer is used to store unprocessed A-scans
to reduce any processing delays. Since the swept-source laser
is free-running, a variable amount of A-scans may be collected
during each synchronized rotation, but this minimizes the angu-
lar “twist” that could occur if the systems were unsynchronized.
The GPU is used to perform a fast Fourier transform on spectra
to produce the depth profile image for each A-scan. A-scans are
averaged to produce 3072 scans per rotary image and then con-
verted to radial display using a polar-to-cartesian algorithm with
interpolation to obtain discrete pixels. Though the image is dis-
played at 512 × 512 pixels, 3072 scans are used to reduce alias-
ing during interpolation. Contours are calculated on these radial
images using an edge detection algorithm. Contours are proc-
essed by the EyeRobot2 platform to generate a “virtual fixture”
to restrict the motion of the probe, avoid collisions with the
cochlear membranes, and maintain a coaxial configuration
with the cochlear canal. Figure 7 shows the software workflow
used to process, display, and analyze rotary images in real-time.

3 Results
A rotation scan was taken midway down the cochlear canal of a
fixed, dry human temporal bone. The tissue from the bone was
removed during the preparation process, leaving only the bony
structures. Figure 8 depicts this scan, with the fiber and sheath
reflections filtered out and with anatomical annotations overlain.
The superior and inferior chambers of the cochlear canal are out-
lined, though the dividing scala media and membranes are
removed. The osseous spiral lamina, a bony projection from
the modiolus of the cochlea and a part of the structure dividing
the two chambers, is visible. From this, we can estimate the
location of the two membranes which form the scala media.
Rosenthal’s canal houses the spiral ganglion, the mass of neuron
bodies receiving input at the hair cells, and is visible medial to
the osseous spiral lamina. Just superior to that is a cavity formed
by the modiolar artery, which perfuses the cochlea.

Fig. 7 Multithreaded workflow of the CP-SSOCT software system.
CPU threads include the main (green), image processing (light
orange), postprocessing (purple), and robot communication threads
(red and blue). A GPU (dark orange) is used to perform the complex
FFT operation.

Fig. 8 A rotary scan depicting a cross section of a dry human tem-
poral bone, with annotations overlain for relevant anatomy. Because
the tissue has been removed during preparation, only bony structures
are visible; the cavities for the modiolar artery (MA) and spiral gan-
glion (housed in Rosenthal’s canal) are visible within the medial bor-
der of the cochlear canals. The location of the scala media, shown by
dotted lines, is estimated based on the bony projection of the osseous
spiral lamina (o.s.l.), bordered by Reissners membrane (RM) and the
BM.

Fig. 9 Radial scans of the cochlear lumen (a) just below the round
window (top-left), (b) in the middle of the canal (top-right), and
(c) at the basal turn (bottom-left) indicate the orientation of the
scala tympani and scala vestibuli. (d) A 1 × 1 mm2 inset (bottom-
right) demonstrates the ability of the probe to detect local anatomy.
(e) A sagittal cross section of the three-dimensionl (3-D) data volume
shows the curvature of the cochlear canal, with dotted lines
depicting the locations of (a)–(c). The osseus spiral lamina (o.s.l.)
is indicated in (a).
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Selected images taken from a scan down the round window
to the basal turn of a dry fixed human temporal bone are shown
in Figs. 9(a)–9(c). The reflection from the surface of the fiber
and the sheath are filtered out for display purposes. The lumen
of the cochlea in these images shows the merged scala tympani
and scala vestibuli (due to the removal of tissue when the bone is
fixed). The diameter and orientation of the canal fluctuate as the
probe progresses deeper. The probe is able to clearly detect the
surface. In Fig. 9(d), a 1 − 1 mm2 inset taken from Fig. 9(b)
shows the probe’s ability to detect local anatomy. The rotation
scans are stacked together to form a 3-D cube of data for the
cochlear canal. A sagittal slice from near center of the data
cube shows the trajectory of the cochlear canal from the
round window to the first turn in Fig. 9(e). The width of the
canal tapers from ∼1.5 mm just inferior to the round window
to <1 mm when approaching the first turn. The curvature of
the first turn can be visualized in this cross section.

The combination of an OCT imaging probe with the
EyeRobot2 platform allows for quantitative measurement of
cochlear anatomy required for 3-D OCT image registration.
After calibration, EyeRobot2 is capable of measuring the loca-
tion of the distal end of the OCT probe with micrometer accu-
racy. To image the entire canal, the probe is positioned at the
round window, parallel to the estimated axis of the cochlear
canal, and then guided with robotic assistance stepwise down
the length of the canal to the first basal turn. The probe is
advanced at 200 μm down its axis at each step, A rotary
scan is obtained, and a contour detection algorithm is applied
to detect the walls of the canal. These contours serve a dual pur-
pose: during the procedure, these contours allow the robot to
recenter the probe to maintain coaxial descent down the

canal and prevent trauma to the cochlear walls; after the pro-
cedure, these contours are processed to determine the orientation
and shape of the cochlea. The location of the distal end was
recorded by EyeRobot2 along with each rotary scan. 243 trans-
verse rotary scans were obtained along the canal, until the probe
reached the lateral wall of the first turn, traveling a total distance
of 5.02 mm. The rotary scans were stacked together to form a
3-D image cube. Figure 10 shows this image from (a) an iso-
metric angle and (b) down the lumen of the cochlear canal.
Figure 10(c) shows a surface profile calculated from the con-
tours. For image analysis, postprocessing of contours is done
by filtering out segments in which a clear contour could not
be detected (Video 2).

To validate that this 3-D registration model is anatomically
correct, the angle of rotation of the basal turn is calculated based
on the center axis of the canal. Using two piecewise orthogonal
distance regression lines in the relatively straight segments of
the canal proximal and distal to the start of the basal turn,
the angle of the basal turn was calculated to be 37 deg. This
angle of rotation for the proximal 5.02-mm segment down
the canal is more acute than that shown previously with 3-D
helico-spiral models of the human cochlea based on CT of
fixed histopathologic specimens,35 though this difference may
be accounted for by anatomical variations, changes in the cal-
culated curvature due to removal of soft tissue, and imaging only
up to the first turn.

4 Discussion
Understanding preoperatively the anatomy of a patient is critical
for mitigating risks of insertion trauma with cochlear implant

Fig. 10 (a) Isometric view of 3-D optical coherence tomography (OCT) volume of the cochlear canal.
(b) Bird’s eye view down the lumen of the cochlear canal. (c) Surface profile of the cochlear canal gen-
erated from the surface contours of the OCT scans taken at 200-μm intervals along the canal. Video 2
(MOV, 24.2 MB) [URL: http://dx.doi.org/10.1117/1.JBO.19.5.057004.2] shows postprocessing of con-
tours to form 3-D surface profile.
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surgery. In this work, we are able to demonstrate 3-D OCT regis-
tration using a sideviewing probe that is small enough to nav-
igate into the luminal space of the cochlea to produce high-
resolution images of the cochlea up to the first basal turn.
Using the micrometer accuracy and precision of the
EyeRobot2 platform, we are able to register the OCT images
to the robot’s frame and assist with navigation of the probe
to generate accurate metric data of the canal structure and ori-
entation The performance of our system was tested using a dry
ex vivo dry fixed human temporal bone. Images of the cochlear
canal in 3-D are produced along with quantitative spacial infor-
mation, producing a personalized anatomical atlas of the target
location of implant electrodes. These results suggest that a
robot-assisted CP-SSOCT approach to preoperative planning
and intraoperative guidance is feasible for cochlear implant
surgery.

The quantification of OCT endoscopy images can have a
meaningful impact on presurgical planning. Current standard
of care involves estimating the angle of the basal turn through
the use of sagittal CT cross-sections.36 Lloyd et al.37 discuss the
use of 3-D modeling as a way to improve accuracy in presurgical
planning, as compared with uniplanar measurements. The plat-
form described in this article is able to apply this concept using
OCT to quantify the angular profile of the scala tympani up to
the first turn.

Recent advances in endoscopy, such as spectrally encoded
endoscopy (SEE),38 allow for quantified high-resolution surface
profiles of anatomy by using spectral gratings. Kang et al.39 have
shown miniaturization of SEE probes to as small as 0.5 mm.
However, OCT provides an additional advantage in that it allows
for imaging of structures deep to the luminal surface, including
arteries and nerves. Importantly, the location of the medial wall
“spur” created by the osseous spiral lamina that houses critical
neural structures is readily discernible with the techniques
described here. As a tool to accurately detect critical boundaries
of the scala tympani, CP-OCToffers a refined strategy of in vivo
assessment of electrode array designs and surgical techniques
aiming to place the array in proximity to neural targets without
iatrogenic tissue injury.

A common-path approach to surgical use of OCT provides
crucial clinical benefits. The stability of these probes from mis-
alignment allows them to become disposable and robust enough
to be easily integrated into a surgical workflow. Though the SNR
and imaging depth are limited compared with lensed probes, for
narrow surgical workspaces like the inner ear, common-path
probes can be an excellent choice. In future work, we plan to
investigate the use of a balanced detector for CP-OCT as imple-
mented by Lorenser et al.,40 to improve the probe’s sensitivity.

This study has limitations that will be targeted in future work.
With in vivo studies, the probe’s performance in human tissue can
be accurately measured. We tested the probe on a dry bone where
the soft tisse was removed. An improved study could measure the
effects of wet tissue on the probe’s performance prior to an in vivo
study. Furthermore, the current probe is only able to measure up
to the first basal turn. With the use of a more flexible casing, the
probe can be integrated with the electrode array. This would allow
for real-time guidance during surgery, allowing the surgeon to
negotiate cochlear turns with accuracy, averting contact and dam-
age with the surrounding tissue. Improvement of distal optics,
such as the use of a sapphire half-ball lens, could increase the
sensitivity of the probe while maintaining a common-path con-
figuration and small diameter. The implications of this probe

are broad in both risk mitigation and improving the cost and effi-
ciency of the surgical procedure. A combination of these two fac-
tors could ultimately lead to increased accessibility of cochlear
implant surgery to the patient population.

5 Conclusion
To the best of our knowledge, this work demonstrates for the
first time the feasibility of a robot-mounted CP-SSOCT imaging
platform for 3-D image registration of the cochlear canal. The
system is able to accurately measure the spatial and angular pro-
files of an ex vivo human temporal bone and locates important
anatomical features. This platform has the potential to provide
surgeons with preoperative guidance to ensure accurate insertion
and atraumatic placement of the cochlear implant array.
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