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In this paper, we consider the Laplace transform (LT) for solving
different time-dependent photon migration problems occurring
in the biomedical optics field. It is shown that the LT exhibits
important advantages in view of accuracy, efficiency, and
numerical stability compared to the classical approach that
uses the Fourier transform (FT) to obtain time-dependent quan-
tities from data in the frequency domain. For typical applications
in tissue spectroscopy or imaging, a speed-up of up to several
orders of magnitude can be accomplished by applying the LT for
both numerical or analytical solution approaches.

Modeling of light propagation in scattering media, such as
biological tissue, in the mesoscopic and macroscopic scales
is commonly performed using the radiative transport equation
(RTE) or its approximation, the diffusion equation (DE).
Analytical solutions of these equations in the time domain
are restricted to relative simple geometries,1–3 whereas for a
series of applications, efficient analytical solutions are available
in the frequency domain.4,5 Usually, the FT is applied to obtain
the time-domain solutions from the corresponding solutions in
the frequency domain. Similarly, in the case of numerical sol-
utions of these equations, calculations in the frequency domain
are more efficient than in the time domain. Again, commonly,
the FT is applied to obtain solutions in the time domains.

In this paper, we show, using exemplary analytical solutions
of the DE, that the application of the LT is considerably more
efficient and accurate compared to the use of the FT for
obtaining time-domain solutions. We present comparisons for
the fluence in an infinitely extended medium, for the reflectance
from a two-layered medium, and for the fluorescence in an in-
finitely extended medium.

Analytical solutions of the time-dependent DE are provided
either by the separation of variables method or the integral trans-
forms, such as the FT, which is defined as

EQ-TARGET;temp:intralink-;e001;63;199fðtÞ ¼ 1

2π

Z
∞

−∞
FðωÞeiωt dω; ω ∈ R: (1)

However, a serious problem when using the FT [Eq. (1)] arises
when FðωÞ exhibits a slow algebraic decay for increasing angu-
lar modulation frequency ω. As a result, one has to deal with a
highly oscillatory integrand, which is known to be difficult to
integrate numerically. For example, we consider

EQ-TARGET;temp:intralink-;e002;326;752Gðr;ωÞ ¼ expð−κrÞ
4πDr

; κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μa
D

þ iω
Dc

r
; (2)

which is the known infinite-space Green’s function of the fre-
quency-domain DE ∇2Gðr;ωÞ − κ2Gðr;ωÞ ¼ −δðrÞ∕D.6 In
this context, we have μa as the absorption coefficient and D ¼
1∕½3ðμa þ μ 0

sÞ� as the diffusion coefficient with μ 0
s being the

reduced scattering coefficient. Furthermore, ω is the angular
modulation frequency and c is the speed of light in the medium.
The exact solution in the time domain is well known and given
by1,2

EQ-TARGET;temp:intralink-;e003;326;628Gðr; tÞ ¼ c

ð4πDctÞ3∕2 exp
�
−μact −

r2

4Dct

�
; t > 0:

(3)

This result can also be confirmed numerically via evaluation of
Eqs. (1) for (2) using the discrete FT (DFT). However, espe-
cially for small source–detector separations, an accurate and
efficient reconstruction of Gðr; tÞ from its image Gðr;ωÞ
becomes a challenging task. For illustration purposes, Fig. 1
shows the time-resolved fluence for a relatively small
source–detector separation of r ¼ 0.1 mm compared to 1∕μ 0

s.
The smooth curve denotes the exact time-domain solution
[Eq. (3)], whereas the oscillating curve corresponds to the
numerical inversion of Eq. (2) using the DFTwith N ¼ 104 dis-
crete frequencies.

Indeed, the above result can be improved by increasing the
number of nodes at the expense of the computational time. This
circumstance, however, leads to serious problems in many sit-
uations of high practical importance. An example of this is the
reconstruction of the optical properties in experiments, which
involves the solution of the inverse problem. Here, the solutions
of the DE must be evaluated many times, so the calculation time
becomes a critical parameter. On the other hand, when applying
the time-dependent RTE, the solution of the forward problem
can already be critical, because the computation of the fre-
quency-domain data is significantly more expensive than in
the case of the DE. Fortunately, besides the FT, one can alter-
natively make use of the LT

EQ-TARGET;temp:intralink-;e004;326;311fðtÞ ¼ 1

2πi

Z
B
FðsÞest ds; s ∈ C; (4)

where B denotes the Bromwich path, which is typically given by
a line parallel to the imaginary axis of the s-plane. In particular,
the evaluation of Eq. (4) along the imaginary axis with s ¼ iω
results in the Fourier integral [Eq. (1)]. Significant improve-
ments in view of convergence, efficiency, and numerical stabil-
ity can be achieved when evaluating Eq. (4) along a Hankel
contour, which starts and ends at −∞. The key point in this con-
text is that the kernel function expðstÞ becomes a damped wave
due to ReðsÞ < 0. Very recently, different contours have been
developed and analyzed concerning the numerical inversion
of the LT, such as the parabola and hyperbola7 as well as a modi-
fied Talbot contour.8 For our considerations, we found it appro-
priate to employ the hyperbola contour in the following
parameter form:

EQ-TARGET;temp:intralink-;e005;326;114sðθÞ ¼ μþ iμ sinhðθ þ iφÞ; −∞ < θ < ∞; (5)

where s 0ðθÞ ¼ iμ coshðθ þ iφÞ. Inserting Eq. (5) into Eq. (4)
leads to the modified inverse Laplace integral
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�
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where we have implicitly taken into account a real time-domain
signal, which means that fðtÞ ¼ f�ðtÞ, hence Fðs�Þ ¼ F�ðsÞ.
Then, the application of the midpoint rule results in the follow-
ing computable series form:

EQ-TARGET;temp:intralink-;e007;63;413fðtÞ ¼ h
π
Im

"XN−1

k¼0

FðskÞ expðsktÞs 0k
#
; (7)

where sk ¼ sðθkÞ for θk ¼ ðkþ 1∕2Þh and h is the uniform node
spacing with N being the number of nodes along the hyperbola in
the upper half-planeReðsÞ > 0. The remaining curve parameters μ
and φ as well as the node spacing h depend on the problem under
consideration. This means that if FðsÞ is computationally less
expensive or if the computational time is not the highest priority,
one should use the optimized parameters μ ¼ 4.492075287N∕t,
φ ¼ 1.172104229, and h ¼ 1.081792140∕N. These values are
in principle the same as those given in Ref. 7, whereas the number
of digits has been increased. As an example, we repeat the above
numerical experiment for the same optical and geometrical param-
eters. Instead of a 104-point DFT, we evaluate Eq. (7) for N ¼ 15

(!). In Fig. 2, the solid line corresponds to the exact time-domain
solution [Eq. (3)], whereas the filled dots denote the reconstruction
of Gðr; tÞ from its image Gðr; sÞ ¼ expð−κrÞ∕ð4πDrÞ with
κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μa∕Dþ s∕ðDcÞp
. We have additionally computed the rel-

ative differences between the exact and reconstructed solutions,
which are depicted in the inset. It can be furthermore reduced
by using a slightly increased number of samples. We note that
the LT approach works in the same manner even for very small
source–detector separations, such as r ¼ 10−6 mm.

We now consider the case that FðsÞ is an arbitrary compli-
cated function that is costly to evaluate. Thus, the number of its
evaluation should be kept as small as possible. At the same time,
we assume that fðtÞ is needed for many time values in
t ∈ ðt1; t2Þ. In this case, we use a fixed integration path in con-
nection with the following time-independent parameters7

EQ-TARGET;temp:intralink-;e008;326;496μ ¼ 4πφ − π2

AðφÞ
N
t2
; AðφÞ ¼ arcosh

�ðπ − 2φÞΛþ 4φ − π

ð4φ − πÞ sin φ

�
;

(8)

where Λ ¼ t2∕t1. The uniform node spacing becomes
h ¼ AðφÞ∕N, and the value for the angle φ ¼ 1.09 has been
recovered by us as a result of numerical experiments. For the
next comparison, we consider the time-resolved reflectance
Rðρ; tÞ from a two-layered medium predicted by means of
the DE. The first layer has a thickness of L ¼ 2 mm, whereas
the second layer is assumed to be infinitely thick. The refractive
indices of the first and second layers are denoted by n1 and n2,
respectively. The surrounding nonscattering medium in z < 0
has a refractive index of n0 ¼ 1.0. We consider the DE under
the extrapolated boundary condition. In this context, we refer
to the papers4,9–13 dealing with the solution of the DE in layered
media. The corresponding solution to be considered here has the
form

EQ-TARGET;temp:intralink-;e009;326;293Rðρ; tÞ ¼ 1

2π

Z
∞

0

1

2πi

�Z
B
Rðq; sÞest ds

�
J0ðqρÞq dq; (9)

where Rðq; sÞ denotes the reflectance in the Hankel–Laplace
space, which can be found in Ref. 4, and J0ðxÞ is the Bessel
function of the first kind. For verification purposes, we take
into account the real-space Green’s function derived by
Tualle et al.10 Figure 3 displays the time-resolved reflectance
from a two-layered medium evaluated for two radial distances
relative to the normally incident light beam. The solid line is the
reflectance obtained from Eq. (9), whereas the symbols corre-
spond with the real-space Green’s function of Tualle et al.10

Concerning the inverse LT, we consider a fixed hyperbola con-
tour and truncate the series [Eq. (7)] at N ¼ 30. As a conse-
quence, the numerical evaluation of the time-resolved
reflectance can be performed quite efficiently. For example,
in the case of a three-layered model, the reflectance for 20 radial
distances and 600 time values (20 × 600 grid) can be evaluated
in ≈ 0.2 s using a small MATLAB script. The computation
time can be furthermore reduced when using, e.g., the C
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Fig. 1 Reconstruction of the time-resolved fluence via numerical
inversion of the Fourier transform. The optical properties of the infinite
medium are assumed to be μa ¼ 0.01 mm−1, μ 0

s ¼ 1 mm−1, and
c ¼ 2.99 × 108∕1.4 ms−1. The smooth curve denotes the exact
time-domain solution [Eq. (3)], whereas the oscillating curve
corresponds to the numerical inversion of Eq. (2) by means of the
discrete FT.
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Fig. 2 Reconstruction of the time-resolved fluence by means of the
inverse Laplace transform. The optical properties of the infinite
medium are assumed to be μa ¼ 0.01 mm−1, μ 0

s ¼ 1 mm−1, and
c ¼ 2.99 × 108∕1.4 ms−1. The solid line corresponds to the exact
time-domain solution [Eq. (3)], whereas the filled dots denote the
reconstructed values by means of the series [Eq. (7)].
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programming language instead of MATLAB. Figure 3 confirms
the good agreement between the different solutions for both
radial distances. We note that the evaluation of the time-resolved
reflectance at null source–detector separation would be a diffi-
cult task when using the conventional FT.

As a final example, we consider the time-resolved fluores-
cence caused by an isotropic point light source embedded in
an infinite scattering medium. The fluorescence in Laplace
space is given by14

EQ-TARGET;temp:intralink-;e010;63;385Fðr; sÞ ¼ μax
4πDmDx

1

κ2x − κ2m

�
e−κmr

r
−
e−κxr

r

�
; (10)

where κx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μax∕Dx þ s∕ðDxcÞ

p
and κm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μam∕Dm þ s∕ðDmcÞ
p

. The subscripts x andm refer to the exci-
tation and emission wavelengths of the light. The corresponding
solution in the time domain can be recovered by means of
the inverse LT and written in the following closed-form
representation:
EQ-TARGET;temp:intralink-;e011;63;270

Fðr; tÞ ¼ c
8πr

μax
Dm −Dx
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�
−
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ct

�

×
�
expð−λrÞerfc

�
1
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rffiffiffiffiffiffiffiffiffiffiffi
Dmct
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ffiffiffiffiffiffiffiffiffiffiffi
Dmct
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þ expðþλrÞerfc
�
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Dmct
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Dmct

p �

− expð−λrÞerfc
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Dxct
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− expðþλrÞerfc
�
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rffiffiffiffiffiffiffiffiffiffi
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p þ λ
ffiffiffiffiffiffiffiffiffiffi
Dxct

p ��
; (11)

where λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðμam − μaxÞ∕ðDm −DxÞ
p

and erfcðzÞ are the com-
plementary error function. Note that, depending on the optical
properties, λ can be both real and imaginary. Of course, the final
result is in all cases automatically a real number. Figure 4

displays the time-resolved fluorescence calculated for two dif-
ferent source–detector separations. The solid line corresponds to
Eq. (11), whereas the symbols denote the reconstructed fluores-
cence by means of the discrete inverse LT [Eq. (7)], which has
been considered for N ¼ 15. In this case, the solution to be
inverted [Eq. (10)] is computationally less expensive, so we
used a variable hyperbola contour. The agreement between
the exact and the reconstructed fluorescence is excellent,
where the relative differences are in the range of ≈10−14.

In this paper, we pointed out a recently developed algorithm
for accurate, efficient, and reliable inversion of the LT, which
overcomes some severe drawbacks of the classical approach
in optical spectroscopy and imaging using frequency-domain
data in connection with the FT. Numerical experiments have
been carried out in order to demonstrate the resulting advantages
in view of accuracy and numerical stability compared to the con-
ventional FT. Typical speed-ups in computation time can
amount to orders of magnitude. For example, in a typical
time-domain experiment, the reflectance or transmittance signal
is measured over three orders of magnitude. With the classical
approach using the FT, one needs about 400 frequency values to
achieve a relative accuracy for all time values of at least 0.1% for
typical optical properties of biological tissue at a radial distance
of ρ ¼ 10 mm. Contrarily, by applying the LT as described in
this study, 15 frequency values are sufficient, which results in a
speed-up of approximately one order of magnitude. In addition,
the relative accuracy of the time-domain data is much better for
the LT approach compared to the classical FT method. As a fur-
ther example, we considered the time-domain reflectance
experiments at small distances, which enable imaging with
higher resolution.15 For the same conditions as above but with
a typical distance of ρ ¼ 2 mm and a measurement dynamic
range of six orders of magnitude,15 5000 frequency values
are needed for the FT to achieve an accuracy of at least one
per mill, whereas with the LT approach, 25 frequency values
are sufficient, which results in a speed-up of about two orders
of magnitude. Further, the presented algorithm can be imple-
mented for reconstructing time-domain quantities from fre-
quency-domain data not only for analytical but also for
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Fig. 3 Time-resolved reflectance from a two-layered medium
with optical properties μa1 ¼ 0.005 mm−1, μ 0

s1 ¼ 1.2 mm−1, μa2 ¼
0.04 mm−1, μ 0

s2 ¼ 0.8 mm−1, n1 ¼ 1.4, and n2 ¼ 1.6. The refractive
index of the surrounding medium is set to n0 ¼ 1.0, and the thickness
of the first layer is given by L ¼ 2 mm. The solid line is the reflectance
obtained from Eq. (9), whereas the symbols correspond to the real-
space Green’s function of Tualle et al.10
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Fig. 4 Time-resolved fluorescence caused by an isotropic point
source embedded in an infinite medium. The optical properties
are assumed to be μax ¼ 0.02 mm−1, μ 0

sx ¼ 1.5 mm−1, μam ¼
0.01 mm−1, μ 0

sm ¼ 1.0 mm−1, and c ¼ 2.99 × 108∕1.4 ms−1. The
solid line corresponds to Eq. (11), whereas the symbols denote the
reconstructed fluorescence by means of the series [Eq. (7)].
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numerical solutions of the DE such as with the finite element
method, which is often used in optical imaging, accelerating
these calculations by the same factors. In addition, the proposed
approach can be applied for analytical and numerical solutions
of the RTE, where the above-mentioned speed-ups are even
more important due to the longer calculation times needed
for solving the RTE compared to the DE. In addition, we derived
the fundamental solution for the time-resolved fluence of fluo-
rescence light in closed-form representation. In the literature,
analytical solutions to this problem are available only for the
case of equal reduced scattering coefficients of the incident
light and the fluorescence light.16 In order to support the imple-
mentation of the presented theory, we provide a small MATLAB
script on the Internet.17
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