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Abstract. The observed color of an object is influenced by the spectral distribution of an illuminant impinging
upon it. Here we explored a method to obtain optimal illumination spectra for local contrast enhancement based
on human vision. First, multispectral imaging was used to measure the spectral reflectance of the sample and
color segmentation was used to extract its color features. Then we obtained the target-specific optimal illumi-
nation by maximizing the color differences of mutual colors in our sample tissue. To verify the effectiveness of
this method, simulated images under the optimized illumination were compared to illumination with the standard
illuminant D65 and a cool white light-emitting diode (5500 K). Results showed that the sample under the opti-
mized illumination had a better perceptual color contrast. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI:

10.1117/1.JBO.20.1.015005]
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1 Introduction
In many applications, light has long been generated with
traditional light sources, such as incandescent, fluorescent,
halogen, or gas-discharged lamps. These light sources each
had their own spectral power distribution (SPD), and changing
the spectrum on the fly was impossible. Hence, the spectrum of
the light source was as is or, in the best case, optimized for the
averaged application in a given application context. A measure
most commonly used for expressing the quality of the spectrum
of an illuminant is the color rendering index (CRI),1 which is
calculated from the differences in the chromaticities of eight
CIE standard color samples (CIE 1995) when illuminated by
a light source and by a reference illuminant of the same corre-
lated color temperature (CCT). CIE A and D series illuminants
are used as reference sources. A zero color difference means the
test source has very high CRI value. A lower CRI score indicates
that some colors may appear unnatural when illuminated by the
lamp. As such, it is an important aspect to be considered for
lighting conditions relying on high CRI, such as surgical light-
ing.2 However, some applications also benefit from alternative
ways of optimizing the SPD of a light source: for example, in
retail, the spectrum of the illumination may be adjusted to
improve the visual freshness of food or the appeal of other
goods.3,4

Light-emitting diode (LED) illumination has opened a com-
pletely new playground in spectrum optimization. LEDs have
emission spectra with narrow peaks at different wavelengths
and illuminants with varying spectral compositions become fea-
sible by combining them into a luminaire. By driving multiple
LEDs in a luminaire to a different extent, the spectral distribu-
tion of the light can be adjusted on the fly. The latter may have
advantages in several application contexts. Colored light may be

used to generate different atmospheres in homes and offices,5–7

and to facilitate healing in hospitals.8 In addition, colored light
may be used to improve texture visibility, for example, in retail9

and in surgical lighting.10,11

Recently, LEDs have been incorporated into high-end light-
ing for open-wound surgery.12,13 In this application area, illumi-
nants are conventionally white with control of both luminance
and CCT. Having white light with a high CRI is essential for
surgical lighting, as surgeons should be able to reliably assess
the color of healthy versus sick tissue. The existing standard
(IEC-60601) for surgical lighting, therefore, prescribes that
the CRI value of the illuminants (the so-called Ra index) should
be>85.2 However, the CRI was developed based on the conven-
tional sources, such as fluorescent lamps and halogen incandes-
cent lamps. It may need revision for the new LED-based light
sources, because they have dissimilar spectra from traditional
light sources.14,15 The CRI score would not correlate with a vis-
ual evaluation of the color rendering performance of LED-based
white light sources. In addition, they do not support new oppor-
tunities with LED-based lighting, namely the improvement of
texture visibility by switching the light source between different
spectra. Surgeons do not only need to distinguish healthy from
sick tissue, but also need to understand where exactly to cut dur-
ing the operation, so light enabling high local contrast is highly
desirable. Spectrum optimization of the light may help to
improve such contrast visibility.

Previous research already demonstrated light-based color
contrast enhancement for clinical applications. Gono et al.
used a xenon lamp and a set of color filters to quantitatively
enhance contrast in vascular patterns of tongue, esophagus,
and colon tissues.16 Wieringa et al. proposed a method to
enhance superficial blood vessels below pigmented skin by
combining images in different spectral bands.17 In both cases,
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the light was optimized beforehand for a particular tissue, while
surgical lighting should ideally be able to improve visibility
for a wide range of biological tissues. Clancy et al. demonstrated
a light-pipe LED light source for endoscopic illumination,
which combined the light from four LEDs with different colors.
With this light source, these researchers also demonstrated the
ability to improve the color contrast of vessels with their sur-
rounding tissue. They also recognized that by carefully adjust-
ing the intensity of each of these four LEDs, the visibility of the
tissue structure may be improved over a wide range of tissue
colors. However, how to exactly quantitatively derive the opti-
mal linear combination of the intensities of the four LEDs was
not discussed.

Several researchers enhanced color contrast by shaping the
spectral distribution of the illuminant after having analyzed the
reflectance differences between two regions of interest.18,19

Building further on this idea, Lee et al.20 proposed an algorithm
to find the optimal spectral distribution of the illuminant, mak-
ing color differences in the visual field as large as possible. But
the limitation of this method is that it starts from camera-based
imaging and, so, actually optimizes the spectral distribution
of the illuminant in camera RGB color space. Obviously,
differences in a camera RGB color space are not directly
related to perceptual color differences. It is well documented
in the literature21 that differences in RGB color space (e.g.,
sRGB) do not always correspond well to perceptual color
differences. Hence, to optimize the illuminant for visible
differences in the color of biological tissue, a perceptually
more accurate color space such as CIELAB is needed. Also,
real-life tissues contain many color variations and it is not
immediately clear which color differences need to be opti-
mized. Lee et al. optimized the spectral distribution of the illu-
minant for only two different colors in the tissue, whereas, for
instance, open-wound surgery would require the distinction of
multiple colors present in the tissue. This could be caused by
different tissue types, levels of oxygen, and types and severities
of symptoms. In the present research, we intend to expand the
approach of Lee et al. by calculating the optimal spectral dis-
tribution for tissue visibility in a more visually uniform three-
dimensional color space CIELAB because its three dimensions
approximately correlate with the perceived lightness, chroma,
and hue of stimuli.22 Also, we do not limit ourselves to finding
the optimum based on two colors, but calculate the actually
required number of colors from a multispectral image. In
this study, pig heart was chosen as the sample because of
its similarity in physical and chemical compositions to that
of a human being.23 The light sources used in this study con-
sisted of 11 LEDs that could each be tuned separately to a
given intensity. As such, a large flexibility of sources can
be created to obtain the optimal illumination. First, a multi-
spectral image of the pig heart was made, on which we
used clustering to find the relevant number of different
color patches in the tissue. We then applied an algorithm to
maximize the mutual differences of these colors to optimize
different weights for the intensities of the 11 LEDs.

2 Illuminant Spectral Distribution
Optimization

Spectral reflectance is the fingerprint of an object. The object’s
color appearance changes with the illumination in a way deter-
mined by the spectral reflectance. Let lðλÞ represent the SPD of
an illuminant, rðλÞ be the spectral reflectance of a scene point,

and x̄ðλÞ,ȳðλÞ, z̄ðλÞ be the color matching functions of CIE XYZ
color space.22 Then the tristimulus values X, Y, and Z are given
by

X ¼ k
X

lðλÞrðλÞx̄ðλÞY ¼ k
X

lðλÞrðλÞȳðλÞ

Z ¼ k
X

lðλÞrðλÞz̄ðλÞk ¼ 100∕
X

lðλÞrðλÞȳðλÞ;
(1)

where the constant value k is defined such that it results in Y
being 100 for the perfect diffuser. Although the CIE XYZ
color space has been widely used, it suffers from a serious dis-
advantage: the distribution of the colors on it is so nonuniform
that it does not correlate with the perception of hue and satura-
tion. To obtain perceptually uniform color coordinates, the
tristimulus values were then transformed to L* a* b* values
in CIELAB color space. The color difference of two colorsΔE00

was then obtained from the CIEDE2000 equation,24 which is
demonstrated to predict perceptual color differences more accu-
rately.22 If we now suppose that there are n relevant colors in a
sample tissue, we can derive the optimal illumination spectrum
by maximizing the color contrast, which can be formulated as
the following maximization equation:

Lopt ¼ argmax
L

Xn

i

Xn

j

ΔE00ðLÞijði ≠ jÞ; (2)

where ΔE00ðLÞ represents the color difference formula
CIEDE2000 as a function of the illuminant spectrum vector L.
As it is unrealistic to create an arbitrary spectrum, LED light
sources can be used to compose the most appropriate illumina-
tion. If the spectra of LED sources I1; I2; : : : ; Im are given, the
maximization problem of Eq. (2) can be written as follows:

xopt ¼ arg max
x

Xn

i

Xn

j

ΔE00ðxIÞijði ≠ jÞ; (3)

where I is a matrix consisting of LED light source vectors
I1; I2; : : : ; Im and x is a vector of weights representing the rel-
ative intensities of the LED sources.

In order to obtain an optimal illumination by Eq. (3), three
steps are essential: (1) the spectral reflectance data of each point
in the scene should be measured, (2) the number n of relevant
colors in the tissue should be computed, and (3) the optimized
SPD should be calculated. In this study, we used a multispectral
imaging system to measure the spectral reflectance of the sam-
ple, and we used K-means clustering to determine the number of
different relevant colors in the sample.

2.1 Spectral Reflectance Acquisition

In multispectral color imaging, the spectral reflectance of a sam-
ple can be reliably reconstructed, as shown by several research-
ers.25,26 The system we used has been previously characterized
and described.27 As illustrated in Fig. 1, the multispectral imag-
ing system consists of a monochrome camera and a filter wheel.
The filter wheel contains 11 filters and is installed between the
camera and the lens. With this system, the spectral reflectance of
a sample can be obtained at pixel-level resolution and with a
spectral resolution ranging from 400 to 700 nm with 10-nm
intervals. Figure 2(a) shows the multispectral image of a section
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of a pig heart with a size of 1040 by 1392 pixels. From each
pixel, the spectral reflectance data can be obtained, as shown
for three pixels of the image in Fig. 2(b). Hence, color coordi-
nates per pixel can be computed in any color space if the SPD of
the illuminant is known.

2.2 Color Segmentation

As stated in Sec. 2.1, a multispectral image contains the spectral
reflectance data per pixel, so the optimization problem described
in Eq. (3) would involve maximizing the sum of mutual color
differences within a matrix with 1040 rows and 1392 columns.
Since this problem has very high dimensionality, optimization
would become very slow. For practical applications, the corre-
sponding accuracy of optimizing color differences between all
pixels is unnecessary. Hence, the image was simplified using
K-means clustering, where each cluster consists of pixels
with similar color coordinates in CIELAB color space.

K-means clustering is one of the most widely used algo-
rithms in many practical applications, like pattern recognition,
image processing, and statistics. The technique has been widely
discussed and improved by many researchers.28,29 Clustering
aims at partitioning a given data set into disjoint subsets so
that the specific clustering criteria are optimized. The standard
clustering criterion of the K-means method is that for each data
point, its squared Euclidean distance to the corresponding clus-
ter center is computed and then the sum of these distances over
all points in the data set is minimized. In our particular example,

we want to obtain colors that can represent the sample, so
K-means clustering is used to segment pixels of the multispec-
tral image [shown in Fig. 2(a)] with similar L* a* b* values into
the same cluster. The averaged L*a*b* values of pixels in the
same cluster were used as color coordinates of this cluster.
Obviously, if we want to optimize for the human visual system,
the computed distances between colors must be perceptually
meaningful. That is why CIELAB is used.

To this end, we used the function cvKMeans2 offered by
openCV (version 2.4.4). A drawback of the K-means clustering
algorithm is that the cluster number K should be specified. In
order to find the optimal cluster number, a set of different K
values was explored. Figure 3 shows the clustering results
with different K values. The picture labeled Original in Fig. 3
represents the multispectral image shown in Fig. 2(a). As can be
seen in Fig. 3, the images resulting from different values of K
become closer to the original one as the K value increases. A
pilot experiment was conducted by a few observers. They were
asked to judge the similarity between the original and the images
with different clusters. It was found that the images with 30 clus-
ters consistently gave the lowest cluster number and observers
could hardly distinguish the difference. Hence, a K of 30 was
assumed to be the appropriate number of clusters needed to
represent the multispectral image. Note that this does not nec-
essarily mean that we will also need 30 clusters for the optimi-
zation of the illumination, as will be discussed in more detail
in Sec. 2.3. Figure 4 shows the spectral reflectance curve of
each of the 30 clusters, obtained by averaging the reflectance
data of all pixels in the same cluster. For the next step of opti-
mizing the illuminant, clusters existing of overexposed (whitish)
pixels and of (gray) background pixels were removed because
they would affect the optimization of the illuminant in an uncon-
trolled way. As such, only 19 clusters were left for further opti-
mization. The reflectance curves of the removed clusters are
marked gray in Fig. 4.

2.3 Illuminant Spectral Distribution Optimization

The third step in the process consists of optimizing Eq. (3) using
the color differencesΔE00 among the 19 remaining clusters. The
matrix I is composed of the SPD of 11 LED light sources cover-
ing the visible light spectrum from 400 to 700 nm with a 4-nm
interval measured by PhotoResearch PR655 SpectraScan
Spectroradiometer, as shown in Fig. 5. Eight of the LEDs are
narrow-band colored, whereas three LEDs are white with a dif-
ferent CCT, i.e., 3000, 4000, and 5500 K. Solving Eq. (3) then

Fig. 1 Schematic illustration of the multispectral imaging system.

Fig. 2 (a) Multispectral image of the section of a pig heart (displayed in RGB format). (b) Spectral reflec-
tance curves of pixels A, B, and C of the image.
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results in the vector x, providing the intensity per LED for which
color contrast is maximal.

As Eq. (3) is nonlinear, particle swarm optimization (PSO)
was used to find the optimal weight vector x. PSO is a popular
search algorithm as it is efficient and has very few parameters to
adjust. It can be applied to solve most optimization problems
and problems that can be converted to optimization problems.30

A disadvantage of the PSO algorithm is that it may find local
optimal solutions. In order to obtain a global optimum to Eq. (3),
the optimization is run 10 times for each K value, and then the
SPD with the maximum color difference over the 10 runs was
selected. Figure 6 plots the optimized SPD for each of the 10
different runs when K ¼ 30. It clearly shows two different opti-
mal solutions that mainly differ in the long-wavelength peak.
Apart from that, the optimized SPDs for the different runs
are very similar. Results of more than 10 runs were similar
with the two local solutions with no improvement of the opti-
mization results.

Figure 7 shows the SPDs resulting from the optimization of
Eq. (3) for different values of K. These optimal spectral distri-
butions tend to converge to a single SPD as the K value
increases. Only for a K value of 5 is the SPD pattern very dis-
similar, as can be seen from the black curve in Fig. 7. For a K
value of 10 or higher, the optimal SPD consistently has high
luminance in wavelengths around 470, 510, and 650 nm. The
latter observation confirms that 30 color clusters are sufficient
to represent the color information of the sample tissue. As the
difference of optimal SPDs shown in Fig. 7 is so minor that it
can affect visual color contrast, the optimization result when
K ¼ 30 was used in the following validation.

3 Validation of the New Approach
To validate this new approach of optimizing color contrast, we
compare the resulting color contrast of the optimized SPD with
that of three alternative illuminants: (1) CIE illuminant D65,
(2) a cool white LED with a CCT of 5500 K, and (3) the SPD
optimized based on RGB (as proposed by Lee et al.20) instead of
CIELAB. The latter is obtained by maximizing the Euclidean
distance in RGB color space—a space that basically is device
dependent and, so, not uniquely defined. To solve this issue, we
used the sRGB standardized color space. Within this color
space, the maximization problem can be formulated as follows:

xopt ¼ arg max
x

Xn

i

Xn

j

½ðRi − RjÞ2 þ ðGi − GjÞ2

þ ðBi − BjÞ2�ði ≠ jÞ; (4)

with R,G, B being the color coordinates of each cluster in sRGB
space as a function of the illuminant xI. Figure 8 compares the
optimized SPD in sRGB color space (blue curve) to the one opti-
mized in CIELAB color space (black curve). The two SPDs are
clearly different; the SPD optimized in the sRGB color space has
peak intensities around 440, 520, and 590 nm. Figure 8 also
includes the SPD of the two other illuminants used in the com-
parison, i.e., CIE D65 and LED with CCT of 5500 K.

Fig. 3 Results of clustering the pixels of the multispectral image with different values of K .

Fig. 4 Spectral reflectance curve of each of the 30 clusters (the
curves rendered in gray do not contribute to the color contrast of
the pig heart tissue, but belong to overexposed pixels or to the
gray background).
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Fig. 5 Relative spectral power distribution of the 11 light-emitting diode (LED) sources used in the current
study.

Fig. 6 Spectral power distributions (SPDs) of different runs of particle swarm optimization when K ¼ 30.

Fig. 7 Optimized spectral distribution of the illuminant for different K values.
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Figure 9 shows the images computed from the multispectral
image [of Fig. 2(a)] under different illuminations. The tristim-
ulus values per pixel are obtained from Eq. (1) and then trans-
formed to RGB using the sRGB color space. As shown in Fig. 9,
the sample under the illuminant with the SPD optimized in
CIELAB color space shows better color contrast than any of
the other samples. The color of the sample in itself is bluish
under this illuminant and becomes yellowish under the illumi-
nant optimized in sRGB color space or under the LED with a
CCT of 5500 K. In the latter two cases, the color contrast is low.
The very similar appearance of the sample under the illuminant
optimized in sRGB color space and under the white LED with a
CCT of 5500 K is not surprising, as the two SPDs are also very
comparable. To quantify the perceived difference in color con-
trast, we calculated the sum and mean color differences over all
pairs of 19 clusters for the four illuminants under evaluation.

These results are summarized in Table 1. It shows a higher
mean value for the SPD optimized in CIELAB color space
than for any of the other SPDs. Univariate analysis of variance
was then used to analyze the difference between mean values
under four illuminations after normalization of ΔE00 values.
We found a significant effect of illuminant [Fð3;680Þ ¼ 4.958,
p ¼ 0.002). A post hoc analysis with Bonferroni correction
revealed that the illumination optimized in CIELAB results
in a significantly larger color contrast than the other illuminants
(p < 0.027). The other illuminants are not significantly different
from each other (p > 0.999).

4 Discussion and Conclusions
This paper proposes an illumination optimization method to
effectively enhance the local color contrast of tissue. It is
based on a three-step approach of (1) capturing the reflectance
data of scene points, (2) clustering these reflectance data in a
number of clusters representative of the color information of
the scene, and (3) using these clusters to maximize the color
differences between them based on the ΔE00 equation in
CIELAB color space. We proved the method to be suitable
for the optimization of texture visibility in surgical lighting
and showed its superiority in terms of color contrast with respect
to three alternative illuminants: the illuminant optimized with a
similar approach in sRGB color space, a cool white LED, and a
CIE D65 illuminant. Particularly, the illuminant optimized in
sRGB color space was not really able to improve color contrast
within the tissue, giving further support to the knowledge that
differences in RGB color space do not necessarily correspond

Fig. 8 SPDs of the illuminants used for comparing the color contrast: white LED with correlated color
temperature (CCT) of 5500 K (red curve), D65 (green), optimized illumination in sRGB space (blue), and
in CIELAB space (black).

Fig. 9 Images computed from the multispectral image assuming four
different illuminants: (a) illumination optimized in CIELAB, (b) D65,
(c) illumination optimized in sRGB, and (d) white LED with CCT of
5500 K.

Table 1 CIEDE2000 values of four illuminations.

ΔE00

White
light-emitting

diode (5500 K) D65 Optimized_sRGB Optimized_CIELAB

Sum 2516 2564 2548 3032

Mean 14.7 14.9 14.9 17.7
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well to color discrimination in the human visual system. As
such, our novel approach shows two important extensions
with respect to the earlier work of Lee et al.:20 it allows optimi-
zation of color contrast for more than two differently colored
regions in the tissue, and it optimizes the color contrast in
the perceptually more accurate CIELAB color space.

To come to the proposed method, some choices were made
that need further justification or research. We used K-means
clustering to find the relevant colors between which the contrast
needed to be maximized. A variation in the number of clusters
used revealed that 30 clusters were sufficient to visually repro-
duce the color information in the tissue with sufficient accuracy
and that the resulting optimized SPD hardly changed when
using more than 10 clusters in the optimization algorithm. To
perform the optimization, we first (manually) removed 11 of
the 30 clusters that represented the gray background or the whit-
ish highlights in the scene. Obviously, this removal is prone to
subjectivity in the algorithm, and further research is needed to
automatically select the relevant clusters for optimizing color
contrast in whatever tissue.

Optimization of the color contrast is done in this paper based
on Eq. (3), which calculates color differences taking into
account also luminance differences, but not taking into account
the spatial dimensions of the different color clusters. As lumi-
nance is an important aspect of contrast perception, we included
it in the calculation of ΔE00. Omitting the contribution of lumi-
nance differences by only considering differences in a* and b* is
expected to yield suboptimal results, but obviously needs to be
further investigated. Weighting the importance of a color differ-
ence between two clusters by the size of the clusters in the over-
all sum of Eq. (3) may further improve the SPD. This would give
more weight to the first clusters detected and gradually reduce
the weight of the smaller clusters. To some extent, the optimi-
zation algorithm automatically reduced the importance of the
smaller clusters, as we saw saturation in the shape of the SPD
for more than 10 clusters. On the other hand, adding more
weight to the first detected bigger clusters may also have a det-
rimental effect on the SPD, since it may yield an SPD closer to
the one found for K ¼ 5 in Fig. 6, which clearly is suboptimal.
So, the smaller color clusters representing some detailed struc-
ture also need to be sufficiently represented in the optimization
algorithm.

Our results show that for the sample of a pig heart, the opti-
mal SPD has high luminance in wavelengths around 470, 510,
and 650 nm. This SPD can be easily reproduced with a lumin-
aire existing of the combination of the 11 LEDs used in this
study. This particular optimized SPD even suggests that fewer
LEDs would have been sufficient. Using fewer LEDs, however,
may also reduce the flexibility in the final implementation of a
surgical lamp. The current optimization is performed on a cross-
section of a pig heart, and obviously, more samples of different
tissues are needed to explore the required flexibility in SPD to
create optimal color contrast for these different tissues. Knowing
the changes in optimal SPD for a bigger selection of tissues will
reveal the number of LEDs needed in the final implementation
of a surgical lamp with high color contrast.

Our approach optimizes color contrast at the expense of the
natural appearance of colors in the tissue. As such, it may pro-
vide surgeons relevant information on tissue texture, but at the
expense of color reliability. Hence, the optimized light source is
probably not acceptable for continuous use, but it can be used in
combination with an illuminant with very high CRI. Since both

SPDs, in principle, can be provided with a carefully selected
combination of LEDs, our method can be used to design an illu-
minant that may be switched on the fly between optimal color
rendering and optimal color contrast for any tissue.
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