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Abstract. Diffuse reflectance spectroscopy, which has been demonstrated as a noninvasive diagnostic tech-
nique, relies on quantitative models for extracting optical property values from turbid media, such as biological
tissues. We review and compare reflectance models that have been published, and we test similar models over
a much wider range of measurement parameters than previously published, with specific focus on the effects of
the scattering phase function and the source-detector distance. It has previously been shown that the depend-
ence of a forward reflectance model on the scattering phase function can be described more accurately using a
variable, γ, which is a more predictive variable for reflectance than the traditional anisotropy factor, g. We show
that variations in the reflectance model due to the phase function are strongly dependent on the source-detector
separation, and we identify a dimensionless scattering distance at which reflectance is insensitive to the phase
function. Further, we evaluate how variations in the phase function and source-detector separation affect the
accuracy of inverse property extraction. By simultaneously fitting two or more reflectance spectra, measured at
different source-detector separations, we also demonstrate that an estimate of γ can be extracted, in addition to
the reduced scattering and absorption coefficients. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
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1 Introduction
Diffuse reflectance spectroscopy (DRS), which encompasses
techniques with more specific designations, including elastic
scattering spectroscopy and light scattering spectroscopy, has
demonstrated high value in recent years relevant to the goal of
diagnosing disease in vivo1,2 in a wide range of organs, such as
brain,3 cervix,4 skin,5 colon,6 breast,7 esophagus,8 pancreas,9 and
oral cavity.10 Most commonly, DRS entails the transmission of
broadband light [anywhere from near-UV through visible to
near-IR (NIR)] through a fiberoptic probe to a turbid medium;
after propagating through the sample, a fraction of the light is
collected at the surface as reflectance, at a specified distance
from the source entry point. Figure 1 illustrates a commonly
employed probe geometry, with one fiber used for illumination
and a separate fiber for collection. The measured reflectance
spectrum can then be analyzed with appropriate mathematical
models to extract the optical properties of the tissue, such as
the reduced scattering and absorption coefficients (μ 0

s and μa,
respectively). These optical properties are directly determined
by the cell morphology, the extracellular matrix, and the bio-
chemistry and vascularization of the tissue, which undergo a
predictable set of changes during the progression of disease.1

Thus, optical property differences are directly related to changes
in the structural and biochemical tissue properties, and conse-
quently, quantification of these optical properties can be used

not only to inform about the tissue disease status, but also pro-
vide important contextual information about the physiological
state of the tissue.

The key, however, to reliable optical property quantification
and disease classification using DRS is in the use of an accurate
mathematical model to describe reflectance as a function of the
optical properties of the tissue. Development of such reflectance
models has been addressed using a variety of analytical and
empirical approaches, which are sensitive to a range of param-
eters, including μ 0

s and μa, and the geometric specifications of
the measurement probe. The description of reflectance as a func-
tion of optical property values was originally modeled using
diffusion theory based on the diffusion approximation to the
transport equation. 11 However, the use of diffusion theory is
generally restricted to the conditions of the diffusion approxima-
tion: (1) scattering dominates absorption; and (2) the distance
between the illumination and collection points is large compared
to the mean-free-path for scattering. Except in the NIR spectral
region, condition 1 is not generally met in tissue due to strong
absorption by hemoglobin; and condition 2 (large source-detec-
tor separation) is often a limitation when accessing internal tis-
sues or when highly localized tissue properties are sought. To
avoid these restrictions, alternative models based on modifica-
tions to the diffusion theory, Monte Carlo simulations, or empir-
ical formalisms from observation have been developed by
various authors over the past 15 years.12–24 As with diffusion
theory, however, these modified models only account for the
relationship between reflectance and the scattering and absorp-
tion coefficients and generally do not account for other factors
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that are important for describing light reflectance under nondif-
fuse conditions. The importance of the scattering phase function
(angular scattering probability distribution) is one such factor
that is chronically overlooked, having been addressed for the
incorporation into forward models by only a handful of
authors.3,19,25,26 Further, most of these models have been devel-
oped for a single illumination-collection geometry, focusing
either on very small source-detector separations (≤500 μm) or
on larger separations (of the order of several millimeters,
approaching the diffusion regime), with less attention paid to
intermediate distances.

In this work, we present a generalized formalism that
describes diffuse reflectance models for two-fiber collection
geometries, such as that shown in Fig. 1, over a wide range
of input parameters. This formalism provides an intuitive under-
standing of the trends concerning how reflectance is affected by
tissue optical properties and by measurement geometries. In par-
ticular, we focus on the effects of the scattering phase function
and the source-detector separation, ρ, both of which are known
to have strong influence on reflectance. The description of this
generalized formalism builds upon previous work, which has
explored expressions for reflectance as it relates these factors.
We review and highlight how these previous observations all
contribute and can be comprehensively understood within the
scope of a single framework.

In addition, we present several novel and significant obser-
vations that further enhance the understanding of the influence
of the phase function and source-detector separation on reflec-
tance models. These include the identification of a dimension-
less scattering distance (within the nondiffuse regime) at which
reflectance is insensitive to phase function, the use of a unique
error-estimation approach to evaluate the accuracy of inverse
property extraction (obtaining μ 0

s and μa estimates from in vivo
reflectance measurements), and the demonstration of a
simple method that allows for extraction of phase function
information (in addition to μ 0

s and μa) when analyzing reflec-
tance measurements at two or more different source-detector
separations.

Taken as a whole, the trends and observations described in
this work are intended to serve as a resource to better under-
stand, from an intuitive perspective, how various input param-
eters can be expected to influence reflectance measurements,
and the factors in probe geometry or experimental design that
can enable the best performance for accurate retrieval of the
desired tissue properties. Thankfully, with the recent advance-
ment of graphical processing units (GPUs) for parallel com-
puting, custom reflectance models can now be developed for

a wide range of measurement geometries and tissue optical
properties (including phase function) with relative ease.

We begin with a comprehensive review of diffuse reflectance
modeling and of phase function formalisms and trends specific
to the optical characterization of tissue in Sec. 2. This is fol-
lowed by a description of the Monte Carlo code and methods
used for the investigation of reflectance relationships along
with a description of the novel error-estimation approach for
investigating the accuracy of inverse-model property extraction
in Sec. 3. Section 4 presents the generalized reflectance frame-
work that describes the relationships among reflectance values,
optical property values (with particular emphasis on phase
function), and source-detector separation. Inverse-model error
analysis results are also presented and discussed. Previous con-
tributions by others are clearly identified, as well as our own
novel advancements. We conclude with key insights and recom-
mendations concerning experimental design to minimize errors
due to phase function uncertainty.

2 Background

2.1 Modeling Reflectance

In the context of DRS, a forward model is any function that
quantitatively describes the relationships between measured
reflectance and the multiple input parameters that will influence
reflectance, such as the tissue optical properties and the geom-
etry specifications of the optical measurement. The primary
motivation for understanding these reflectance relationships is
not for use in forward direction calculations, but rather for
use in solving the inverse problem (calculating tissue optical
properties from measured reflectance). The relationship between
forward and inverse models is expressed generically in Eq. (1),
where R represents measured reflectance, pðθÞ is the scattering
phase function, andG represents all probe geometry parameters.

Forward∶ R ¼ f½μ 0
s; μa; pðθÞ; G�

Inverse∶ ½μ 0
s; μa; pðθÞ� ¼ f−1ðR;GÞ: (1)

2.1.1 Forward model

The forward model can be described in various ways either with
analytical/empirical closed-form equations, or computationally
using Monte Carlo simulations or look-up tables. Analytical
forms include the diffusion theory equation and its many modi-
fied versions.11,13,16,26 Monte Carlo based reflectance models
calculate reflectance using a single simulation, making use of
similarity relationships to calculate reflectance for a large
range of optical coefficients.24 Look-up tables, as their name
implies, allow for calculation of reflectance by looking up a
value based on a set of input optical parameters within a
table of data collected from either phantoms or Monte Carlo
simulated data.27 Empirical models use experimental data
(again, either from phantoms or Monte Carlo simulated data)
and fit it to a proposed closed-form equation that describes
the data well.17–23,28 Several of these empirical models,23,28

including one developed by our group,22 describe the relation-
ship between reflectance and optical property coefficients (μ 0

s
and μa) using the framework of Beer’s Law, where reflectance
under conditions of negligible absorption, R0, is scaled based on
the absorption coefficient, μa, and the average photon path
length, hLi. Scattering-only reflectance, R0, is modeled to be

Reflectance =
Idetector/Isource

Detector Source

s a

dfiber

Fig. 1 Schematic of the two-fiber reflectance geometry.
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a function of μ 0
s, and hLi is modeled to be a function of μ 0

s
and μa.

R ¼ R0e−μahLi: (2)

The relationships describing R0 and hLi as functions of μ 0
s and

μa contain constant coefficient values that are unique for a given
optical probe geometry and tissue phase function, such that the
model can be customized for a specific measurement probe.

We note that, regardless of the specific form of the reflec-
tance model (empirical, analytical, look-up table, etc.), as
long as the description of each forward model represents the
same reflectance relationships (reflectance versus optical prop-
erty values) under the same geometry conditions, their perfor-
mance in the inverse direction will be equivalent. Therefore, in
this paper, we explore the dependence of reflectance models on
the phase function and probe geometry from a general perspec-
tive. Relationships between reflectance and optical property
values will be illustrated in a graphical format—reflectance
as a function of μ 0

s or μa—with the understanding that this
information can be converted into one of the other model for-
mats as needed. (Empirical equations and lookup table formats
provide the most flexibility for this purpose.) These graphical
reflectance relationships form the basis of the generalized reflec-
tance model formalism that is presented in Sec. 4.

2.1.2 Inverse model

Because reflectance values are not uniquely associated with a
single combination of scattering and absorption properties,
using any model in the inverse direction is a fundamentally
ill-posed problem and requires use of wavelength-dependent
relationships for μ 0

s and μa to reduce the dimensionality of
the problem. In models of tissue, the spectral shape of μ 0

s is
often based on a power law,14,15,23,27 and the absorption coeffi-
cient is often determined by a linear combination of concentra-
tions and extinction coefficients for oxyhemoglobin and
deoxyhemoglobin [εHbOðλÞ and εHbðλÞ, respectively] sometimes
with the addition of a correction for a vessel-packing factor,
Ccorr, to account for the fact that blood is confined within
blood vessels rather than uniformly distributed.29,30 Thus, the
tissue parameters can be represented as follows:

μ 0
s ¼ a

�
λ

λ0

�
−b

μaðλÞ ¼ f1Ccorrðr; λÞμa;bloodðf2; λÞ; (3)

where λ0 is a normalization wavelength. Here, μa;blood, which is
the absorption coefficient of whole blood, and Ccorr are calcu-
lated as30

μa;bloodðλÞ ¼ cHb;blood½f2εHbOðλÞ þ ð1 − f2ÞεHbðλÞ�

Ccorrðr; λÞ ¼
�
1 − exp½−2μa;bloodðλÞr�

2μa;bloodðλÞr
�
; (4)

where cHb;blood is the concentration of hemoglobin in whole
blood. Other contributions to the tissue absorption coefficient
(e.g., beta carotene for adipose tissue in the visible, or water
for any tissue in the NIR) can be added to μa as appropriate
for the specific tissue and wavelength range. The remaining
five coefficients include a and b, representing the scattering
coefficient at a normalization wavelength, λ0, and the scattering
power-law exponent, related to average scatterer size,

respectively, and f1, f2, and r, representing the blood volume
fraction (%), the hemoglobin oxygen saturation (%), and the
average blood vessel radius, respectively. These wavelength
relationships for μ 0

s and μa [Eqs. (3) and (4)] can then be sub-
stituted into any desired forward model. Measured reflectance
spectra are fit to the model using a nonlinear least-squares
curve fitting method, such as the Levenberg-Marquardt method,
with a, b, f1, f2, and r as the fitting coefficients. Thus, each
measured spectrum can be characterized by these five physio-
logical parameters. While these wavelength-dependent expres-
sions for μ 0

s and μa are specific to tissue, by selecting alternative
wavelength-dependent expressions, reflectance models can be
used in the inverse direction to extract optical properties of
any turbid medium.

2.2 Phase Functions

The phase function, pðθÞ, of a scattering sample specifies the
probability distribution of scattering angles and is typically nor-
malized to 1, integrated over all solid angles. To generalize the
phase function, the anisotropy factor, g, is defined as the average
cosine of the scattering angle, hcosðθÞi. In tissue, g ranges,
typically, between 0.75 and 0.99.31 The scattering coefficient,
μs, and the anisotropy factor, g, are often combined into a
single parameter, known as the reduced scattering coefficient:
μ 0
s ¼ μsð1 − gÞ. This similarity relationship is based on the

assumed condition that observed optical measurements are
equivalent for any combination of g and μs that results in the
same μ 0

s.
32

Interest in the influence of the details of the phase function on
reflectance measurements was originally reported by Mourant et
al., Bevilacqua and Depeursinge, and Kienle et al., who dem-
onstrated that reflectance is dependent on the specific form
of phase function for reflectance measured close to the source
(<1 mm source-detector separation in tissue), thus negating the
applicability of the reduced scattering coefficient similarity con-
dition for short distances.19,33,34 Bevilacqua and Depeursinge
further explored the relationship between phase function and
reflectance by considering higher moments of the phase func-
tion and by developing a new similarity relationship applicable
for small source-detector separations.3,19 More recently, Kanick
et al. have also utilized this similarity function for single-fiber
source-detector geometries.35 In the derivation of the new sim-
ilarity relationship, the phase function is expanded into a series
of Legendre polynomials, where gn are the n’th-order Legendre
moments. The first-order moment, g1, is equivalent to the famil-
iar anisotropy factor, g. To calculate its value from any arbitrary
phase function, the following equation can be used:36

g ¼ g1 ¼
Z

π

θ¼0

pðθÞ sin θ cos θdθ; (5)

Similarly, using the second Legendre polynomial, ð3 cos2 θ−
1Þ∕2, the second moment, g2, can be calculated as

g2 ¼
Z

π

θ¼0

pðθÞ sin θ

�
1

2
ð3 cos2 θ − 1Þ

�
dθ: (6)

The calculations of g1 and g2 from Eqs. (5) and (6) assume
that the phase function piðθÞ is already normalized, such that
∫ π
θ¼0piðθÞ sin θdθ ¼ 1. From these two moments, the new sim-

ilarity relationship and parameter is defined
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γ ¼ ð1 − g2Þ
ð1 − g1Þ

: (7)

In the nondiffuse regime (i.e., when scattered light is detected
after experiencing only a few scattering events), this additional
parameter, γ, in addition to μ 0

s, helps to more accurately describe
the scattering properties of a medium.19 Under these conditions,
observed optical measurements will be equivalent for any com-
bination of g, μs, and g2, which result in the same values for μ 0

s
and γ. From a physical perspective, γ is representative of the
relative contribution of near-backward (large-angle) scattering
in a phase function. The consideration of γ in quantitative reflec-
tance models has been limited to an empirical model by
Bevilacqua and Depeursinge, which employs multiple source-
detector separations for use with radially resolved analysis,3,19

and more recently, a model for single-fiber reflectance measure-
ment geometries by Kanick et al.35 Extending the work of these
two groups, the generalized reflectance formalism presented in
Sec. 4 examines the role of the parameter γ in reflectance models
for two-fiber geometries over a broad range of separations.

The use of γ is applicable to any phase function representa-
tion, including the commonly adopted Henyey-Greenstein
(HG), modified HG (MHG), and more rigorous Mie theory
formalisms, as described below.

2.2.1 Henyey-Greenstein and modified
Henyey-Greenstein

The HG phase function is the most widely used function in the
bio-optics community due to its simplified representation of
tissue scattering.37 It is defined by the following equation:

pHGðcos θÞ ¼
1

4π

1 − g2HG
ð1þ g2HG − 2gHG cos θÞ3∕2 . (8)

By selecting a given g value, all other Legendre moments are
automatically fixed: gn;HG ¼ gn1 . Thus, the possible values for
γ range from 1.0 to 2.0, as constrained by g1 < 1.0.

From the few experimental studies on true effective phase
functions in tissue, it has been observed that the HG phase func-
tion underestimates high-angle backward scattering.34,38,39 To
address this drawback, a modified version of the HG function
was proposed that combines the standard HG function with
an added Rayleigh scattering component, which contributes
additional high-angle scattering. Known simply as the MHG
phase function, it is defined as

pMHGðcos θÞ ¼ βpHGðcos θÞ þ ð1 − βÞ 3

4π
cos2 θ; (9)

where β is the fractional contribution of the standard HG phase
function, and conversely, ð1 − βÞ is the fractional contribution of
the Rayleigh scattering component.19 The first and second
moments are easily calculated from the following:

g1;MHG ¼ βgHG g2;MHG ¼ βg2HG þ 2

5
ð1 − βÞ; (10)

where gHG is the g value used to construct the HG phase function
contribution from Eq. (6). With the added flexibility of the MHG
phase function, both g and γ can be controlled individually. Values
of γ, however, are limited to the range of 1.0 to 2.0 due to math-
ematical constraints of the HG and MHG phase functions.

2.2.2 Mie theory phase function

A more rigorous estimation of the phase function in tissue can
be calculated from Mie theory by approximating tissue as a dis-
tribution of discretely sized spherical particles. By combining
the individual phase functions from each sphere size, weighted
by relative concentrations of different sizes, an average phase
function can be constructed to represent the bulk medium.
One proposed approach to selecting the appropriate sizes and
distribution of particles to best approximate tissue is to use
a fractal distribution, based on observations that refractive
index variations measured by phase-contrast microscopy scale
according to a power law.40–42 The number density, Ni, of
each particle size di is then defined as

Ni ¼ ðd0∕diÞα; (11)

where d0 is the representative size of a spherical volume con-
taining the particles, and α is the fractal volume dimension that
relates to the ratio of small versus large particles.40 A large α
value corresponds to a greater ratio of small to large particles.

For each discrete particle size, Mie theory is used to calculate
the scattering cross-section, σsðdiÞ, and the anisotropy factor,
gðdiÞ, using values for the medium and particle indices of refrac-
tion that are representative of cytoplasm (nm) and cellular
organelles (np), respectively. Schmitt and Kumar calculated
average values of nm ¼ 1.352 and np ¼ 1.39 to 1.45.42 Using
the assumption that waves scattered by individual particles add
linearly, the anisotropy factor is defined as

g ¼
P

m
i¼1 d

−α
i σsðdiÞgðdiÞP

m
i¼1 d

−α
i σsðdiÞ

; (12)

where m is the total number of discrete particle sizes in the
distribution.43,44 The combined phase function, pðθÞ, can be cal-
culated from a linear combination of the scattering amplitude,
S11 (as defined by Bohren and Huffman in their formulation of
Mie theory45), scaled by the number density of spheres.

pðθÞ ¼
P

m
i¼1 d

−α
i S11ðθ; diÞP
m
i¼1 d

−α
i

: (13)

Calculation of g1 and g2 can then be performed using Eqs. (5)
and (6).

The use of Mie theory and the fractal distribution model of
scattering sizes offers a unique opportunity to examine the rela-
tionship between g and γ. Throughout this paper, calculations
are performed using refractive index values and particle diam-
eter values from the literature:42,43 np ¼ 1.42, nm ¼ 1.352,
d ¼ ½10; 100; 150; 400; 600; 800 nm; 1; 3; 10; 20 μm�, and a
wavelength of λ ¼ 600 nm. The fractal dimension, α, is varied
between 2 and 6, each value of α corresponding to a unique pair
of g and γ. Different selections for np, nm, λ, and the discrete
particle sizes will yield slightly different numerical results for
the relationship between γ and g, but, in general, the trends
remain the same.

Figure 2 demonstrates that the relationship between g and γ is
nonlinear and that γ increases more rapidly for large g values,
especially when g > 0.8. This is especially important since most
tissues have g values in this higher range. Further, the values of γ
in this region are generally >2.0 (dependent on the values of np,
nm, d, and λ), which is the upper limit of γ for the HG and MHG
phase functions, indicating that a phase function constructed
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from Mie theory is more appropriate when modeling tissue.
Values of γ in tissue have been found to range from 1.7 to
2.2, which highlights the importance of using a phase function
capable of γ values >2.3 Bevilacqua and Depeursinge have pre-
viously analyzed the space of possible combinations of values
for g1, g2, and γ for various phase functions, noting the larger
range of possible combinations for Mie phase functions as com-
pared to HG and MHG.19 The analysis here differs by limiting
the Mie phase functions to those constructed using the fractal
particle distribution model, providing a simplified understand-
ing of the relationship between g and γ that is specifically rep-
resentative of tissue.

For the purposes of comparison, Fig. 3 illustrates constructed
functions for the HG, MHG, and Mie phase function descrip-
tions. All three functions are for g ¼ 0.7. However, the HG func-
tion has γ ¼ 1.7, while the MHG and Mie functions have values
of γ ¼ 1.4, which can be seen in the differences in high-angle
scattering between the HG function and the MHG andMie func-
tions. Note also that, despite having the same γ value, the MHG

and Mie phase functions are not identical. Differences between
the two result from, and can be observed in variations in the
higher-order Legendre moments (gn).

It is important to note that these phase functions are
presented using the standard representation that specifies
the distribution of light intensity scattered as a function of
angle [pðθÞ], i.e., the relative power per unit solid angle that
is observed at a given angle in a steady-state system.
Alternatively, the phase function can be expressed as a proba-
bility distribution of scattering angles [p 0ðθÞ], i.e., the probabil-
ity that a photon will scatter at a given angle. The difference
reflects the inherent field versus photon representation issue
common in optics; the two forms are related as p 0ðθjÞ ¼
pðθjÞ sin θj. In the literature, phase functions have been
reported in both ways, without specifying which form is being
used, which often leads to confusion.46,47 The angular represen-
tation, p 0ðθÞ, needs to be used when sampling scattering direc-
tion changes in Monte Carlo simulations.

3 Methods

3.1 Monte Carlo Simulations

“Experimental” data for the work in this paper were obtained
from Monte Carlo simulations. Computational simulation
allows for a controlled and exact approach to the comparison
of various models and input parameters, which would be
more difficult experimentally using phantoms. A version of
Monte Carlo for multilayered tissue48 adapted for use on a
GPU was used for increased speed.49 This code was modified
to launch and collect photons within the area and numerical
aperture of user-defined fibers to model the two-fiber probe
geometry (one illumination and one collection fiber), as illus-
trated in Fig. 1. Additionally, the code was modified to provide
a choice in phase function, allowing the user to select phg, pmhg,
pmie, or any other user-defined phase function at run time.

Monte Carlo simulations were run in sets, each having iden-
tical geometry and phase function input parameters. Table 1
reports the values of all input parameters used for the simula-
tions. In each set, simulations were run for a set of combinations
of reduced scattering coefficient values, μ 0

s, and absorption coef-
ficient values, μa. For all simulations, constant values for the
refractive index of the tissue, the refractive index of the fibers,
the numerical aperture of the fibers, and the fiber diameter were
used. All simulations were terminated upon the collection of
10,000 photons, such that the variances of the simulations
were equivalent at ∼1% according to Poisson statistics.
Because of the equivalence of variances, and their small 1%
value, error bars are not included on plots of results.

To examine the effects of source-detector separation, sets of
simulations were run for a range of values, ρ. And for explora-
tion of the effects of phase function, simulations were run
assuming an MHG phase function form using various combina-
tions of g and γ. All combinations of the two variables were
constructed, but due to the mathematical limitations of the
form of the formula for MHG, phase function combinations
with γ ¼ 1.9 and g ¼ 0.75 and 0.85 are not possible and,
thus, could not be simulated and evaluated. Mie theory–based
phase functions were also considered, using constant refractive
index values, particle sizes d, and wavelength λ, while varying
the fractal dimension, α. Resulting anisotropy values of g and γ
were calculated using Eqs. (5), (6), (7), and (13). The values
were selected such that the values of γ were spaced equally

Fig. 2 Relationship between the anisotropy values, g and γ (for the
specific parameters np ¼ 1.42, nm ¼ 1.352, λ ¼ 600 nm), as calcu-
lated from Mie theory using a fractal distribution of scattering particle
sizes (d ¼ ½10;100; 150;400; 600;800 nm; 1;3;10;20 μm�) with the
fractal dimension, α, varied between 2 and 6. Differences in refractive
index values and/or particle sizes will provide different numerical
results, but the generalized shape of the curve will remain consistent.

Fig. 3 Comparison of a Henyey-Greenstein (HG), a modified Henyey-
Greenstein (MHG), and a Mie phase function, all with g ¼ 0.7, but with
different γ values (HG: γ ¼ 1.7, MHG and Mie: γ ¼ 1.4).
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between 1.2 and 2.3; the range of γ was chosen to correspond to
physiologically relevant anisotropy values between g ¼ 0.55
and 0.96 (see Fig. 2). The particle sizes and refractive index
values are representative of tissue.42,43

While only two phase function models (MHG and Mie) were
chosen here for analysis, note that regardless of the mathe-
matical form of the phase function, the γ similarity relationship
dictates that reflectance values will be equal for equal values of
γ, and thus, the details of the higher-order moments of various
models is not significant when considering reflectance model
trends. Nonetheless, we note that only Mie theory can be
invoked for values of γ > 2.0.

3.2 Inverse Modeling: A Different Approach to
Error Analysis

As previously demonstrated in the literature,19,26,35 reflectance
models depend on phase function, and hence, the choice of a
model to use in the inverse direction requires knowledge of
the tissue phase function. However, in most cases, this informa-
tion is not known a priori and, consequently, assumptions must
be made. An incorrect assumption will affect the accuracy of
extracted scattering and absorption properties from measured
reflectance; we wish to quantify the degree to which an incorrect
assumption affects these extracted values. Unfortunately,
because there is currently no gold standard for measuring the
optical and physiological parameters from point measurements
in tissue, it is not possible to experimentally test the effects of
model differences. Therefore, the error analysis presented in this

work uses computationally constructed reflectance data, which
allows for a more controlled and exact approach to the compari-
son of various models and input parameters.

This analysis first involves computationally constructing a
set of reflectance spectra that are representative of the true
model and tissue properties. Then the assumed reflectance
model, which is different from the true model due to inaccurate
assumptions about tissue phase function, is used in the inverse
direction to extract the fitted optical property values. The
differences between these extracted values and the actual prop-
erty values, thus, provide a measure of error that represents
the potential uncertainty in in vivo measurements. We note
moreover, that this technique is novel in its approach to exam-
ining error in terms of extracted physiological values from
reflectance spectra, as opposed to reporting error exclusively
of the optical coefficient values.

It is difficult to define a single estimate of error because the
errors in extracted quantities are directly related to μ 0

s and μa
themselves. Hence, errors are calculated for multiple reflectance
spectra, each with different scattering and absorption properties.
A set of wavelength-dependent μa and μ 0

s spectra are first calcu-
lated using Eqs. (3) and (4), over a wavelength range from 400
to 800 nm at a resolution of 1 nm (for a total of 400 data points).
Values for the five physiological fitting variables (a, b, f1, f2,
and r) were selected such that the resulting μa and μ 0

s spectra
would span the ranges characteristic of tissue. For scattering,
four spectra were selected to represent overall low scattering
(a ¼ 8, b ¼ 1), medium scattering (a ¼ 16, b ¼ 1), high scat-
tering (a ¼ 24, b ¼ 1), plus one with a large slope representing
a high density of smaller scatterers (a ¼ 16, b ¼ 2). The refer-
ence wavelength λ0 was selected to be 600 nm. For absorption,
spectra were selected for a physically representative range of
absorption values (blood volume fraction, f1 ¼ 0.5, 2, and
5%), all with a moderate hemoglobin oxygen saturation level
(f2 ¼ 75%). For all cases, the average blood vessel radius is
held constant at r ¼ 10 μm which is representative of capilla-
ries. Using all combinations of the scattering and absorption
conditions, a set of 12 unique scattering and absorption spectra
were used for testing.

Computationally constructed reflectance spectra, represent-
ing measured data, are calculated using the test scattering
(μ 0

s) and absorption (μa) spectra according to Eq. (1), where
the forward reflectance model is specific to a single phase func-
tion [pðθÞ] and measurement geometry (G). Reflectance values
are calculated using the forward model via a lookup table com-
posed of Monte Carlo simulated reflectance data specific to the
unique pair of pðθÞ and G. A bilinear interpolation algorithm
(available in MATLAB®) was used to calculate reflectance val-
ues for combinations of μ 0

s and μa not explicitly listed in the
table. Noise of 1% was added to the spectra to better represent
experimentally acquired data.

As previously mentioned, when using reflectance models in
the inverse direction, the least-squares fitting algorithm is insen-
sitive to the specific form of the forward model as long as the
modeled reflectance is negligibly different over the set of μa and
μ 0
s values. Hence, the choice of model format to use in the

inverse direction can be based primarily on preference. For
flexibility, we have chosen to use an interpolation lookup
table method (with the same lookup table format used to
construct the reflectance spectra). This is easily implemented
in MATLAB® using the lsqcurvefit toolbox (using the
Levenberg Marquardt optimization algorithm), as it can be

Table 1 Input parameters for Monte Carlo simulations. Parameters
listed with an asterisk (*) are constant for all simulations.

Input parameter Simulated values

Reduced scattering coefficient μ 0
s ¼ ½1; 5;10; 15; 20;30;45� cm−1

Absorption coefficient μa ¼ ½0; 1; 5;10;15; 20; 30�

Source-detector separation ρ ¼ ½250; 500;1000;3000;
5000; 10;000� μm

Tissue refractive index* nt ¼ 1.37

Fiber parameters* nf ¼ 1.46, NA ¼ 0.22,
d ¼ 200 μm

Modified Henyey-Greenstein phase function parameters

Anisotropy factor, g g ¼ ½0.75; 0.85;0.95�

Anisotropy factor, γ γ ¼ ½1.3;1.5;1.7;1.9�

Mie phase function parameters

Indices of refraction* np ¼ 1.42, nm ¼ 1.352

Particle diameters* d ¼ ½10;100; 150;400; 600;
800 nm;1; 3; 10; 20� μm

Wavelength* λ ¼ 600 nm

Fractal dimension α ¼ ½4.9;4.33; 3.75;3.18; 2.60�

Resulting anisotropy factors,
g and γ

g ¼ ½0.55; 0.73;0.86; 0.93;0.96�
γ ¼ ½1.2;1.45;1.75;2.05; 2.30�
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constructed with any user-defined computational function for
the forward model regardless of functional form.

When calculating optical property extraction error associated
with inaccuracies in phase function assumptions, reflectance
spectra were calculated for all combinations of μ 0

s and μa spectra
listed above, yielding a set of 12 reflectance spectra. The
assumed reflectance model, representing an inaccurate choice
of phase function, is then used in the inverse direction to fit
each of the 12 true reflectance spectra and extract the fitting
coefficients (a, b, f1, f2, and r) and, consequently, the μ 0

s
and μa spectra. Errors in extracted optical and physiological val-
ues are reported as an average across all 12 combinations on
a percentage basis for the physiological parameters (a, b, f1,
f2, and r), and as the mean percentage error across the entire
wavelength range for the optical coefficients (μa and μ 0

s).

4 Results and Discussion

4.1 Phase Function Dependence

Many reflectance models, specifically empirical models
describing reflectance at small source-detector separations, have
assumed an HG phase function with an anisotropy value
g ¼ 0.9.17,18,20,22 As introduced in Sec. 2.2, the MHG and the
Mie phase functions have been shown in the literature to be
more representative of true scattering in tissue as a consequence
of the higher probability for large-angle scattering.

To examine the impact of these phase functions that are more
representative of tissue, specifically the influence of both g and
γ, reflectance relationships were simulated for a range of g and γ
values. The MHG phase function is user-friendly for this pur-
pose, since it conveniently enables independent variation of g
and γ. Phase functions constructed using values of g and γ
described in Sec. 3.1 were examined using a source-detector
separation of 250 μm. Figure 4 illustrates the resulting reflec-
tance relationships when each of the phase functions is used
for simulation.

In much of what follows, reflectance models are reported
graphically in a set of two plots, as illustrated in Fig. 4. The
left plot illustrates the relationship between the relative reflec-
tance and the reduced scattering coefficient, μ 0

s, in the absence of
absorption, and the right plot illustrates the relationship between

reflectance and the absorption coefficient, μa. In the plot of
reflectance versus μa, reflectance values are normalized to 1
at μa ¼ 0. This highlights the shape differences rather than
the overall amplitude differences in reflectance, as caused by
differences in μ 0

s. The two subplots correspond to the two com-
ponents of the empirical model format inspired by Beer’s Law,
presented in Eq. (2); the first represents Eq. (2) when μa ¼ 0

such that RREL ¼ R0ðμ 0
sÞ, and the second represents Eq. (2) nor-

malized such that RNORM ¼ R∕R0 ¼ e−μahLi. This graphical
representation is useful for identifying trends, as it helps to
distinguish the dependences of scattering and absorption
separately.

Most importantly, Fig. 4 reveals that when γ is held constant,
the influence of g is remarkably small. Conversely, when g is
held constant, reflectance values vary significantly with γ. At
μ 0
s ¼ 5 cm−1 and μa ¼ 0, reflectance for γ ¼ 1.3 is more than

three times larger than for γ ¼ 1.9. Differences due to γ in
the reflectance versus μa relationships are more moderate, but
still show a significant dependence. This observation for a two-
fiber geometry reflectance relationship follows from previous
work by both Bevilacqua et al. and Kanick et al. (for radially
resolved multifiber geometries and for single-fiber geometries)
in that the critical phase function variable to consider when
building reflectance models (for short source-detector distances)
is γ, and not g.3,19,35 We further emphasize not only that γ is more
influential than g, but also that the influence of g is limited;
phase functions with different g values, but the same γ value,
have reflectance relationships that are essentially similar.

Because the MHG phase function is restricted to γ values <2,
and yet Mie phase functions constructed to represent tissue have
possible γ values >2, we also examined how Mie phase func-
tions, which are more representative of tissue, influence reflec-
tance relationships for an even wider range of γ. These results
are presented in Fig. 5. As compared to the reflectance relation-
ships built with the MHG phase function, the differences due to
γ in the reflectance versus μa relationships are qualitatively
similar. The differences in reflectance for the reflectance
versus μ 0

s relationships, however, have increased such that, at
μ 0
s ¼ 5 cm−1, reflectance for γ ¼ 1.2 is nearly six times larger

than for γ ¼ 2.3. Further, as γ increases, the differences in reflec-
tance become more substantial. For example, when considering

Fig. 4 Reflectance relationship plots for a probe geometry with ρ ¼ 250 μm, and different MHG phase
functions. Colors and symbols correspond to different γ values and line styles correspond to different g
values. Note that plots for the combinations g ¼ 0.95 and γ ¼ 1.7 and 1.9 are not present due to the
mathematical limitations of the MGH phase function with these values.
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g values most representative of tissue (g > 0.85), the differences
in reflectance values of γ between 1.75 and 2.3 are compara-
tively greater than those for values between γ ¼ 1.2 and 1.75,
even though, in the first case, g only ranges from 0.86 to 0.96,
whereas in the second, g ranges from 0.55 to 0.86. This indicates
that the impact of γ is even stronger for g values most commonly
expected in tissue.

We offer an intuitive explanation for trends observed regard-
ing the influence of γ on reflectance, which can be explained by
the relative number of large-angle scattering events that are
expected to occur. For the reflectance versus μ 0

s relationships,
reflectance is smaller when γ is larger. At small source-
detector-separations, such as that used in the above simulations
(250 μm), for a photon to be collected, it can only scatter a
modest number of times, and at least one of those events
must be at a large angle such that the photon can turn around
and reach the collector. Lower γ phase functions have larger
probabilities for these backward-scattering events (see Fig. 3)
and, therefore, allow for more photons to be redirected back
toward the fibers and collected. Conversely, the low probability
of backscattering characterized by a high-γ phase function will
result in photons traveling far from the source and detector due
to the predominance of forward scattering, and when the photon
does experience a large-angle scattering event, it will likely be
so far away from the detector that the probability for collection
is low. This effect is amplified for small values of μ 0

s, since aver-
age path lengths are longer, and therefore, photons will propa-
gate much farther from the collection fiber with a fewer number
of scattering events. With fewer opportunities for large-angle
scattering, fewer photons will reach the collector.

The influence of backscattering can also explain why reflec-
tance is greater for high γ values in the reflectance versus μa
relationships. As we have established, with a larger γ, the prob-
ability of high-angle scattering is lower, and the probability of
forward scattering is larger. Many forward-scattering events
will move the photon away from the detector very quickly.
Therefore, the most likely scenario for a photon to be collected
would then be to experience one high-angle scattering event in
conjunction with a small number of forward-scattering events.
When γ is lower, the photon experiences more scattering events
at moderate scattering angles, which allows it to scatter more
times while still staying near the collector, thus enhancing its
probability for being collected. This larger number of scattering
events corresponds to a longer average path length, and, as

determined by Beer’s law, a longer traveled path length results
in higher absorption and, thus, a lower reflectance.

4.1.1 Error analysis

Under practical conditions, when reflectance from a single
collection fiber is being used for an inverse analysis to extract
optical property values, assumptions about the value of γ and its
corresponding reflectance model must be made since the exact
value of γ is typically unknown. With most tissues of interest,
even if the anisotropy value, g, is assumed to be>0.85, the range
of γ is still quite large (γ ¼ 1.75 to 2.3), as is demonstrated in
Fig. 2. Within this range, it is then logical to assume an average
value of γ near 2.0. To estimate the effect that an inaccurate
assumption will have on the accuracy of the extracted optical
coefficient values, the novel error analysis method, described in
Sec. 3.2, was employed. A set of 12 reflectance spectra were
constructed from the μ 0

s and μa test spectra, using the reflectance
model for γ ¼ 1.75. The reflectance model for γ ¼ 2.05 was
then used in the inverse direction to extract the optical property
values from the reflectance spectra. This represents a situation
where the tissue being measured has a phase function with
γ ¼ 1.75, but the inverse model incorrectly assumes a phase
function with γ ¼ 2.05. This analysis was also performed
assuming a large γ value, γ ¼ 2.3. Figures 6 and 7 illustrate
the errors in optical coefficient values that result from this analy-
sis for an example case with tissue physiological properties
a ¼ 16, b ¼ 2, f1 ¼ 5%, f2 ¼ 75%, and r ¼ 10 μm.

When γ is underestimated, the μ 0
s and μa extracted values are

higher than expected, and when γ is overestimated, the μ 0
s and μa

extracted spectra have values lower than expected. The mean
errors in optical and physiological values, averaged over both
cases, are presented in Table 2. Note that these errors represent
comparison of γ values with differences ≤0.3. In the extreme
case, when comparing forward models with differences in
γ > 1.0, extraction errors in μa and μ 0

s were found to exceed
100%. But in realistic situations, assuming an average γ for
the inverse fit is much more reasonable.

We remind the reader that the errors reported here are the
averages over the 12 combinations of μ 0

s and μa test spectra.
However, the errors are also dependent on the specific μ 0

s and
μa values being used. For scattering in particular, the low-
scattering spectra (a ¼ 8 cm−1, b ¼ 1) will result in extraction
errors in μ 0

s that are two to three times larger than for the high-
scattering spectra (a ¼ 24 cm−1, b ¼ 1). Although partially due

Fig. 5 Reflectance relationship plots for a probe geometry with ρ ¼ 250 μm, for a range of Mie phase
functions, each with unique g and γ values.
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to the fact that percentage errors are greater for smaller values,
this is primarily due to the greater differences in reflectance at
smaller μ 0

s values from variations in γ (see Figs. 4 and 5).
Because differences in reflectance as a function of μa, which
are due to variations in γ, are much smaller than differences
in reflectance as a function of μ 0

s, the errors in extracted μa,
f1, f2, and r are also significantly smaller.

Note on goodness-of-fit. A new and remarkable observation
from Figs. 6 and 7 is that, despite significant errors in the
extracted optical properties, the reflectance spectra for the for-
ward model fit are almost perfect! As compared to the fit of
the reflectance spectra when the true and assumed values of
γ match, the fits of the reflectance spectra when the true and

assumed values of γ are different result in fittings of the reflec-
tance model that are only slightly inferior. This is quantitatively
verified by comparing the mean normalized residual of the fits:
< Rfit − Rtruej∕Rtrue > over all wavelengths. For matching γ, the
average of the mean normalized residuals (over the 12 test spec-
tra) is 0.0045, and for nonmatching γ, the average value is
0.0056, both of which are within the 1% noise that was
added to the reflectance spectra.

The implication of this novel observation is that accuracy in
the extracted optical coefficient values cannot be associated with
the goodness-of-fit of the forward reflectance model to the data.
This is of particular significance because the validity and suit-
ability of a given reflectance model is often reported as being
verified by the goodness-of-fit that it demonstrates when
used to fit experimental reflectance data. In reality, the good-
ness-of-fit measure can only be used to verify a model if that
model accounts for all sources of potential variability (phase
function, source-detector separation, fiber diameter, fiber and
probe material indices of refraction, etc.), and if the wavelength-
dependent assumptions concerning the spectral shapes of μ 0

s and
μa (when using wavelength-dependent fitting as is employed in
this work) are well representative of the tissue being measured.
In practice, it is prudent not to assume a significant level of cer-
tainty in these factors to make conclusive verifications based on
goodness-of-fit alone.

(a) (b)

Fig. 6 (a) Fitting results of forward model to reflectance data built using a phase function with γ ¼ 1.75,
but fit using a model for a phase function with γ ¼ 2.05. (Optical property spectra built assuming a ¼ 16,
b ¼ 2, f 1 ¼ 5%, f 2 ¼ 75%, and r ¼ 10 μm.) (b) The real and extracted optical coefficient spectra.

(a) (b)

Fig. 7 (a) Forward model fitting results to reflectance data built using a phase function with γ ¼ 2.3, but fit
using a model for a phase function with γ ¼ 2.05. (Optical coefficient spectra built assuming a ¼ 16,
b ¼ 2, f 1 ¼ 5%, f 2 ¼ 75%, and r ¼ 10 μm. (b) The real and extracted optical coefficient spectra.

Table 2 Average errors in the extracted physiological and optical
property values by incorrectly assuming a model with γ ¼ 2.05,
when the true tissue has γ ¼ 1.75 or γ ¼ 2.3.

True γ a b f 1 f 2 r μ 0
s;mean μa;mean

γ ¼ 1.75 15.6% −20.1% 4.9% −1.6% 1.2% 15.3% 6.0%

γ ¼ 2.3 −14.9% 27.6% −4.5% 0.2% −3.1% −14.5% −5.6%

Note: Largest errors are indicated in bold.
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While this observation regarding goodness-of-fit as a decep-
tive measure of model accuracy is most critically applicable to
uncertainties in phase function, it is also applicable to conditions
for which other model variables are inaccurate. For example,
when the reflectance model being used to fit a measured spec-
trum is built using incorrect values for probe geometry details
(e.g., numerical aperture, fiber diameter, etc.), similar inaccur-
acies in extracted physiological and optical properties will result
despite excellent spectral fits.50 This suggests that building
reflectance models that are unique to the specifications of indi-
vidual measurement probes is important for maximal accuracy;
the use of GPU-enabled Monte Carlo codes makes this much
more feasible, especially when the data can be used directly
in lookup tables for inverse model fitting.

4.2 Effects of Source-Detector Separation

To explore the influence of fiber separation, i.e., the distance
between the source and detector fibers, reflectance relationships
were constructed from Monte Carlo simulations for a number of
source-detector separations, ρ ¼ ½250; 500; 1000; 3000; 2000;
5000; 10;000� μm. For each separation distance, several phase
functions constructed from Mie theory were used. The separa-
tion distances were chosen to represent the nondiffuse regime
(≤500 μm), the diffuse regime (≥5 mm), and the intermediate
region (1, 2, and 3 mm). The intermediate region is of particular
interest because reflectance models have not been extensively
investigated for these source-detector separations. Thus, by
examining all three regimes simultaneously, a more comprehen-
sive understanding of how tissue optical properties influence
reflectance can be attained.

As has been previously utilized by others,25,26 we employ
a convenient method of investigating the combined effects of
both source-detector separation and optical coefficient value in
a single parameter for both scattering (μ 0

sρ) and absorption
(μaρ). These values are referred to as dimensionless scattering
and dimensionless absorption, respectively. Correspondingly,

relative reflectance is presented in a dimensionless form as
dimensionless reflectance (Rρ2). This makes it possible to inves-
tigate trends in reflectance relationships in terms of dimension-
less variables without any loss of generality.

Figure 8(a) illustrates the dimensionless relationship between
reflectance and scattering for all simulated values of ρ between
250 μm and 1 cm. Figure 8(b) illustrates the relationship
between normalized reflectance (which is not explicitly pre-
sented as dimensionless since it represents the ratio of two
dimensionless reflectance values such that the ρ2 values cancel)
and dimensionless absorption; in this plot, data are provided for
the case where dimensionless scattering (μ 0

sρ) is equal to 0.25.
(Note that the relationship between normalized reflectance and
dimensionless absorption is unique for each value of dimension-
less scattering.) Given the values of μ 0

s and ρ used to generate
the simulation data, only a limited number of combinations of μ 0

s
and ρ yield a dimensionless scattering value of 0.25. Thus, the
data in Fig. 8(b) are provided for only ρ ¼ 250 μm, 500 μm,
1 mm, and 5 mm. The choice of presenting reflectance, μ 0

s,
and μa in dimensionless units is for simplicity of normalization
and to show consistency of trends over a large range of ρ values.
It is important to note that when plotted for a fixed value of ρ
using nondimensionless units, the shape of the curve remains the
same; the dimensionless normalization simply scales the reflec-
tance values.

The results presented in Fig. 8 also enable several important
observations about reflectance relationships, illustrating the
significant variations in reflectance over large dimensionless
scattering and absorption ranges, especially for the reflectance
versus scattering curve. In contrast to the nearly linear relation of
relative reflectance versus scattering illustrated in Figs. 4 and 5,
the plot in Fig. 8(a) demonstrates considerable nonlinearity. For
low dimensionless scattering, the dimensionless reflectance
increases as both scattering and source detector separation
increase. But at a given distance, dimensionless reflectance
reverses its relationship with μ 0

sρ and begins to decrease as
μ 0
sρ increases.

(a) (b)

Fig. 8 Dimensionless reflectance relationships for a range of source-detector separations.
(a) Dimensionless reflectance versus dimensionless scattering. (b) Normalized reflectance versus
dimensionless absorption for a dimensionless scattering value (μ 0

sρ) of 0.25. All data are for a phase
function gamma value (γ) of 2.3.
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The observation of this scattering-dependent reflectance
relationship is a key component of the generalized reflectance
formalism. Several authors have observed this behavior exper-
imentally and it is also predicted by diffusion theory.25,51,52

Further, Kumar and Schmitt related the curve peak to an
ideal distance at which reflectance is only slightly dependent
on μ 0

s, which they reported to be between 2 and 5 mm, depend-
ing on the range of μ 0

s values of interest.
51 For a typical tissue

value of μ 0
s of 10 cm−1, this range of separation distances cor-

responds to dimensionless scattering values between 2 and 5,
which correlates well with the peak of the dimensionless reflec-
tance versus dimensionless scattering curve. It is at this peak
value that moderate changes in μ 0

s will result in only minimal
change in reflectance, suggesting that reflectance is insensitive
to μ 0

s at source detector separations between 2 and 5 mm.
A novel and significant observation results from extending

this analysis to consider variations in phase function. Figure 9
illustrates the dimensionless reflectance versus dimensionless
scattering relationships for a range of phase function γ values
(1.2, 1.75, and 2.3). The critical observation in this figure is
the existence of an isosbestic point, where reflectance is not
dependent on γ at a dimensionless scattering value of ∼0.7.
(Note that we adopt the term “isosbestic” loosely, with the intent
of describing a condition for which one measurement parameter
is independent of another.) While reflectance is known to
be insensitive to phase function in the diffusion regime
(μ 0

sρ > 10), it is an unexpected revelation that there is an addi-
tional singular dimensionless scattering distance, well below
the diffusion regime, at which this insensitivity to phase function
also exists. Because this isosbestic point is part of the general-
ized reflectance model, it is applicable to any turbid medium
(i.e., independent of tissue model), and is not dependent on
the fiber probe (including fiber separation, which is inherently
part of dimensionless scattering).

For low dimensionless scattering values, a high γ corre-
sponds to lower reflectance, as was observed in Figs. 4 and 5
(where μ 0

sρ ranged from 0.125 to 0.75). As dimensionless

scattering increases, however, a point is reached at which reflec-
tance is insensitive to the value of γ. And at yet larger dimen-
sionless scattering values, a larger value of γ results in a larger
reflectance. As noted earlier, we hypothesize that this is because,
in tissues with low γ, photons with more backward scattering
and less forward scattering are more likely to remain close to
the source. With high γ, more forward scattering and fewer
backscattering events allow a photon to travel farther from
the source before experiencing the high-angle scattering event
that will direct it back toward the surface for collection. At
large scattering and source-detector separations, this means
that the proportion of photons collected at larger source-detector
separations to photons collected at smaller separations is higher
for large γ, leading to higher reflectance.

For comparison, the diffusion theory equation was used to
calculate dimensionless reflectance as a function of dimension-
less scattering, and is also included in Fig. 9 (dashed line).
Recalling that diffusion theory is not dependent on phase func-
tion, above the isosbestic point the diffusion theory plot best
approximates the γ ¼ 1.2 curve, and below the isosbestic
point diffusion theory best approximates the γ ¼ 2.3 curve.
This same relationship between diffusion theory and Monte
○Carlo simulations with different anisotropy g values was
recently observed by Kim et al. for values of μ 0

s and ρ corre-
sponding to dimensionless scattering from 0 to 1,52 which is
consistent with our findings. At large dimensionless scattering
values, the similarity between diffusion theory and the γ ¼ 1.2

plot is consistent with the fact that diffusion theory is descriptive
of isotropic scattering; since the value γ ¼ 1.2 corresponds to
g ¼ 0.55, the low γ curve (in this range) is closest to the iso-
tropic case (g ¼ 0 and γ ¼ 1).

We now plot normalized reflectance versus dimensionless
scattering, which provides different observations compared
with the previously illustrated dimensionless reflectance versus
dimensionless scattering relationships in Figs. 8 and 9.
Figure 10(a) presents the relationships over a large range of
dimensionless absorption values from 0 to 10, and for five
values of dimensionless scattering between 0.1 and 8.0. We
note that as dimensionless scattering increases, the plots relating
normalized reflectance and dimensionless absorption do not
monotonically progress. For values of dimensionless scattering
below ∼2.5, normalized reflectance is larger for larger values of
μ 0
sρ, as was seen in the relationships illustrated in Figs. 4 and 5.

However, for dimensionless scattering values >2.5, normalized
reflectance is smaller for larger values of μ 0

sρ. To better visualize
this nonmonotonic relation, Fig. 10(b) plots normalized reflec-
tance as a function of dimensionless scattering for a single value
of dimensionless absorption, μaρ ¼ 4.0.

This relationship was explored by Mourant et al., who
reported on an optimized source-detector separation for mini-
mizing the effects of scattering.53 In contrast to the analysis
of Kumar and Schmitt,51 who identified a source-detector sep-
aration that reduced variance in reflectance, Mourant et al.
examined the source-detector separation at which variation in
photon path length is minimized (enabling application of Beer’s
law for determining the absorption coefficient), which they
experimentally determined to be ∼1.7 mm. That observation
is supported by the results presented in Fig. 10(b), which illus-
trates that for dimensionless scattering values between ∼2 and 3,
the variation in normalized reflectance (which is directly related
to path length) is minimal. When considering average values of
μ 0
s in tissue, this range of dimensionless scattering values is

Fig. 9 Dimensionless reflectance versus dimensionless scattering for
a range of phase function γ values, plus diffusion theory. The three
curves with varying γ values all intersect at a μ 0

sρ value of 0.7, although
diffusion theory does not.
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consistent with the reported 1.7 mm source-detector separation
distance for which normalized reflectance is independent of
scattering (at a given μa).

Like the dimensionless reflectance versus dimensionless
scattering relationships, the normalized reflectance versus
dimensionless absorption relationships are also dependent on
phase function. Figure 11 presents the percent difference
between normalized reflectance values with a phase function
value γ ¼ 1.2 and normalized reflectance values with a phase
function value γ ¼ 2.3. The percent difference is illustrated
for a range of dimensionless scattering values between 0.1
and 8.0. As expected, when absorption is zero, the error in nor-
malized reflectance is zero, since, by definition, normalized
reflectance is equal to 1.0 when μa ¼ 0. When dimensionless
scattering is low (corresponding to low μ 0

s and/or ρ), the
error in normalized reflectance due to phase function is maxi-
mal, reaching as much as 110%. As dimensionless scattering

increases and approaches the diffuse regime, the error in reflec-
tance due to phase function variation reduces significantly.
However, even at a dimensionless scattering value of 8.0, the
maximal reflectance error due to phase function is still over
20%, which is consistent with the known breakdown of the dif-
fusion approximation for large values of absorption. The impor-
tance of this observation is that the phase function is an
important variable for reflectance even at relatively large source-
detector separations.

4.2.1 Error analysis at larger source-detector separations

In Sec. 4.1.1, the errors in physiological and optical fitting
parameters that result from inaccurate assumptions about the
phase function were examined for a probe geometry with
ρ ¼ 250 μm. Here, we analyze the errors that result from
inaccurate phase function assumptions for larger distances:
ρ ¼ 500 μm, 1 mm, 2 mm, 5 mm, and 1 cm. The same analysis
procedure that was described in Sec. 3.2 and implemented in
Sec. 4.1.1 is used here. The errors for all tested reflectance spec-
tra are presented in Table 3, representing the expected errors due
to incorrect assumption about the average value of γ. Errors are
smallest for ρ ¼ 1 cm due to the minimal differences in the

(a) (b)

Fig. 10 (a) Normalized reflectance versus dimensionless absorption for five dimensionless scattering
values between 0.1 and 8.0. (b) Normalized reflectance versus dimensionless scattering for a constant
value of dimensionless absorption of 4.0.

Fig. 11 Percent difference in normalized reflectance values between
simulations when the phase function parameter γ ¼ 1.2 and γ ¼ 2.3.
Percent differences are illustrated for a range of dimensionless
scattering values between 0.1 and 8.0.

Table 3 Average errors resulting from inaccurate assumptions about
the phase function of tissue when performing inverse calculations due
to incorrect average value of γ used. Reported as averages over all
test cases of γ wavelength dependence, and μ 0

s and μa test spectra.

ρ a (%) b (%) f 1 (%) f 2 (%) r (%) μ 0
s;mean (%) μa;mean (%)

250 μm 15.3 23.9 4.7 0.9 2.15 14.9 5.8

500 μm 1.3 13.5 6.7 0.9 0.5 5.8 6.4

1 mm 6.8 10.1 6.7 1.0 1.7 7.35 5.8

2 mm 9.9 15.4 9.8 2.4 15.0 10.5 9.4

5 mm 6.2 18.2 9.1 5.3 189 4.9 8.3

1 cm 1.3 5.3 6.4 6.2 177 1.1 3.4
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reflectance versus optical coefficient relationships as a function
of phase function at this distance, and are largest (specifically for
μ 0
s) when ρ ¼ 250 μm since the dependence of phase function is

greatest at small source-detector separations. However, errors do
not decrease monotonically as source-detector separation
increases. Rather, for μ 0

s, the error initially decreases when ρ ¼
500 μm before increasing to a local maximum when ρ ¼ 2 mm
and decreasing thereafter as ρ increases to 1 cm. The local error
minimum at ρ ¼ 500 μm is the result of the isosbestic point in
the reflectance versus dimensionless scattering relationships,
because variations in reflectance due to γ are at a minimum
[Fig. 8(a)]. At ρ ¼ 500 μm, the reflectance isosbestic point
falls directly in the middle of the physiologically relevant
range of μ 0

s for tissue (10 cm−1). With minimal variation in
reflectance due to γ at this point, the inverse modeling errors that
result from uncertainty in the tissue phase function are also at a
minimum. This indicates that if the phase function of a tissue
cannot be accurately estimated (as is typically the case), yet
practical constraints do not permit large source-detector separa-
tions to take advantage of diffusion theory, it is advantageous to
design a probe geometry with a source-detector separation close
to 500 μm as a means to minimize errors due to phase function
uncertainty.

4.3 Extracting Phase Function Information

While extracting μ 0
s and μa values from tissue has generally been

of primary interest, the variation in reflectance as a function of γ
presents an encouraging opportunity to extract additional infor-
mation about the tissue using DRS. Given that γ relates to the
relative backscattering contributions of a tissue phase function,
which is dictated by the size distribution of scatterers, the ability
to quantify γ can provide knowledge about the tissue microstruc-
ture. A handful of other authors have also examined this
opportunity3,13,54,55 for other measurement geometries (e.g.,
single-fiber probes that both illuminate and collect light) and
have observed that there is not enough information in a single
reflectance spectrum to uniquely identify μ 0

s, μa, and phase
function information simultaneously, and therefore, multiple
measurements are necessary. In particular, Kanick et.al. have
demonstrated that the value of γ can be extracted from multiple
reflectance measurements using multiple single-fiber probes of
different diameters.35 Extending this to the two-fiber collection
geometry, collecting measurements at various source-detector
separations is a natural choice, especially since the reflectance
relationships vary significantly as a function of ρ.

The implementation of this approach involves measuring
reflectance spectra at multiple distances and simultaneously fit-
ting the multiple reflectance spectra to a reflectance model in
two dimensions, with both ρ and λ being independent variables.
In addition to the original inverse fitting coefficients described in
Sec. 2.1.2, γ then becomes the sixth fitting coefficient. The
reflectance model to which the data are fit is a set of three-
dimensional lookup tables for which relative reflectance is
defined as a function of μa, μ 0

s, and γ. Each three-dimensional
lookup table is unique to a single source-detector separation
geometry. Experimental reflectance spectra are fit to their
respective probe geometry reflectance lookup tables, as would
be done with only one reflectance measurement being analyzed,
but a least-squares algorithm performs iterative calculations on
all data simultaneously, optimizing the physiological fitting
coefficients, including γ, for the entire set of data.

Using the μ 0
s and μa spectra described in Sec. 3.2, reflectance

spectra were constructed for a sample value of γ and for a num-
ber of different source-detector separations. Various pairs of
reflectance spectra, representing different pairs of source-
detector separations, were then analyzed in the inverse direction
using the above lookup table approach. In all cases, the extracted
optical coefficient values, including the value of γ, were accu-
rately retrieved with errors <0.25%. This indicates that with only
two separate reflectance spectra and with the differences in
source-detector separations as small as 250 μm (when the two
reflectance spectra are measured using ρ ¼ 250 and 500 μm),
not only can errors in the extracted optical properties due to
uncertainty in phase function be significantly reduced, but an
additional optical parameter can be gained (that of the phase
function parameter gamma, γ), which can serve to better char-
acterize and differentiate tissue types.

5 Conclusions
The work reported here constitutes a broad and critical exami-
nation of the combined effects of phase function and source-
detector separation on the development of diffuse reflectance
models for the purpose of extracting estimates about the optical
and physiological properties of small volumes of tissue. We
have reviewed previous advancements in the understanding
of phase function and source-detector separation reflectance
relationships, while also contributing a number of novel obser-
vations which are combined into a single and comprehensive
formalism. Unlike previous developments for diffuse reflectance
modeling (for which results were presented in forms specific to a
given model construct), this formalism provides a generalized
understanding of the ways that measured reflectance can be
affected by a wide range of conditions. The key insights of
this formalism are as follows:

• Especially at small source-detector separations, reflec-
tance is dependent not only on μ 0

s and μa, but also on
the specific form of the phase function of the tissue. The
phase function similarity variable γ, and not the more
commonly used anisotropy factor g, is the key parameter
to consider when uniquely characterizing the optical prop-
erties of a tissue. Reflectance values can vary by a factor
of 3, depending on the value of γ. Consequently, reflec-
tance relationships, which form the basis of reflectance
models, are also dependent on the value of γ.

• The effects of the optical property values (μ 0
s and μa) and

the source-detector separation distance (ρ) on reflectance
can be combined into dimensionless parameters, μ 0

sρ and
μaρ. Reflectance can then be uniquely described by μ 0

sρ,
μaρ, and γ.

• Reflectance models are also strongly dependent on the
source-detector separation. The relationship between
reflectance and the reduced scattering coefficient, μ 0

s, is
particularly interesting when described generally using
dimensionless reflectance (Rρ2) and scattering (μ 0

sρ)
parameters. At small dimensionless scattering values, the
relationship between reflectance and μ 0

sρ is quasi-linear,
with reflectance increasing with μ 0

sρ. As dimensionless
scattering increases, the relationship becomes increas-
ingly nonlinear. Reflectance increases with μ 0

sρ for smaller
values before reaching a maximum, and then decreases
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with μ 0
sρ at larger values. The peak in reflectance versus

dimensionless scattering exists at approximately μ 0
sρ ¼ 5.

These relationships provide a general understanding of
reflectance over the wide range of conditions that span
the nondiffuse regime (small μ 0

sρ), the diffuse regime
(large μ 0

sρ), and the rarely investigated intermediate
regime.

The novel observations and contributions to this formalism
presented in this work include the following:

• The effects of inaccurate phase function assumptions
can be explored using an error estimate approach that con-
siders the errors not only in μ 0

s and μa, but also of physio-
logically related parameters during wavelength-dependent
spectral fitting of reflectance measurements. Forward-
model curve fits to reflectance spectra can be remarkably
good, even when the models invoke inaccurate phase
functions, indicating that goodness-of-fit is not an
adequate measure of the suitability of a reflectance
model for extracting optical properties.

• When dimensionless scattering is small, reflectance is
higher for lower values of γ, and when dimensionless scat-
tering is high, reflectance is higher when γ is higher. At an
intermediate value of dimensionless scattering, there is an
isosbestic point at which reflectance is insensitive to both
the g and γ parameters of the tissue phase function. This
point is found at approximately μ 0

sρ ¼ 0.7 and can be used
to guide design of reflectance probe geometries as a way
to reduce errors resulting from uncertainty in the tissue
phase function. To do so, the source-detector separation
distance can be selected such that the isosbestic point
falls in the middle of the range of expected measured
μ 0
s values. Further, and perhaps unexpectedly, the range

of the dimensionless scattering plot for μ 0
sρ ¼ 3 to 6

still exhibits significant phase function dependence
despite being close to what is normally considered the dif-
fuse regime.

• By simultaneously fitting two or more reflectance spectra,
measured using different source-detector separation
distances, an estimate of the phase function value, γ,
can be extracted in addition to the scattering and absorp-
tion coefficient results, which also reduces the error in
extracted μ 0

s and μa. A straightforward means of achieving
this is to use a three-dimensional lookup table that
describes reflectance as a function of μ 0

s, μa, and γ.

The presentation of this generalized reflectance formalism is
not intended to provide numerical model constructs that can be
used directly in experimental diffuse reflectance studies. Rather,
our intent has been to provide an intuitive understanding of the
trends that form the foundations of useful reflectance models.
According to the specific needs of an application, probe geom-
etries should be designed to limit the errors associated with
factors such as phase function; reflectance values should be
collected as a function of μ 0

s, μa, and γ (ideally using Monte
Carlo simulations such that input parameters can be most accu-
rately controlled), and those data should be used to construct a
probe-specific reflectance model that can be used in the inverse
direction to extract accurate tissue optical and physiological
properties.
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