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Abstract. We developed an automated frame selection algorithm for high-resolution microendoscopy video
sequences. The algorithm rapidly selects a representative frame with minimal motion artifact from a short
video sequence, enabling fully automated image analysis at the point-of-care. The algorithm was evaluated
by quantitative comparison of diagnostically relevant image features and diagnostic classification results
obtained using automated frame selection versus manual frame selection. A data set consisting of video sequen-
ces collected in vivo from 100 oral sites and 167 esophageal sites was used in the analysis. The area under the
receiver operating characteristic curve was 0.78 (automated selection) versus 0.82 (manual selection) for oral
sites, and 0.93 (automated selection) versus 0.92 (manual selection) for esophageal sites. The implementation
of fully automated high-resolution microendoscopy at the point-of-care has the potential to reduce the number of
biopsies needed for accurate diagnosis of precancer and cancer in low-resource settings where there may be
limited infrastructure and personnel for standard histologic analysis. © The Authors. Published by SPIE under a Creative
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1 Introduction
It is estimated that global cancer incidence and mortality
will approximately double during the next two decades.1 The
increase is particularly notable in low-income and middle-
income countries, where population growth, aging, and reduced
mortality from infectious diseases have led to a steadily increas-
ing cancer burden.2 Low-income countries often lack effective
cancer screening and prevention services. In these settings, con-
ventional diagnostic methods, such as biopsy and histopathol-
ogy, are limited by the lack of laboratory infrastructure, the lack
of trained personnel,3 and the difficulty of ensuring patient fol-
low-up when test results are not immediately available at the
point-of-care. As a result, most cancer patients in low-income
countries are diagnosed with advanced-stage disease. There is
a widespread need for rapid, effective methods for early detec-
tion of cancer at the point-of-care in low-resource settings.

Optical imaging technologies have the potential to aid in
early detection of cancer in real time at the point-of-care.
High-resolution fiber-optic microendoscopy is an imaging tech-
nology that has emerged as a cost-effective and noninvasive
method for point-of-care diagnosis of precancer and cancer in
organ sites including the oral cavity and esophagus.4 This
method enables direct visualization of neoplastic indicators
such as elevated nuclear-to-cytoplasmic area ratio (N/C ratio),
nuclear crowding, and nuclear pleomorphism with similar

resolution to confocal microendoscopy but with significantly
reduced system complexity and cost.5 These indicators are
conventionally only observed during cytologic or histologic
analysis following an invasive biopsy. Recent clinical studies of
high-resolution fiber-optic microendoscopy have demonstrated
that this method can be used to detect neoplastic lesions in
patients with oral squamous cell carcinoma6 and Barrett’s
esophagus.7

In high-resolution microendoscopy a coherent fiber optic
bundle is placed in contact with the tissue, providing a real-
time video display showing the size, shape, and distribution
of cell nuclei in the epithelium. The field of view is typically
0.5 to 1.0 mm in diameter with a lateral resolution of about
4 μm. The images may be subjectively interpreted by trained
personnel or they may be quantitatively analyzed using
image analysis algorithms to diagnostically assess relevant
parameters, such as N/C ratio and nuclear size. In vivo clinical
data are typically collected in the form of short video sequences,
to ensure that a high-quality individual frame free of motion
artifact can subsequently be selected for quantitative image
analysis.8 The selection of a representative and informative
key frame for quantitative image analysis is typically performed
manually at some time after the imaging session has been com-
pleted, based on a subjective evaluation of image quality and
motion artifact by an observer blinded to clinical impression
and pathology diagnosis. An algorithm that automates the
frame selection procedure is needed to enable real-time quanti-
tative image analysis for high-resolution microendoscopy at
the point-of-care.*Address all correspondence to: Rebecca Richards-Kortum, E-mail: rkortum@

rice.edu
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Automated selection of key frames is important in other
types of medical imaging as well. Automated frame selection
algorithms and procedures have been reported for laparoscopic
videos,9 colonoscopy videos,10 capsule endoscopy videos,11–15

cystoscopy videos,16 angiography videos,17 bronchoscopic vid-
eos,18 larynx endoscopy videos,19 and retinal videos.20 These
algorithms are generally designed to remove redundant video
frames and/or identify key frames in order to spare clinicians
the need to spend time viewing and selecting individual images,
thus enhancing diagnostic efficiency.

However, frame selection algorithms previously reported
in the literature cannot easily be applied to high-resolution
microendoscopy because they are matched to specific features
seen in a particular class of videos, as in the case of retinal
imaging20 in which key frames are identified through auto-
mated recognition of vessel structure. Also, most key frame
selection algorithms are intended to summarize the video or
automatically detect boundaries between shots in order to
structure the video.21 Thus, key frames are identified whenever
a significant content change between a frame and its preceding
frame can be observed.22,23 These algorithms are not well
suited to high-resolution microendoscopy videos, which
contain features different from those of most other imaging
modalities. High-resolution microendoscopy videos typically
show bright nuclei on a dark background, with the nuclear
size, shape, and distribution related to the disease state of
the tissue. Some frames in each video are expected to contain
motion artifact because the field of view is small and the micro-
endoscope is manually held in place by the clinician or inserted
through the working channel of an endoscope during in vivo
imaging.

For these reasons, a key frame selection algorithm
specific for high-resolution microendoscopy is required.
Here, we present an algorithm that automates the frame
selection procedure, which is an important step that is needed
to enable real-time quantitative image analysis at the point-
of-care. The goal of the present study was to develop
an algorithm that automatically selects a high-quality, repre-
sentative frame free of motion artifact from each video
sequence.

2 Automated Frame Selection Algorithm
The automated frame selection algorithm aims to select a frame
that is free of motion artifact, that has sufficient intensity for
meaningful analysis but is not saturated, and that is representa-
tive. Motion artifact can be minimized by identifying segments
within the video sequence with minimal frame-to-frame varia-
tion, but this method alone cannot account for image quality,
pixel saturation, and low-light levels. Images of optimal quality
can be selected by calculating the entropy of the image and iden-
tifying feature points in the image, but these methods alone can
result in a bias against images that have less distinctly represen-
tative features such as neoplastic tissue (in which the nuclei have
a more crowded and disordered appearance) or keratinized tis-
sue (in which nuclei are not visible). We, therefore, developed
a hybrid frame selection algorithm that uses a combination of
these methods. Part 1 of the algorithm identifies a subset of
images within the video sequence with minimal frame-to-
frame variation. Part 2 selects images within that subset which
meet certain criteria related to the entropy of the image. Part 3
uses feature point analysis to select the final frame. Each step is
described in further detail below.

3 Part 1: Frame Subtraction
Simple subtraction of images can be used to characterize frame-
to-frame variation. If the intensity difference between two suc-
cessive images is low, the two images are similar to each other.
The difference between two successive images can be calculated
by Eqs. (1) and (2):

Idifferencek ¼ ½Ikþ1 − Ik�2; (1)

k ¼ 1;2; 3; : : : ; ðNumber of framesÞ − 1: (2)

The steps to select frames which are least affected by motion
artifact are described below.

Step 1: Let k be the number of images in the video sequence.
Calculate (k − 1) difference images using Eq. (1).

Step 2: Calculate the summation of pixel values in each
difference image.

Table 1 Composition of the oral data set and pathology diagnosis.

# of patients # of sites

Histopathologic diagnosis

Non-neoplastic Neoplastic

Normal Mild dysplasia Moderate dysplasia Severe dysplasia Cancer

30 100 45 17 14 6 18

Table 2 Composition of the esophageal data set and pathology diagnosis.

# of patients # of sites

Histopathologic diagnosis

Non-neoplastic Neoplastic

Normal Inflammation Low-grade dysplasia High-grade dysplasia Cancer

78 167 58 50 40 15 4
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Step 3: Identify the r1 × k difference images that have the
lowest summation of pixel values. The variable r1 is an
arbitrarily selected value that sets the fraction of frames
to be retained in this part of the algorithm ð0 ≤ r1 ≤ 1Þ.
We set r1 ¼ 0.5, based on our observation that in this
data set about half of the frames in a typical video
sequence are free of motion artifact. Therefore, 50% of
the frames are retained and 50% are discarded in this
part of the algorithm. Note that the value of r1 × k is
rounded to the nearest integer.

Step 4: Identify the original images corresponding to the
difference images selected in Step 3. For each difference
image Idifferencek selected in Step 3, the single original
image Ik is retained. Other images are discarded.

4 Part 2: Entropy
Entropy is a statistical feature which represents the diversity of
intensity values in an image; it is a measure of information

content.24,25 The entropy of an image can be determined from
a histogram of the gray level values represented in the image.
The entropy E is defined as Eq. (3), where M is the number
of gray levels and pj is the probability associated with gray
level j.

E ¼ −
XM−1

j¼0

pj logðpjÞ: (3)

Images containing pixels with similar intensity values (low
pixel-to-pixel contrast) have low entropy values, whereas images
with high pixel-to-pixel contrast have high entropy values.
Entropy can, therefore, be used to help evaluate whether an
image is properly focused, since an in-focus image tends to
contain higher pixel-to-pixel contrast and higher information
content than an out-of-focus image.26

The steps to select frames which are minimally affected by
motion artifact and have sufficient entropy are described below.

Fig. 1 Examples of high-resolution microendoscopy frames selected from video sequences in the oral
data set. Top row: manually selected frames from (a) non-neoplastic oral site (Video 1) and (b) neoplastic
oral site (Video 2). Bottom row: automatically selected frames from (c) non-neoplastic oral site (Video 1)
and (d) neoplastic oral site (Video 2). (Video 1: QuickTime, 5.2 MB [URL: http://dx.doi.org/10.1117/1.JBO
.20.4.046014.1]. Video 2: QuickTime, 5.9 MB [URL: http://dx.doi.org/10.1117/1.JBO.20.4.046014.2].
Scale bar ¼ 100 μm).
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Step 1: Calculate the entropy of images previously selected
in Part 1 using Eq. (3).

Step 2: Identify the r2 × ðr1 × kÞ images which have the
highest entropy values. The variable r2 is an arbitrarily
selected value that sets the fraction of frames to be
retained in this part of the algorithm ð0 ≤ r2 ≤ 1Þ.
We set r2 ¼ 0.5 in this analysis; therefore, 50% of the
frames are retained and 50% are discarded in this part of
the algorithm. Note that the value of r2 × ðr1 × kÞ is
rounded to the nearest integer.

5 Part 3: Feature Point Detection
The third part of the algorithm is based on the detection of points
of interest, called feature points, within the image. We adapted
a feature-based registration technique known as Speeded Up
Robust Features (SURF) for this purpose.27 SURF is widely

used in computer vision technologies. The frame selection algo-
rithm utilizes feature points calculated by the SURF algorithm
on the assumption that a high-quality representative frame (in
focus, no motion blur) possesses, in general, a larger number of
feature points than other frames that are lower in quality or less
suitable to represent the site. We also tested this assumption
experimentally (see Sec. 8).

The SURF algorithm is described in detail in the literature.27

It is a scale- and rotation-invariant detector and descriptor of
feature points in an image. Its important characteristics are
speed, robustness, accuracy, and performance repeatability. In
our algorithm, we utilized the feature point detection component
of the SURF algorithm.

The steps to select a final single frame to represent the video
sequence are described below.

Step 1: Calculate the feature points of images previously
selected in Part 2.

Fig. 2 Examples of high-resolution microendoscopy frames selected from the esophageal data set. Top
row: Manually selected frames from (a) non-neoplastic esophageal site (Video 3) and (b) neoplastic
esophageal site (Video 4). Bottom row: Automatically selected frames from (c) non-neoplastic esopha-
geal site (Video 3) and (d) neoplastic esophageal site (Video 4). (Video 3: QuickTime, 1.5 MB [URL: http://
dx.doi.org/10.1117/1.JBO.20.4.046014.3]. Video 4: QuickTime, 1.6 MB [URL: http://dx.doi.org/10.1117/
1.JBO.20.4.046014.4]. Scale bar ¼ 100 μm).

Journal of Biomedical Optics 046014-4 April 2015 • Vol. 20(4)

Ishijima et al.: Automated frame selection process for high-resolution microendoscopy

http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.3
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.4
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.3
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.4
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.3
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.3
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.3
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.3
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.3
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.3
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.3
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.3
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.3
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.3
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.3
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.4
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.4
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.4


Step 2: Identify the frame which has the largest number of
feature points. This single frame is used as the represen-
tative frame for the video sequence.

6 Experiments
The automated frame selection algorithm was implemented
using MATLAB software (MathWorks, Inc., Natick,
Massachusetts). The algorithm was applied to select a single
representative frame from each video in a series of videos
acquired in two clinical studies. Results of the automated
process were compared to manual frame selection by a trained
observer. The purpose of the evaluation was to investigate
the similarity of manually and automatically selected frames
from the video sequences in the data set. We compared the
values of features extracted from frames selected manually and

automatically and compared the performance of diagnostic clas-
sification algorithms based on these features.

6.1 Patient Data

The performance of the automated frame selection algorithm
was evaluated using two high-resolution microendoscopy
data sets that have been previously analyzed and reported
using manual frame selection.8,28 In these studies, a representa-
tive frame from a given video sequence was selected by an
observer blinded to clinical impression and pathologic diagno-
sis, based on subjective evaluation of image quality and the pres-
ence/absence of motion artifact. The first data set consists of
video sequences collected in vivo from 100 oral sites in 30
patients under an institutional review board (IRB)-approved
protocol at the University of Texas M. D. Anderson Cancer
Center.28 The second data set consists of video sequences col-
lected in vivo from 167 esophageal sites in 78 patients under an
IRB-approved protocol at the Cancer Institute at the Chinese
Academy of Medical Sciences.8 Within each data set, the
image features and classification results obtained using the
new automated frame selection algorithm were compared to
the image features and classification results obtained previously
using manual frame selection.

The composition of the oral data set is summarized in
Table 1. Of the 100 oral sites, 45 were non-neoplastic and 55
were neoplastic by histopathology (the gold standard). Mild
dysplasia was grouped in the neoplastic category in accordance
with the convention used in the original analysis.28

The composition of the esophageal data set is summarized in
Table 2. Of the 167 esophageal sites, 148 were non-neoplastic
and 19 were neoplastic by histopathology (the gold standard).
Low-grade dysplasia was grouped in the non-neoplastic cat-
egory in accordance with the convention used in the original
analysis.8

6.2 Quantitative Parameter Analysis

In order to determine the similarity between automatically
selected frames and manually selected frames, diagnostically
relevant quantitative parameters were calculated from each
set of images. In the oral data set, the N/C ratio was found
to be the most diagnostically relevant parameter in the original
analysis.28 In the esophageal data set, nuclear size (mean nuclear
area) was found to be the most diagnostically relevant parameter
in the original analysis.8

N/C ratio and mean nuclear area were calculated using a pre-
viously developed image analysis code.8 The same code was
used to calculate parameters from manually selected frames and
automatically selected frames. Parameter values obtained using
manual frame selection were plotted against parameter values
obtained using automated frame selection. The linear regression
line and R2 value were calculated for each scatter plot.

6.3 Quantitative Image Classification

The receiver operator characteristic (ROC) curve was plotted for
each data set using the calculated N/C ratio (for oral sites) or
mean nuclear area (for esophageal sites). The optimal threshold
was set at the Q-point of the ROC curve (the point closest to the
upper left corner of the ROC plot). Sensitivity and specificity
were calculated using this optimal threshold and using histo-
logic diagnosis as the gold standard. The area under the

Fig. 3 Scatter plot of N/C ratio for manually and automatically
selected frames from the oral data set. The regression line is
shown; y ¼ 0.89x þ 0.030 and R2 ¼ 0.86.

Fig. 4 Scatter plot of mean nuclear area for manually and automati-
cally selected frames from the esophageal data set. The regression
line is shown; y ¼ 0.83x þ 28 and R2 ¼ 0.81.
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ROC curve (AUC) was calculated for each data set, using
manual frame selection and using automated frame selection.

7 Results
The frame selection procedure was fully automated. The time
required for automated frame selection was ∼1 s∕frame in the
original video sequence.

Examples of high-resolution microendoscopy video sequen-
ces from the oral data set are shown in Video 1 and Video 2.
Video 1 shows a non-neoplastic oral site and Video 2 shows a
neoplastic oral site. Manually selected frames from Video 1 and
Video 2 are shown in Figs. 1(a) and 1(b). Automatically selected
frames fromVideo 1 andVideo 2 are shown in Figs. 1(c) and 1(d).

Examples of high-resolution microendoscopy video sequen-
ces from the esophageal data set are shown in Video 3 and
Video 4. Video 3 shows a non-neoplastic esophageal site and
Video 4 shows a neoplastic esophageal site. Manually selected
frames from Video 3 and Video 4 are shown in Figs. 2(a) and
2(b). Automatically selected frames from Video 3 and Video 4
are shown in Figs. 2(c) and 2(d).

7.1 Quantitative Parameter Analysis

We compared two quantitative parameters extracted from man-
ually and automatically selected frames: N/C ratio (for oral sites)
and mean nuclear area (for esophageal sites). Results are shown

Fig. 6 Scatter plots of mean nuclear area for each site in the esophageal data set: (a) scatter plot of mean
nuclear area for manually selected frames; (b) scatter plot of mean nuclear area for automatically
selected frames. The threshold line used for classification is shown as a horizontal line in each scatter
plot. The optimal threshold was set at the Q-point of the ROC curve (threshold ¼ 167 for manually
selected frames; threshold ¼ 176 for automatically selected frames).

Fig. 5 Scatter plots of N/C ratio for each site in the oral data set: (a) scatter plot of N/C ratio for manually
selected frames; (b) scatter plot of N/C ratio for automatically selected frames. The threshold line used for
classification is shown as a horizontal line in each scatter plot. The optimal threshold was set at the
Q-point of the ROC curve (threshold ¼ 0.25 for manually selected frames; threshold ¼ 0.25 for automati-
cally selected frames).
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in Figs. 3 and 4 for the oral data set and the esophageal data set,
respectively.

7.2 Quantitative Image Classification

Figure 5 depicts the scatter plots of the N/C ratio for each site in
the oral data set. Figure 5(a) is a scatter plot of the N/C ratio for
manually selected frames and Fig. 5(b) is a scatter plot of the
N/C ratio for automatically selected frames. All 100 measure-
ment sites were grouped into three pathology categories in
accordance with the original analysis.28 The threshold line set
at the Q-point of the ROC curve for classification is shown as
a horizontal line in each scatter plot.

Figure 6 depicts the scatter plots of mean nuclear area for
each site in the esophageal data set. Figure 6(a) is a scatter
plot of the mean nuclear area for manually selected frames
and Fig. 6(b) is a scatter plot of the mean nuclear area for
automatically selected frames. All 167 measurement sites were
grouped into five pathology categories in accordance with the
original analysis.8 The threshold line set at the Q-point of the
ROC curve for classification is shown as a horizontal line in
each scatter plot.

ROC curves for the oral data set are shown in Figs. 7(a)
(manually selected frames) and 7(b) (automatically selected
frames). The Q-points correspond to a sensitivity of 71% and
a specificity of 80% for manually selected frames [Fig. 7(a)],

Fig. 7 ROC curves for the oral data set based on (a) manually selected frames and (b) automatically
selected frames. The Q-points correspond to a sensitivity of 71% and a specificity of 80% for manually
selected frames (a), and a sensitivity of 69% and a specificity of 76% for automatically selected frames
(b). The area under the ROC curve (AUC) is 0.82 for manually selected frames and 0.78 for automatically
selected frames.

Fig. 8 ROC curves for the esophageal data set based on (a) manually selected frames and (b) automati-
cally selected frames. The Q-points correspond to a sensitivity of 89% and a specificity of 92% for man-
ually selected frames (a), and a sensitivity of 84% and a specificity of 92% for automatically selected
frames (b). The AUC is 0.92 for manually selected frames and 0.93 for automatically selected frames.
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and a sensitivity of 69% and a specificity of 76% for automati-
cally selected frames [Fig. 7(b)]. The AUC is 0.82 for manually
selected frames and 0.78 for automatically selected frames. With
manual frame selection, there were 9 false positives and 16 false
negatives. With automated frame selection, there were 11 false
positives and 17 false negatives.

ROC curves for the esophageal data set are shown in
Figs. 8(a) (manually selected frames) and 8(b) (automatically
selected frames). The Q-points correspond to a sensitivity of
89% and a specificity of 92% for manually selected frames
[Fig. 8(a)], and a sensitivity of 84% and a specificity of
92% for automatically selected frames [Fig. 8(b)]. The
AUC is 0.92 for manually selected frames and 0.93 for automati-
cally selected frames. With manual frame selection, there
were 12 false positives and 2 false negatives. With automated
frame selection, there were 12 false positives and 3 false
negatives.

8 Discussion
In this study, we developed an automated frame selection algo-
rithm and evaluated its performance relative to manual frame
selection using quantitative parameter analysis and quantitative
image classification. In both the oral data set and the esophageal
data set, the results of the analysis using automated frame selec-
tion were very similar to the results previously obtained using
manual frame selection by a trained observer. This indicates that
the automated frame selection algorithm can successfully select
a high-quality representative frame from a high-resolution
microendoscopy video sequence. This makes it possible to
implement high-resolution imaging with automated frame selec-
tion at the point-of-care.

Part 3 of the algorithm (feature point detection) relies on the
assumption that a high-quality representative frame, in general,
has a greater number of feature points than other frames that are
lower in quality or less suitable to represent the site. In order to
test this assumption, we compared the performance of the full
algorithm (Parts 1, 2, and 3) to a modified algorithm in which
Parts 1 and 2 were carried out normally, but in Part 3, feature
point-based selection was replaced by random selection of one
of the remaining candidate frames. In the oral data set, random
frame selection in Part 3 reduced the sensitivity from 69% to
64%, reduced specificity from 76% to 69%, and reduced the
AUC from 0.78 to 0.69. In the esophageal data set, random
frame selection in Part 3 resulted in the same sensitivity
(84%), reduced specificity from 92% to 86%, and reduced
the AUC from 0.93 to 0.91. These results support the utility
of feature point-based selection of high-quality representative
frames from in high-resolution microendoscopy videos.

A limitation of this study is that the variables, r1 and r2,
which establish the fraction of image frames retained in Parts
1 and 2, were fixed at a user-defined value of 0.5. While this
value appears to be quite optimal for both the oral data set
and the esophageal data set considered here, other values of
r1 and r2 may be more optimal for different data sets. Future
work will include development of a robust method to automati-
cally select the values of r1 and r2.

With the implementation of automated frame selection,
high-resolution imaging can provide quantitative diagnostic
information to endoscopists and physicians at the point-of-care.
Moreover, the automated frame selection algorithm makes it
possible to perform fully automated diagnosis in real time,
which reduces the need for specialized training of endoscopists

or physicians. This is especially useful in low-resource settings
where the availability of pathologists, physicians, and trained
personnel is limited.

In conclusion, we have demonstrated an automated frame
selection algorithm for high-resolution microendoscopy. The
algorithm rapidly selects a high-quality, representative frame
with minimal motion artifact from a short video sequence.
This automated frame selection algorithm could, in principle,
be applied to any high-resolution imaging system capable of
digital image acquisition.
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