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Abstract. Functional near-infrared spectroscopy (fNIRS) is an optical method for noninvasively determining
brain activation by estimating changes in the absorption of near-infrared light. Diffuse optical tomography
(DOT) extends fNIRS by applying overlapping “high density” measurements, and thus providing a three-dimen-
sional imaging with an improved spatial resolution. Reconstructing brain activation images with DOT requires
solving an underdetermined inverse problem with far more unknowns in the volume than in the surface mea-
surements. All methods of solving this type of inverse problem rely on regularization and the choice of corre-
sponding regularization or convergence criteria. While several regularization methods are available, it is unclear
how well suited they are for cerebral functional DOT in a semi-infinite geometry. Furthermore, the regularization
parameter is often chosen without an independent evaluation, and it may be tempting to choose the solution that
matches a hypothesis and rejects the other. In this simulation study, we start out by demonstrating how the
quality of cerebral DOT reconstructions is altered with the choice of the regularization parameter for different
methods. To independently select the regularization parameter, we propose a cross-validation procedure which
achieves a reconstruction quality close to the optimum. Additionally, we compare the outcome of seven different
image reconstruction methods for cerebral functional DOT. The methods selected include reconstruction pro-
cedures that are already widely used for cerebral DOT [minimum l2-norm estimate (l2MNE) and truncated sin-
gular value decomposition], recently proposed sparse reconstruction algorithms [minimum l1- and a smooth
minimum l0-norm estimate (l1MNE, l0MNE, respectively)] and a depth- and noise-weighted minimum norm
(wMNE). Furthermore, we expand the range of algorithms for DOT by adapting two EEG-source localization
algorithms [sparse basis field expansions and linearly constrained minimum variance (LCMV) beamforming].
Independent of the applied noise level, we find that the LCMV beamformer is best for single spot activations
with perfect location and focality of the results, whereas the minimum l1-norm estimate succeeds with multiple
targets. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in

whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.19.9.096006]
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1 Introduction
Diffuse optical tomography (DOT) is a modality of near-infrared
spectroscopy (fNIRS) that provides three-dimensional (3-D)
images of absorption changes in a semi-infinite volume.
Recently, it has been applied in breast cancer imaging or optical
mammography1–3 as well as in small animal imaging.4–6 The
3-D DOT has been proposed by various groups7–14 for imaging
brain function.

Used as a brain-imaging tool, DOT measures the changes in
near-infrared light absorption in the cortex. It allows the operator
to determine what functional changes are evoked in cerebral
oxygenated (HbO2) and deoxygenated hemoglobin (HbR) con-
centration in the cerebral blood flow during local brain activa-
tion. Due to the wavelength-dependent light attenuation, DOT
usually employs two different wavelengths, each of them more
sensitive to one of the main chromophores HbO2 and HbR.

Compared to fNIRS, DOT uses more light sources and detectors
in a high-dense optical fiber grid, and allows many overlapping
optical data channels with different source-detector distances
to be recorded. Light, which is detected far away from the
source, passes through the deeper tissue layers, allowing the sep-
aration of superficial layers from cerebral layers in a 3-D
manner.15,16

Recovering the absorption coefficient μa inside the head
from boundary measurements is a nonlinear problem, but it
can be linearized if scattering (μs) in the head is stable over
time and the change in μa is small (perturbation approach).
For image recovery, light propagation in the examined tissue
needs to be modeled first. In tissue, where scattering dominates
absorption and the propagation of light is close to isotropic, the
diffusion equation can be applied for modeling. After discreti-
zation of the scanned volume (e.g., as a finite-element (FE)
mesh), wavelength-specific optical properties are assigned to
the elements (mesh nodes), and light propagation is modeled
with respect to the positions of the optical fibers on the surface.
Solving the forward problem results in a weight matrix J that
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contains sensitivity values for all nodes in the reconstruction
volume for all given light source and detector pairs.

Reconstruction of DOT images requires inverting the for-
ward mapping J. This is an under-determined and ill-posed
problem, since countless distributions of μa within the volume
can explain the same surface measurement. Moreover, near-
infrared light can pass skin and bone, but is highly attenuated
with increasing depth, causing J to be ill conditioned (or even
singular), and the solution to the corresponding linear system to
be prone to numerical instabilities. With a penetration depth of
3 to 4 cm, light can reach the cortex, but there is a vast sensi-
tivity loss in the depth. This leads to a sparse matrix with very
low sensitivity values in the largest fraction of the volume.
Furthermore, small changes in optical properties at this depth
have to be recovered from boundary measurements with nearby
nodes that have a high sensitivity to superficial signals and are,
therefore, sensitive to noise. Due to the ill-posed nature of the
DOT inverse problem, a unique solution can only be obtained if
the constraints are imposed on the distribution of the absorption
coefficients. Moreover, since J is ill-conditioned, a solution has
to be found that optimally suppresses noise while still explaining
the data. Many studies using DOT either add an additional
regularization term to the model or eliminate the singular values
smaller than a defined threshold from J. Both methods over-
come the problem of very small singular values of J causing
amplification of noise upon inversion. However, the choice
of a regularization parameter (either the number of singular val-
ues maintained or the relative weight of the regularization term
in the cost function) is often made ad hoc8,17–19 and lacks objec-
tive criteria. For researchers, it may be challenging to find an
appropriate regularization parameter, since the measured data
vary highly between the experiments, depending on the setup,
imaging device, tissue properties, and noise level.

Besides the problem of regularization, the distributed source
localization methods such as minimum l2-norm estimate
(l2MNE) and truncated singular value decomposition (tSVD)
tend to yield blurry images rather than focused results.
Therefore, a variety of sparse image reconstruction methods,
such as lp-norm-based algorithms with 0 ≤ p ≤ 1, have been
introduced in optical imaging.20–24

Other approaches to reconstruct the brain activation are pro-
vided by developments in electrophysiological dipole mapping.
The inverse problem of electroencephalography (EEG) localizes
the position of the active cerebral current source from the mea-
sured surface fields, and is comparable with the inverse problem
of image reconstruction in DOT.

The aim of this work is twofold. First, we show how the
reconstruction quality in cerebral DOT depends on the amount
of regularization chosen when distributed source localization
methods (e.g., minimum norm estimates and tSVD) are used.
We demonstrate the need for an independent parameter selection
based on the features of the measurement data. To this end,
we propose cross-validation (CV) for parameter selection. This
yields high quality results and allows for an automatic data-
driven determination.

Second, we benchmark the outcome of seven image
reconstruction methods which are:

• widely applied standard reconstruction methods such as
tSVD, l2MNE, and a depth- and noise-weighted variant;

• recently proposed sparse methods (minimum l1- and
a smooth minimum l0-norm estimate), 17,21–24

• and finally, two EEG source localization algorithms
adapted to DOT. More precisely, we apply the linearly
constrained minimum variance (LCMV) beamformer25

and a method for source localization using spatial flexi-
bility (S-FLEX). S-FLEX has proven to be a good com-
promise between focality and smoothness, and allows the
recovery of multiple activation foci from EEG data.26

Our simulation mimics a cerebral DOT experiment. It pro-
vides a very realistic framework using an atlas-based five-lay-
ered head model in combination with real-world noise data,
which are added to the simulated signals to take fiber dis-
tance-dependent noise levels. Rather than using transilluminated
cylindrical (or breast tissue mimicking) geometries with one
reconstructed sample point (e.g., to detect areas with different
optical properties, such as tumors), we performed this study
on a semi-infinite medium with a highly attenuated light sensi-
tivity in deeper layers. Additionally, an enormous amount of
data is being processed, as is typical for high-density cerebral
DOT since it is used to record thousands of sample points in
hundreds of optical data channels.

2 Methods

2.1 Head Atlas and Meshing

To achieve a simulation setting which is close to a real meas-
urement, we used the Montreal ICBM 2009a atlas, an unbiased
nonlinear average of 152 anatomical MR images with 1 mm3

voxel size,27,28 and corresponding tissue probability maps for
cerebrospinal fluid, gray matter, and white matter.29 In order to
obtain a five-compartment model including scalp and skull, we
additionally segmented the ICBM2009a images using math-
ematical morphological operations.30 Based on this segmented
brain atlas [see Fig. 1(a)], we used a masking and meshing soft-
ware (Nirview)31 to create a 3-D tetrahedral mesh [Fig. 1(c)].
This mesh was used to calculate the photon transport, and
thus provides the framework to simulate the cortical activation
and to test the outcome of different reconstruction methods.

2.2 Forward Simulation and Spatial Constraints

Optical fiber positions on the boundary of the FE mesh were
chosen according to the setting of a previous real-world cerebral
DOT experiment conducted under resting conditions [Fig. 1(b)].
Due to the use of registration landmarks from the EEG 10–20
reference system32 and known source-detector distances, the
coordinates for each fiber were known. To model light propa-
gation, we used the Nirfast software toolbox,33 a MATLAB®-
based publicly available light modeling and reconstruction
software. Nirfast applies the diffusion equation approximation,
which is appropriate when scattering events dominate over
absorption and the medium can be assumed to be an isotropic
fluence field.

One challenge in DOT is the sensitivity of the measurement
to signals coming from noncortical regions. The HbO2 specific
wavelength is often contaminated with hemodynamic fluctua-
tions from superficial veins in the scalp.34 On the other hand,
the decrease in absorption from the HbR sensitive wavelength
is highly correlated to the BOLD response in functional mag-
netic resonance imaging.35 For this simulation study, we use
light model and data from the HbR sensitive wavelength of
760 nm. Optical properties μa and μ 0

s were assigned to each
node of the FE mesh according to Strangman et al.36
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The result of the simulated light propagation is a sensitivity/
Jacobian matrix J with dimensionsM × N, whereM is the num-
ber of measurements (optical data channels) and N is the num-
ber of nodes in the reconstruction volume. J describes the
logarithmic relationship between changes in measured boundary
data (Δy) that are caused by small changes of μa within the tis-
sue for each channel-node combination, where

Δy ¼ JΔμa: (1)

Since the reconstruction volume was not entirely covered
with the optode set, and since DOT has only a limited penetra-
tion depth of 3 to 4 cm, we constrained J in order to reduce the
result space and thus reduce the “degree of ill-posedness.” One
criterion for the exclusion of nodes was their affiliation to the
noncortical tissue. Nodes belonging to scalp, skull, or cerebro-
spinal fluid were discarded. To exclude “weak” channels with
very low sensitivity (e.g., due to large source-detector separa-
tion), we calculated the vector norm for all rows of J. Rows
having a norm lower than 1% of the maximum value were
discarded. The same procedure was performed for the mesh
nodes, excluding nodes from the result space that had hardly
been reached by any measuring channel. This step reduced
the result space from 256 to 232 channels, and from 150,000
to 10,000 nodes. In the following, we refer to this reduced
Jacobian as J̃ with the dimension of M̃ measuring channels
and Ñ reconstruction nodes. Figure 1(d) depicts the total sensi-
tivity of J and Fig. 1(e) depicts J̃, which is calculated as the sum

of the sensitivity over all measurement pairs for all used nodes
within the head volume.

2.3 Signal Generation and Noise Model

As an input signal, we modeled a hemodynamic response func-
tion (hrf) for absorption changes at 760 nm peaking 5 s after
stimulus onset,37 thereby mimicking a 400 s experiment with
a stimulus duration of 20 s and an interstimulus interval of
20 s. This was necessary for testing the LCMV beamformer
reconstruction method, which requires time-series data.
Moreover, it allowed us to superimpose the artificial data
with realistic noise of the same dimensionality obtained from
the abovementioned resting-state recording.

Detector readings were generated as follows. A sparse matrix
Asim with the dimension of Ñ × Ñactive was created, where Ñc is
the number of “activated” nodes. Each column of Asim labels one
node by setting AsimðlÞ ¼ 1 at a specific location l, while all
other nodes are set to “0.” The locations for these “activated”
nodes were randomly chosen, but due to restrictions of the
reduced Jacobian J̃, all nodes were cortical. The specific sensi-
tivity pattern p in the activated node/nodes is defined by

p ¼ J̃ � Asim; (2)

with p having the dimensions M̃ × Ñactive, and the simulated
DOT measurement y defined by the M̃ × sampleshrf matrix

y ¼ p � hrf; (3)

Fig. 1 (a) Segmented head atlas (ICBM 2009a, a nonlinear average of 152 MR images). From outer to
inner layers: scalp, skull, cerebrospinal fluid, gray matter, white matter, (b) sketch of the optical fiber setup
as used in the forward model (first nearest neighbor distance: 13 mm, (c) finite-element (FE) mesh of
the left hemisphere with optical properties (μa), (d) example of the total sensitivity of determined from
the unconstrained Jacobian J . A cross section of the sensitivity volume is superimposed on the corre-
sponding layer of the head model, (e) total sensitivity of the spatially constrained Jacobian ~J : sensitivities
for skull, scalp and CSF were set to zero.
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where the Ñactive × sampleshrf matrix hrf contains the activations
of the simulated brain activity at the active nodes.

We applied a realistic noise model for the purpose of testing
different reconstruction algorithms under natural conditions.
Most studies added white noise to the data to simulate the
real measurements. In real life measurements, however, the
noise is usually temporally and spatially correlated and is not
normally distributed. We typically observe a higher increased
noise level for larger source-detector separations than that for
short distances. Second, the noise often has a high fraction
of hemodynamic oscillations, which may interfere with the
hemodynamic response and are sometimes hard to remove.
Rather than applying a random noise term, we utilized data
from a 10-min DOT experiment conducted under resting condi-
tions as the noise model ℵ. For recording these resting-state
data, we used a compact tomography imager that provides up
to 32 sources × 32 detectors (NIRScoutX Tomography Imager,
NIRx Medizintechnik, Berlin, Germany). This allowed us to
achieve realistic simulation data with characteristic features
of the real measurements. The setup for that resting-state experi-
ment was the same as that of the simulation setup, so that fiber
distances and orientations were preserved.

We selected the rows of the noise matrix ℵ according to
the choice of channels for J̃, so that identical channels were
used. Additionally, we took a subset of sampling/time points
(columns) from ℵ, so that y and ℵ had the same dimensions.

Finally, ℵ and y were normalized by their respective
Frobenius norms in order to calibrate the artificial measurement
and noise matrix. Given y, ℵ and s, where s is the signal level
with a value between 0 and 1, the noisy simulated measurement
yℵ was constructed as

yℵ ¼ ysþ ℵð1 − sÞ: (4)

According to the real measurements, we low pass-filtered
(first-order Butterworth) the generated data with a cut-off
frequency of 0.4 Hz to remove the cardiac signals. In Fig. 2(a),
we see detector readings from the resting measurement for large,
medium, and short source-detector separations, and the depend-
ence of the noise level on the fiber distances. Figure 2(b) depicts
examples of the generated signal for two different measurement
channels, each with a signal strength of 50% (s ¼ 0.5). Because
of different locations and source-detector separations, the signal
in the upper measurement is less dominated by noise compared
to the second example in the lower graph.

2.4 Image Reconstruction Methods

Since the number of measurements is much smaller than the
number of reconstruction nodes, the linear system of Eq. (1)
is heavily underdetermined, and a unique solution for Δμa
can only be obtained under constraints on the absorption

Fig. 2 (a) Simulated DOTmeasurement with additive realistic noise recorded in resting condition using a
compact tomography imager (NIRScoutX, NIRx, Medizintechnik, Germany). The noise level strongly
depends on the source-detector separation, (b) two different measurement channels and generated
signals with no noise (blue line) and with 50% noise (green line) added. The lower channel is noise
dominated, since the signal generated is 100-fold smaller compared to the upper example. Due to differ-
ent location and source-detector separations, noise has a different impact on the generated signal and
may hamper the correct reconstruction.
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coefficient distribution. In order to find a solution which is
neuro-physiologically plausible, these constraints should always
encode valid prior assumptions on the properties of Δμa.
Various such assumptions have been proposed in the literature
on an EEG/MEG inverse problem, which has a similar math-
ematical structure. In the following paragraphs, we introduce
the approaches tested. As in previous parts of the paper, we
omit the dependence of Δμa and Δy on time. Thus, unless stated
otherwise, a separate reconstruction is performed for each time
point (i.e., difference measurement).

2.4.1 Minimum l2-norm estimate

A common way of constraining the brain source activity Δμa is
to penalize its norm, thereby encoding a preference for the
“least-active” (or, “least-complex”) brain state that gives rise
to the measurement. In the simplest case, the complexity is
measured using the l2 norm. The minimum l2 norm estimate
(l2MNE) of the DOT inverse problem can be written as

Δμ̃a ¼ argmin
Δμa

kJ̃Δμa − Δyℵk22 þ λkΔμak22; (5)

where λ adjusts the degree of regularization.38 The solution is
obtained as

Δμ̃a ¼ HλΔyℵ; (6)

where

Hλ ¼ J̃TðJ̃J̃T þ λIÞ−1 (7)

is a precomputable pseudoinverse matrix and I is the M̃ × M̃
identity matrix.

2.4.2 Minimum l1-norm estimate

In the EEG/MEG literature, it is often noted that linear inverses
(i.e., those employing l2-norm penalties) lead to blurred images
of source activity, and are unable to simultaneously spatially
separate the multiple active brain sites.26,39 As a remedy, estima-
tion of the brain activation maps using l1-norm penalties is
often suggested. Using l1-norm penalties leads to sparse solu-
tions, i.e., activity maps, which are zero almost everywhere.
Here, we consider a depth-weighted variant of the method pro-
posed by Matsuura and Okabe.40 The minimum l1-norm solu-
tion is given by

Δμ̃a ¼ argmin
Δμa

kJ̃Δμa − Δyℵk22 þ λkWΔμak1: (8)

The weight matrixW is chosen to be the same as in Eq. (14).
The minimum of Eq. (8) is obtained using an iterative optimi-
zation algorithm.

2.4.3 Smoothed minimum l0-norm estimate

The method described in Ref. 41 has been applied to the cylin-
drical geometry for DOT in Ref. 21. It aims at a direct minimi-
zation of the l0-norm

Δμ̃a ¼ argmin
Δμa

kJ̃Δμa − Δyℵk22 þ λkΔμak0: (9)

Thus, it searches for the solution with the smallest number of
active voxels. Since this leads to a combinatorial optimization

problem, a smooth approximation of the (discontinuous) l0-
norm of a vector is considered, which leads to optimizing a
sequence of certain continuous cost functions. The function,
which approximates l0-norm, includes an additional parameter
σ, which determines the quality of the approximation in terms of
balancing smoothness and sparsity of the result.

2.4.4 Truncated singular value decomposition

The MNE solution Eq. (6) is defined for any positive regulari-
zation constant λ. The limit

J̃þ ¼ lim
λ→0

J̃TðJ̃J̃T þ λIÞ−1 (10)

is called the Moore–Penrose (MP) pseudoinverse of J̃. The MP
solution J̃þΔyℵ is the source activity with the smallest l2-norm
that exactly fulfills Eq. (1), whereas solutions HλΔyℵ for λ > 0
no longer perfectly explain the data. The computation of J̃þ can
be performed using the singular value decomposition (SVD)

J̃ ¼ UΣVT (11)

of J̃, where Σ ¼ diagðσ1; : : : ; σM̃Þ is a M̃ × M̃ diagonal matrix,
σ1 ≥ : : : ≥ σM̃ are the singular values, U is an orthogonal ~M ×
~M matrix with UTU ¼ UUT ¼ I, and V is an Ñ × M̃ matrix
with VTV ¼ I.

The MP pseudoinverse of J̃ Eq. (10) can be equivalently
written as

J̃þ ¼ VΣ−1UT: (12)

Similarly, for λ > 0, the SVD can be used to compute
Hλ ¼ VðΣþ λIÞ−1UT , and thus to solve Eq. (7). The formu-
lation of J̃þ in terms ofU, Σ, and V offers an alternative to regu-
larizing the source activity using an l2-norm penalty. Given that
Σ−1 ¼ diagðσ−11 ; : : : ; σ−1

M̃
Þ, it is possible to compute a reduced-

rank pseudoinverse

J̃þm ¼ VmΣ−1
m UT

m (13)

using truncated matrices Vm, Σ−1
m , and Um, where the Ñ ×m

matrix Vm and the M̃ ×m matrix Um are obtained by selecting
the first m rows of V and U, respectively, and where
Σ−1
m ¼ diagðσ−11 ; : : : ; σ−1m Þ is m ×m.
Performing image reconstruction using ~Jþm corresponds to

constraining the source estimate J̃þmΔyℵ to lie within the
m-dimensional subspace of the brain, in which brain activity
contributes most strongly to the sensors.

2.4.5 Weighted minimum norm estimate

Reconstructing activations only in those parts of the brain
having a high impact on the measurements (as in tSVD) is rea-
sonable, since doing so ensures that weak signal components
(which might simply be noise) are not overinterpreted.
However, one often wants to ensure that activations from
different parts of the brain are equally likely to be detected.
To this end, weighted minimum-norm estimates (wMNE) are
employed. The idea here is to adjust the l2-norm penalty in
Eq. (5) to compensate for the different gains activation foci
have at the detector level depending on their depth. Formally,
this is achieved by introducing a ~N × ~N weight matrix W in
the penalty term:
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Δμ̃a ¼ argmin
Δμa

kJ̃Δμa − Δyℵk22 þ λkWΔμak22: (14)

The solution of Eq. (14) is given by

Δμ̃a ¼ J̃TðJ̃J̃T þ λWWTÞ−1Δyℵ: (15)

Here, we use a diagonal matrix W ¼ diagðw1; : : : ; wM̃Þ
and the entries wi ¼ Sii of which are the diagonals of
S ¼ J̃TðJ̃J̃TÞ−1J̃.39

2.4.6 Sparse basis field expansions

The selection of active voxels by sparse inverses tends to be
unstable and highly noise dependent.

Moreover, the l1 -norm penalty prevents multiple voxels
with correlated activity to be jointly selected, which may
lead to scattered solutions. To cope with these shortcomings,
it has been suggested to replace sparsity in voxel domain by
sparsity in a space of appropriately defined spatial basis func-
tions.26 The basis function dictionary of the proposed S-FLEX
(sparse basis field expansion) approach consists of Gaussian
blobs of different widths centered at each voxel. Sparsifying
the expansion coefficients corresponding to these blobs amounts
to integrating the assumption that “plausible” activation maps
are composed of a small number of blob-like activities, i.e.,
have a simple structure.

Denoting the Ñ × KÑ matrix of Gaussian basis functions by
G and the vector of corresponding expansion coefficients by c,
where K is the number of blob widths, S-FLEX decomposes the
estimated brain source activity into

Δμ̃a ¼ W−1Gc̃; (16)

where W is the weight matrix defined in the section above.
S-FLEX minimizes the squared deviation from the data under
an additional l1 -norm constraint ensuring the sparsity of c:

c̃ ¼ argmin
c

kJ̃W−1Gc − Δyℵk22 þ λkck1: (17)

The minimum of Eq. (17) is inserted into Eq. (16) to yield the
estimated brain activationΔμ̃a. Note that forG ¼ I, the S-FLEX
solution coincides with the weighted minimum l1-norm solu-
tion Eq. (8).

For a time series, S-FLEX jointly estimates the brain activa-
tions at all available time points under the assumption that
a common set of spatial basis functions is active throughout
the recording. To this end, coefficients corresponding to the
same basis function but different time instants are grouped
together and are jointly sparsified using a so-called l1;2-norm
penalty.26

Note that without this technique, the sparsity pattern would
jump from each reconstructed sample to the next, entirely obfus-
cating the temporal structure of the activations at the voxel level.
We also use the technique of the minimum l1-norm approach.
However, the minimum l0-norm approach, for which this
problem also occurs, can not be extended to time-series data
as easily.

2.4.7 Linearly constrained minimum variance beamformer

In contrast to the previously discussed techniques, beamforming
is not only concerned with estimating activity across the entire

brain at once, but a rather does the estimation separately for each
node. To this end, the activity from each voxel q is extracted by
means of a designated linear spatial filter vq, which is optimized
for the given data Δyℵ. The estimated brain activity is obtained
as Δμ̃a ¼ ½v1; : : : ; vÑ �TΔyℵ.

The idea of the LCMV beamformer is to construct filters
which let signals from a specific location pass with unit gain
while suppressing all noise components.25 The optimal filter
for location q is obtained as the solution to the optimization
problem

ṽq ¼ argmin
vq

vTqCvq such that vTq J̃q ¼ 1; (18)

where C is the covariance matrix of the data Δyℵ taken across
time, and ~Jq is the gain vector for the q-th voxel (the q-th col-
umn of ~J). The solution is obtained as

ṽq ¼ ½J̃TqC−1J̃q�−1J̃TqC−1: (19)

The linear constraint vTq ~Jq ¼ 1 ensures that brain activity
from voxel q (i.e., the signal of interest) is not damped, whereas
the minimization of vTqCvq amounts to minimizing the overall
(signal + noise) power of the projected data vqΔyℵ. In total,
Eq. (19) maximizes the signal-to-noise ratio. However, this
only holds if the source activity at different voxels is uncorre-
lated. If there is correlated activity, the estimation of (in particu-
lar, of the power of) the sources may be biased.

2.5 Reconstruction Quality Criterion: Earth Mover’s
Distance

Each of the image reconstruction procedures resulted in a matrix
with the dimension Ñ × sampleshrf . To estimate the quality of
the result, we calculated a general linear model in a sense of
a linear regression for all reconstructed time courses x1;: : : ;Ñ
with hrf as the regressor. Thus, for each voxel of the
reconstruction volume, a t-value was derived. All negative t-val-
ues and those with a t-value smaller than 20% of the maximum
t-value were eliminated.

As a measure of overall reconstruction quality, we applied
the Earth Mover’s Distance (EMD42) to the reconstruction
results (t-values) of all methods. The EMD calculates the
minimal amount of energy that must be spent to transform
one distribution into the other. Given the known locations
(xyz-coordinates) of the mesh nodes in a 3-D space, the
EMD uses the Euclidean distance between all nodes as a ground
metric to calculate the minimum costs of transforming the
normalized histogram of t-values into the normalized histogram
of the simulated activations. Figure 3 shows an impression of a
good reconstruction result with a low EMD [Figs. 3(b) and 3(c)]
and a poor result [Fig. 3(d)] based on one simulated activation
[Fig. 3(a)]. The advantage of the EMD is its ability to compare
the overall distribution of the 3-D volumes. Unfortunately,
solely looking at the EMD value gives no hint as to whether
the result is blurry and/or dislocated. To gain additional
information about the reconstruction quality in terms of the
malpositioning of the activation, we additionally calculated
the Euclidean distance between the simulated target and the
maximum value of the result for the cases where only one spot
was activated.
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2.6 Automatic Determination of the Regularization
Parameter Using Cross-Validation

Distributed inverses, such as l2MNE, l1MNE, l0MNE, tSVD,
wMNE, and S-FLEX, directly estimate the source activity Δμ̃a.
This means that for an M̃ × T sensor time series, Ñ × T param-
eters have to be estimated, where Ñ ≫ M̃. Under these circum-
stances, regularization is necessary (as outlined above), and
the choice of the regularization parameter crucially affects
whether the fitted model is too complex (overfitting the data),
too simple (not explaining the relevant aspects of the data), or
“just right.”

Beamformers, on the other hand, are characterized by a low
number of parameters. Therefore, the estimation is typically
very stable. The LCMV beamformer in Eq. (19), for example,
solves Ñ optimization problems (one for each voxel), each of
which is concerned with the estimation of only a single M̃-
dimensional filter ṽq based on the covariance matrix of a ~M ×
T dataset Δyℵ, where T is the number of samples, and typi-
cally T ≫ M̃.

The parameter λ of regularized models drives the estimated
brain activation (Δμ̃a) away from the solution that explains the
best measurement to a solution with “simpler” structure. As
such, λ critically affects the shape of the chosen solution and
the reconstruction accuracy. Therefore, choosing the “right”
amount of regularization is very important. This choice should
not be based on visual inspection or other subjective measures in
order not to bias the later neurophysiological interpretation of
the results. Rather, an automatic selection criterion is required.

One way of assessing the quality of a regularized model is to
measure how well it explains the unseen data which have not
been used for estimating the model parameters. This can be
done using CV. In k-fold CV, the data are split into k chunks.
The model is fitted on k − 1 chunks and evaluated on the
remaining “test” chunk. This procedure is repeated for each
choice of the regularization parameter and for each choice of
the test chunk. The parameter that best explains the test data
on average is selected is and used for training a final model
based on the entire data available.

In the distributed inverse source reconstruction, data folds are
created by dividing the measurement channels into k sets, and
the performance criterion to be estimated is the squared loss at
the “test” channels, i.e., kJ̃testμ̃a − Δytestℵ k22, where J̃test and
Δytestℵ are the parts of ~J and Δyℵ belonging to the test channels.

For inverse methods estimating the brain activations as linear
combinations of the data using some pseudoinverse J̃#λ (such as
MNE, wMNE, and tSVD), an approximation to leave-one-out
CV (i.e., k-fold CV with k ¼ M) can be carried out in the closed
form. The so-called generalized CV score gðλÞ is given by

gðλÞ ¼ kJ̃J̃#λyℵ − yℵk22
traceðI − J̃J̃#λÞ2

; (20)

where ~J#λ is the pseudoinverse constructed using the regulariza-
tion parameter λ.43–45 The value of gðλÞ is calculated for every λ
to be tested, and the parameter with the minimal score is used for
reconstruction.

One goal of this work is to show how the reconstruction
quality alters when different regularization values are used for
reconstruction. Methods that directly estimate Δμa are highly
dependent on the choice of this parameter. To visualize this rela-
tionship, we first generated one target, then added 50% noise to
the artificial measurement matrix, and finally reconstructed this
specific activation using a wide range of values for λ. For every
instance of this reconstruction result, the EMD was calculated.
This procedure was repeated 50 times for l2MNE and wMNE.
To test the same for tSVD, we proceed in the same manner
except that we increased the number of singular values used for
reconstruction, starting with the 10 highest and ending with
using all (m ¼ 231).

3 Results
In the following section, fisrt we show that the effectiveness of
the proposed methods depend on the regularization parameter λ
chosen (or in case of tSVD the number of singular values m).
Second, we present simulation results that were achieved
using the seven methods described above. We benchmark

Fig. 3 Example for image reconstruction using tSVD and with different numbers of singular values
used for inversion of J̃ . (a) Simulated target activation, (b) result using 30 used singular values for
reconstruction (EMD ¼ 12.6, best possible result), (c) result using (cross-validated) 60 singular values
(EMD ¼ 15.1), (d) result from reconstruction with 160 singular values (EMD ¼ 57.3).
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their performances in a realistic DOT simulation for one and two
activated spots.

3.1 Reconstruction Quality Highly Depends on
the Choice of the Regularization Parameter:
an Almost Optimum Choice Can be Made
without a User Bias

To visualize the impact of the chosen value for regularization,
Fig. 3 depicts an example of reconstruction for tSVD, where the
activation was recovered using different numbers of singular
values for the inversion of ~J. Figure 3(b) shows the best possible
reconstruction result with the lowest EMD for this simulation
[Fig. 3(a)]. The result that was achieved with the cross-validated
number of singular values is shown in Fig. 3(c). Both parameters
resolve the activation reasonably well with a correct location
and little blur. The result obtained with 160 used singular values
[Fig. 3(d)] leads to overfitting, which is evident from the high
number of phantom activations.

Figure 4 depicts multiple graphs, each representing one of
the distributed reconstruction methods used. The red solid
line shows the mean EMD for 50 different simulations and a
wide range of values for λ (increasing number of singular values
m for tSVD, respectively). The red transparent area represents
the standard error of the mean and the blue area represents the
standard deviation. In all quality plots, we clearly see how EMD
changes with different regularization parameters. We find a high
EMD when very small or very high regularization values are
chosen, rendering data that are either over or under fitted.
Between them, we find a global minimum, which is indicated
by the red dot representing the best possible EMD. Assuming

that the location of this minimum would be known prior to
reconstruction, this λ (m, respectively) would be the first choice
for parameter selection. However, in real-world experiments, the
true location and extent of this activation is unknown and such
a plot is not available. To overcome this challenge, this optimum
is approximated by the CV as described in the section above.
The blue dots in each subplot indicate the mean value for λ
(m, respectively), estimated using the CV and the respective
mean EMD. In all three methods, the cross-validated value
leads to results that are comparable in quality to the best possible
result. The slight mismatch between the best possible and cross-
validated results may be caused by the limited amount of data
available.

Please note that since l1MNE, l0MNE, and S-FLEX cannot
be solved in the closed form and rely on numerical optimization,
the calculation time for such a large number of variations was
unreasonably high. Therefore, the results for these methods are
not shown here. In practice, we choose the regularization
strengths for these methods indirectly by selecting λ such
that the data are explained to the same extent as it was explained
by wMNE using a cross-validated λ. The LCMV beamformer is
also omitted here, since it does not depend on the choice of
a regularization parameter in the same way as do the other
methods, as mentioned above.

With respect to the reconstruction quality concerning differ-
ent amplitudes of the simulated target, we calculated additional
simulation, testing two more aspects. First, we reconstructed
a target on a fixed location with two different amplitudes
and a fixed regularization parameter (optimized for one of
the simulations). Then, we reconstructed a target in a fixed loca-
tion with different amplitudes and a variable regularization

Fig. 4 Depiction of the relation between regularization and reconstruction quality of three distributed
reconstruction methods (noisy data, one activated spot). (a) Result for l2 MNE. In each simulation
run, the activation was reconstructed using 100 different regularization parameters. The red line depicts
the average EMD for 50 simulation runs. The geometric mean of the best possible regularization value
(red dot) and the same for the automatically detected (cross-validated) (blue dot) and their respective
mean EMD. (b) Reconstruction quality for tSVD using an increasing number of singular values for
reconstruction, (c) result for wMNE.
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parameter. In both cases, the difference in amplitude heights in
the most “active” voxels reflected the simulated difference. The
reconstruction quality was almost identical.

3.2 Linearly Constrained Minimum Variance
Beamforming Resolves Single Activation
Spots Best

The second focus of this work is on benchmarking source
reconstruction methods, among which are frequently used

methods such as the recently proposed sparse algorithms and
EEG-source localization methods. These methods are intro-
duced below in the context of cerebral DOTwith its semi-infin-
ite geometry. Figure 5 gives an impression of the simulation and
the reconstruction result for a single spot activation in a single
case with the seven reviewed methods. For visualization, we
show the transverse cross sections covering the area of the simu-
lated activation.

The arrow in Fig. 5(a) indicates the node that was set
“active.” Rows 1 to 7 in Fig. 5(b) show the reconstructed images

Fig. 5 Exemplary reconstruction images for a single spot activation. (a) Transversal slices of the
reconstruction volume with the simulated activation in column 6. The other columns depict transverse
cross sections adjacent to the central layer (z direction, slice depth: 1 mm). (b) Reconstruction result for a
0% noise level. Each row represents the result from one particular reconstruction method. The number in
the right column indicates the Earth Mover’s Distance (EMD) for this specific example. (c) 50% noise
added to the data.
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for all tested methods in a noise-free simulation. Within each
row, the EMD between the simulation and the result is pointed
out in the last column. Figure 5(c) shows the same simulation
but with 50% noise in the data.

For l2MNE, tSVD, and wMNE, we find a relatively good
localization of the peak activation with slight blurring in the
noise-free simulation. This blurring increases when noise is
added to the data. Compared to l2MNE, wMNE shows an
increased sparsity and a lower EMD. S-FLEX and l1MNE show
small positioning errors in the noisy case and a focal result.
In both noise levels, we find the ideal results for LCMV,
with no displacement and a high focality. All the three latter
methods appear to be rather insensitive to the applied noise
level. l0MNE performs well in the noise-free case, but fails
when noise is added to the data.

For an overall comparison of all methods, the average EMD
of 100 simulations with one activated spot and four different
noise levels (0%, 25%, 50%, and 75%) can be found in
Fig. 6(a) The respective mean Euclidean distance between sim-
ulation and maximum value of the reconstruction result can be
found in Fig. 6(b).

Similar to the single case, we find the best reconstruction at
every noise level when LCMV is used. In almost all simulations,
the beamformer achieves a correct positioning with minimal
blurring even at the highest noise level. S-FLEX and l1MNE
perform well and recover sparse results; however, their results
are dislocated by a few millimeters. Interestingly, S-FLEX
and l1MNE do not achieve their best EMD scores at the
lowest noise levels with high signal levels [see Eq. (4)]. This
may be due to the fact that, for efficiency reasons, the
optimization for both methods is stopped after the data
have been fitted with a goodness-of-fit of gof ¼ 0.95, where

gof ¼ 1 − kJ̃Δμ̃a − Δyℵk2∕kΔyℵk2 The data may be insuffi-
ciently fitted for very low noise levels.

TSVD, l2MNE, and wMNE show a clear dependence on
the noise level: with higher noise, the EMD increases. This
can be especially observed in tSVD. However, although reach-
ing a high EMD, tSVD still shows only a small positioning
error (Euclidean distance) between the peak value of the
reconstruction and the simulation [Fig. 6(b)]; within the highest
noise level, the average Euclidean distance between the result
and simulation is 8.3 mm (l2MNE: 15, wMNE: 11, LCMV:
0.2, S-FLEX: 10.1, and l1MNE: 8.8 mm).

This implies that the main reason for a high EMD is a higher
blur level rather than malpositioning; this blur could possibly be
reduced by thresholding the result. The highest sensitivity to
noise is found in l0MNE: beginning with low noise levels,
the EMD and the positioning error dramatically increase.

3.3 Minimum l1-Norm Achieves Best Result
When Two Spots Are Active

When investigating a relatively small area of the brain, there is
often only one spot of activation within the probe. However,
there are approaches where larger areas or even the whole
head are scanned. When the medium is larger, the possibility
of including two or more areas with simultaneously fluctuating
rhythms caused by a synchronic hemodynamic answer rises.
We, therefore, simulated two additional areas with perfectly cor-
related activity in the brain.

Recovering two (or more) activation foci in an algorithm is
a challenge. TSVD, l2MNE, and wMNE show no significant
differences in their EMD, which is attributable to the generally
increased level of blur. That makes it harder to distinguish

Fig. 6 (a) Overall EMD statistics for single spot activation, four applied noise levels and all seven
reconstruction methods, (b) averaged Euclidean distance between simulated target and maximum
value of the result in mm for all methods and noise levels. Black bar indicates the standard error of mean.
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the quality using the EMD method. However, when looking at
single cases with visualized reconstruction results (Fig. 7), we
can see that all methods except the beamformer are capable of
recovering both activations. Since l1MNE can reconstruct the
sparser activation patches more clearly than the other methods,
its performance is better, although again some slight positioning
errors do occur. At lower noise levels, S-FLEX yields results
comparable to those of l1MNE, but their quality decreases at
the highest noise levels. l0MNE can almost perfectly recover
both targets in a noise-free dataset, but fails again when
noise is added. Due to reduced blur, wMNE shows a slight
but not significant advantage over l2MNE, and with increased
noise levels it also has a slight advantage over tSVD. Finally, it

is obvious that the LCMV beamformer cannot resolve correlated
activity at different brain sites, and, therefore, shows a greatly
decreased performance. For a comparison see Fig. 8.

3.4 Test on Experimental Data

It is always of interest to see how algorithms work with real data.
However, it is difficult to estimate or compare the reconstruction
quality with no objective reference. To get an impression of
how the different algorithms work with real data, we added recon-
struction results for a choice of reconstruction methods (LCMV,
l2MNE, tSVD, and wMNE) for a finger tapping task (right hand
tapping for 20 s followed by 20 s rest, 10-min duration). Activated

Fig. 7 Exemplary reconstruction images for two activations. (a) Simulated activation: two nodes in differ-
ent locations were defined as “active” (indicated by the arrow), (b) reconstruction results for noise-
free data and from seven different reconstruction algorithms, (c) results for noisy data (50%). Columns
represent transverse cross sections of the reconstruction volume (z-direction, slice depth: 1 mm).
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areas were identified using a general linear model. In Fig. 9, we
show the lateral view on the left hemisphere with colored areas
indicating voxels with a significant (t-values ≤ − 4) hemo-
dynamic answer in the HbR time courses.

4 Discussion
We conducted this simulation study to illustrate how image
reconstruction methods depend on the regularization parameters
chosen, and to benchmark a wide range of reconstruction pro-
cedures for cerebral DOT in a semi-infinite medium. To our
knowledge, such an extensive study had not yet been performed.

The implementation aimed at mimicking a very realistic
environment for DOT measurements. However, assumptions
of the nature of the used medium had to be made. For instance,
the choice of optical properties to model light propagation in the
head was intermediate values, since their true values alter and a

variety of values have been reported46–48 Furthermore, Ref. 49
reported a decreasing scattering coefficient when looking at
larger optode distances (reflecting deeper tissue), which is in
contrast to the values used36 which assume an increasing
value for μ 0

s.
For a most realistic data generation, we added noise originat-

ing from a real-world experiment, including all the specific
features such as hemodynamic fluctuations and fiber distance-
dependent noise levels that can influence reconstruction quality.
This allowed the generation of datasets to be recorded in
psycho-physiological experiments, while at the same time
allowing for a direct assessment of the reconstruction quality.
In contrast to other studies,21,23 all methods were tested on a
semi-infinite medium. This geometry can rely on back-reflected
light only and there might be differences from the usually used
circles or cylinders where light is applied from all sides.

Fig. 8 Overall EMD statistics (n ¼ 100) for all seven methods and four different noise levels and two
activated spots. Black bar indicates the standard error of mean.

Fig. 9 Reconstruction result for a choice of methods [(a) LCMV, (b) l2MNE, (c) tSVD, (d) wMNE] and a
finger tapping task of the right hand side. Lateral view on the left hemisphere. Colored areas indicate
the voxels with a significant hemodynamic response in the HbR time courses due to the finger tapping
(estimated with a GLM, t -values ≤ − 4).
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Since experimental setups and imaging devices vary between
experiments and labs, parameters such as regularization values
should be determined for every reconstruction in a data-depen-
dent (and user independent) way. In this work, we demonstrated
that CV is able to ascertain the degree of regularization required
for a good balance between data and noise. It can be easily
implemented within the reconstruction routine and leads to
high-quality results by relying solely on the measurement
and the Jacobian. CV is one of the most popular methods for
model selection due to its high robustness and stability. Note,
however, that CV assumes stationarity, independent, and iden-
tically distributed properties for the underlying data. In the setup
of the present study, all assumptions are fulfilled: (1) even
though different channels are left out, the reconstruction of
the signal on the remaining channels follows the overall distri-
bution without causing nonstationarity50 and (2) due to the low
spatial range of NIRS, it can be safely assumed that the data are
spatially independent.

Linear methods, such as tSVD and l2MNE, are widely used
in cerebral DOT and NIRS experiments or phantom studies,
because they allow for fast or even real-time volumetric image
reconstruction of time series. However, they often provide
heavily blurred images in which the true activation may be
indistinguishable. To overcome this drawback, sparse methods
such as l1MNE or S-FLEX may be used. These methods prefer
spatially focal results and they have proven able to distinguish
multiple activation foci. They have provided good results
regardless of the number of activated spots within a medium
noise level. Besides the promising results for sparse methods,
some other aspects may also hamper their applications. The
most important is that they are nonlinear in the data. Thus,
unlike the linear methods, they cannot be implemented as a
multiplication of the data matrix with a precalculated pseudoin-
verse matrix, but rather require iterative optimization for each
new data point or chunk. This makes these algorithms unsuit-
able for online use and even hard to apply to large data
recordings, such as psycho-physiological experiments, at all.
An increased number of measuring channels and/or a
higher reconstruction resolution will dramatically increase
the reconstruction time.

In our setting, smooth source localization methods were
superior to most of the sparse methods concerning the computa-
tional time. For a 400 s experiment (1360 sample points) with
225 data channels, a l2MNE and a wMNE need less than 10 s
for reconstruction (including CV) and tSVD 96 s. Within
the class of sparse methods, LCMV succeeds (3 min) over
l0MNE (86 min), l1MNE (182 min), and S-FLEX (190 min).
All calculations were performed with MATLAB R2011b (7.13),
64-bit (glnxa64) (The MathWorks, Inc., Natick, Massachusetts,
USA) on an Intel Core i5-2500 (4x 3.3GHz), 32 GB RAM. As
previously described, the complexity of the source localization
problem, and thus the computational time, increases with a
higher number of data channels. However, since for smooth
(l2-norm penalized) methods, a data-independent pseudoin-
verse can be computed, the solution of these methods can be
computed for a large number of samples in an almost negligible
amount of time once that matrix is available. In contrast, sparse
methods need to solve an optimization problem for each new
sample/data segment, which leads to increased computational
costs.

As a further sparse method, we tested l0MNE, which failed
to properly reconstruct the noisy data. In contrast to S-FLEX or

l1MNE, the proposed implementation of l0MNE lacks the
potential to treat a time series in its entirety. Since the inverse
solution is recalculated for every time point, the sparsity patterns
vary likewise. The performance could probably be improved if
the activation is localized for one entire time series (rather than
one sample at a time) with the constraint that identical voxels
must be chosen for the whole time course, as was the case in
implementing for S-FLEX or l1MNE.

In addition to the distributed imaging approaches discussed
above, we also introduced the LCMV beamformer, another
reconstruction method used in the EEG field (although origi-
nally developed for radar arrays) which provides linear filters
for transforming sensor measurements into source activations,
and can be efficiently applied just like tSVD, l2MNE, and
wMNE. Although LCMV provides a filter matrix the size of
a pseudoinverse of ~J, it technically does not provide a solution
to the general forward equation. This means that certain parts of
the measured data may not be explained at all, while the variance
in other components may be accounted for many times in differ-
ent voxels. The reason for this behavior lies in the beamformer’s
property of separately modeling the activation at each voxel.
Consequently, it shows excellent results when only one brain
area is active or when multiple brain sites show uncorrelated
activation, but it is unable to deal with correlated source signals.
Furthermore, in contrast to all other methods, LCMV filters
must be computed from a large amount of data. This prohibits
the localization of single measurement samples and hampers
straightforward online application. Its broad utilization in func-
tional brain imaging experiments with potentially multiple cor-
related sources of activation has to be considered carefully in
regard to paradigm, imaging setup, and the presumed area(s)
of activation.

Besides the implemented methods, a huge variety of other
source localization algorithms exist. A few of them are men-
tioned here, such as the subspace preconditioned least-squares
root,51 the generalized Tikhonov regularization (GTR), GTR in
combination with the L-curve criterion (GTR-MLCC),52

l1∕l2-norm estimate (group lasso), l1 þ l1∕l2 (sparse group
lasso),53 a total variation regularization,54 and a time-frequency
mixed-norm estimate55 that uses time-frequency analysis for
regularization.

5 Conclusion
In this work, we performed a highly realistic simulation of a
functional brain imaging study with the cerebral DOT in humans
on a semi-infinite medium with multiple highly attenuating
layers. A choice of volumetric image reconstruction approaches
were benchmarked including two recent methods for EEG
source localization. We showed that linear reconstruction meth-
ods provide fast and adequate results. However, their accuracy
can be increased by implementing sparse algorithms, albeit at
the expense of computational time and effort. Using the frame-
work presented, a robust system for cerebral DOT can be
established and the necessary model parameters selected with
the CV approach. We consider it now ready for broad usage
in clinical studies, diagnosis, and general neuroscience research.
Future studies will simultaneously investigate whole head
multidistance optical tomography as well as multimodal image
reconstruction using EEG and DOT in order to obtain a more
robust reconstruction for complex sources.
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