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Abstract. Using Monte Carlo simulations based on previously developed scattering models consisting of
spherical and cylindrical scatterers imbedded in birefringent interstitial medium, we compare the polarization
parameters extracted from the 3 × 3 and 4 × 4Mueller matrix decomposition methods in forward and backward
scattering directions. The results show that the parameters derived from the 3 × 3 Mueller matrix decompo-
sition are usually not the same as those from the 4 × 4 Mueller matrix decomposition but display similar quali-
tative relations to changes in the microstructure of the sample, such as the density, size, and orientation
distributions of the scatterers, and birefringence of the interstitial medium. The simulations are backed up
by experiments when suitable samples are available. © The Authors. Published by SPIE under a Creative Commons
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1 Introduction
A Mueller matrix contains rich information on the polarization
properties of complex samples such as biological tissues.1,2 In
general, obtaining a Mueller matrix requires at least 16 polari-
zation measurements involving both linear and circular polari-
zation components. Since the 16 elements of a Mueller matrix
are usually not explicitly linked to the characteristic microstruc-
ture of the sample, various decomposition methods have been
proposed to relate the Mueller matrix to different mechanisms
which affect the polarization of the scattered light.3–8 For exam-
ple, Lu and Chipman decompose a Mueller matrix into three
contributions of known physics meanings: diattenuation, retard-
ance, and depolarization.3 Such a Mueller matrix polar decom-
position technique has been used as an effective tool for
quantitatively characterizing the polarization properties of
pathological samples.9–12 It has been found in some biomedical
applications that the linear polarization properties are sufficient
to identify samples. For example, Wang et al. used linear depo-
larization and linear retardance to distinguish ex vivo normal and
cancerous gastric samples.13 Since measurements of the last row
and column of Mueller matrix elements need retardance mod-
ulations, which adds stricter requirements to bandwidths of the
light sources and stability of the optical alignments, measuring
only the linear polarization properties or the partial 3 × 3

Mueller matrix without the last row and column will signifi-
cantly simplify the polarization imaging system. In fact, the
newly bioinspired CMOS polarization image sensor makes 3 ×
3 Mueller matrix imaging a routine practice in laboratories as
well as in clinics.14 However, the data processing algorithm
for a 4 × 4Mueller matrix may not be applied directly to a 3 × 3

Mueller matrix in general cases. Swami et al.15 showed that for
nondepolarizing media, various symmetry constraints on
Mueller matrix elements can be used to obtain some of the 4 ×
4 Mueller matrix elements from the 3 × 3 Mueller matrix.
Swami et al.16 presented a method based on the polar decom-
position of a 4 × 4 Mueller matrix to quantify independent
polarization parameters: linear diattenuation, linear depolariza-
tion, linear retardance, and circular retardance using the nine
elements of a 3 × 3 Mueller matrix under the assumption that
the depolarization of linear polarized light due to scattering is
independent of the orientation angle of the incident linear polari-
zation vector. Based on this decomposition method, Qi et al.
designed a narrow-band 3 × 3 Mueller matrix polarimetric
imager in a rigid endoscope and used it for measuring the rat
tissues. The results revealed that multispectral operation allows
the detection of absorption features in addition to scattering-
related contrast, which has shown the potential of the system
in specific pathologies characterization.17

In previous studies, we have verified the validity of the
sphere-cylinder scattering model18,19 and sphere-cylinder-bire-
fringence model20 by comparison with experiments and other
Monte Carlo (MC) simulations.21 In this paper, we use the
same models and MC simulations to generate forward scattering
Mueller matrices and obtain two sets of polarization parameters
using both 3 × 3 and 4 × 4Mueller matrix decomposition meth-
ods. The simulated data are also backed up by experiments using
samples containing polystyrene microspheres, well-aligned
glass fibers and polyacrylamide. We examine, in detail, the
quantitative relationship between the two sets of parameters
and conclude that parameters derived by the 3 × 3 and 4 × 4
Mueller matrix decomposition are not equal to each other but
vary in similar trends with the structural parameters of the scat-
tering model. Images from a partial 3 × 3 Mueller matrix
decomposition demonstrate the resemblance to those from the
full 4 × 4 Mueller matrix decomposition.
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2 Material and Methods

2.1 Polarization Scattering Models and MC
Simulation Program

The MC simulation program is used to track and record the
polarization states of photons propagating in anisotropic
media. The simulations are based on our polarization scattering
models which approximate the microstructure of the sample,
such as biological tissues, as a mixture of solid spherical and
infinitely long cylindrical scatterers embedded in an interstitial
medium (as shown in Fig. 1).18–20 The parameters in the models
are adjustable to simulate the microstructure and optical proper-
ties of different types of samples. For the scatterers, the variable
parameters include the densities, sizes, complex refractive indi-
ces of the spheres, and cylinders, as well as the birefringence and
angular distribution of the cylinders. For the interstitial medium,
the variable parameters include the thickness, complex refractive
index, birefringence, dichroism and optical activity coefficient.
Corresponding to different samples, we can simplify these mod-
els to a sphere model, sphere-birefringence model (SBM), cyl-
inder model, and sphere-cylinder model (SCM). Using a GPU-
based simulation program, simulation of 10 million photons
costs less than 1 min.

2.2 Polar Decomposition for 4 × 4 Mueller Matrix

For analyzing a 4 × 4 Mueller matrix, many decomposition
methods have been developed, such as polar decomposition,3

differential matrix of decomposition,22 sum decomposition,23

etc. A 4 × 4 Mueller matrix has the advantage of completely
describing the polarization properties of any media by a mini-
mum of 16 measurements involving both linearly and circularly
polarized light. However, circular polarization measurements
using waveplates usually lead to more system complexity
and error fluctuations. In this paper, we choose the Lu–
Chipman Mueller matrix polar decomposition (MMPD) method
which decomposes a 4 × 4 Mueller matrix into the product of
three factors with known physics meanings: diattenuation,
retardance, and depolarization, as shown in Eq. (1):3

M ¼ MΔMRMD: (1)

The matrices MΔ, MR, and MD represent depolarization,
retardance, and diattenuation, respectively. The value of diatten-
uation D is calculated from the MD matrix as follows:3

D ¼ 1

m11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

12 þm2
13 þm2

14Þ
q

: (2)

The depolarization coefficient Δ is determined from the ele-
ments of matrix MΔ:

3

Δ ¼ 1 −
jtrðMΔÞ − 1j

3
: (3)

The last MMPD parameter, retardance R, is calculated from
MR and includes both the linear retardance δ and the circular
retardance ψ .3

R ¼ cos−1
�
trðMRÞ

2
− 1

�
; (4)

δ¼cos−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½MRð2;2ÞþMRð3;3Þ�2þ½MRð3;2Þ−MRð2;3Þ�2
q

−1
�
; (5)

ψ ¼ tan−1
�
MRð3;2Þ −MRð2;3Þ
MRð2;2Þ þMRð3;3Þ

�
: (6)

2.3 Polar Decomposition for 3 × 3 Mueller Matrix

Matrix decomposition of the partial 3 × 3 Mueller matrix
developed by Ghosh presents four independent linear polari-
zation parameters, namely linear diattenuation, linear depo-
larization, linear retardance, and circular retardance.16 A
3 × 3 partial Mueller matrix, by removing the last row and
column of 4 × 4 Mueller matrix, can be obtained by linear
polarization measurements using only polarizers without
the waveplate. The simplification on the detection schedule
is more suitable for some special clinic application, for exam-
ple, the polarization endoscope.17 However, the lack of a cir-
cular polarization component implies the possible loss of
important information, such as the complex phase shift during
scattering24 and the discrepancies between corresponding
parameters derived from the 4 × 4 and 3 × 3 Mueller matrix
decomposition methods.

m ¼ mΔmRmD: (7)

The matrices mΔ, mR, and mD represent the linear polariza-
tion parameters of depolarization, retardance, and diattenuation.
The value of linear diattenuationD is calculated frommD matrix
as follows:16

D ¼ 1

m11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

12 þm2
13Þ

q
: (8)

The inverse of mD is multiplied with m to remove the dia-
ttenuation and the remaining matrix consists of depolarization
and retardance:16

m 0 ¼ mm−1
D ¼ mΔmR: (9)

In order to obtain the values of linear depolarization, we con-
struct a matrix mDR:

mDR ¼ m 0ðm 0ÞT; (10)

Δ ¼ 1 −
ffiffiffi
λ

p
; (11)Fig. 1 Schematic of sphere-cylinder scattering model.
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where λ is the larger one of the remaining two eigen values of
the matrix mDR except for the eigen value of unity after
normalization.16

Then the retardance matrix mR can be constructed by multi-
plying the inverse of mΔ with m 0:16

mR ¼ m−1
Δ m 0; (12)

δ ¼ cos−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½mRð2;2Þ þmRð3;3Þ�2 þ ½mRð3;2Þ −mRð2;3Þ�2
q

− 1

�
; (13)

ψ ¼ 1

2
tan−1

�
mRð2;3Þ −mRð3;2Þ
mRð2;2Þ þmRð3;3Þ

�
: (14)

2.4 Experimental Methods

The experiment setup for forward scattering Mueller matrix
measurement is shown in Fig. 2. A 3W LED is used as the
light source with its center wavelength of 650 nm. After
beam expansion and collimation, the incident light passes
through a set of linear polarizer and quarter waveplates to be
modulated into six polarization states: horizontal linear (H), ver-
tical linear (V), 45 deg linear (P), 135 deg linear (M), and right/
left(R/L) circular. The scattering light from the samples is exam-
ined by the analyzer, which is also a set of quarter waveplates
and linear polarizers, and is finally collected by a lens and
recorded by a CCD (Q-imaging Retiga Exi, 12-bit). For each
incident polarization state, six components of the forward scat-
tering light are detected through the analyzer. The Mueller
matrix is calculated from the 36 raw images according to
Eq. (15):

M ¼

0
BB@

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

1
CCA

¼ 1

2

0
BB@

HHþ HV þ VH þ VV HHþ HV − VH − VV PHþ PV −MP −MM

HH − HV þ VH − VV HH − HV − VHþ VV PH − PV −MH −MV

HP − HMþ VP − VM HP − HM − VPþ VM PP − PM −MPþMM

VRþ HR − LL − RL VLþ HR − HL − VR MLþ PR − PL −MR

RHþ RV − LH − LV

RH − RV − LHþ LV

RP − RM − LPþ LM

RRþ LL − LR − RL

1
CCA:

(15)

The first letter represents the input polarization state. The
second letter represents the output polarization state. In experi-
ments, we define a reference coordinate system with its x axis
parallel to the optical platform and y axis perpendicular to it. The
surface of the sample is set to the x-y plane.

The anisotropic phantom sample contains polystyrene micro-
spheres and well-aligned glass fibers as scatterers embedded in
polyacrylamide (as shown in Fig. 3). The diameter and refractive
index of the polystyrene microspheres are 1-μm and 1.59,
respectively. The glass fibers with a 10-μm diameter and
1.547 refractive index are well aligned by winding them neatly
around a metal frame and are then immersed in polyacrylamide

whose birefringence can be varied with the application of an
external force. The polyacrylamide is cut into a 4 cm × 2 cm ×
1 cm cuboid (4-cm length, 2-cm width, and 1-cm thickness).
The refractive index of the polyacrylamide is 1.393 and stretch-
ing the polyacrylamide can generate a controllable birefringence
which is linearly proportional to the stretched length along the
direction of the force (the extraordinary axis of birefringence).25

We record Mueller matrices of different samples and carry on
polar decompositions on both the full 4 × 4 and partial 3 × 3
Mueller matrices to obtain two sets of polarization parameters
for comparison. The experimental results are also compared
with those from MC simulations. The parameters of the

Fig. 2 Schematic of forward scattering Mueller matrix measurement
setup. LED: light source; L1,L2: lenses; P1,P2: polarizers; and QW1,
QW2: quarter waveplates.

Fig. 3 Schematic of phantom: (a) cylinder model; (b) sphere-cylinder model (SCM); and (c) sphere-
cylinder birefringence model.
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scatterers and the interstitial medium are the same for both sim-
ulations and experiments.

3 Results and Discussion
We calibrate the experimental setup by measuring the Mueller
matrix of some standard samples such as air and linear polar-
izers. The results show that the errors of the measured
Mueller matrix are less than 5%. Then we start with a simple
isotropic model with only spheres uniformly distributed in a
homogeneous and isotropic medium. It is known that spherical
scatterers contribute only to depolarization, not to diattenuation
and retardance.26 We apply 4 × 4 and 3 × 3 decomposition
methods to the experimental and simulated Mueller matrices
for the spheres with different scattering coefficients and sizes,
as shown in Figs. 4(a)–4(c). Since the value of diattenuation
remains at zero, we neglect it in the discussions. When using
a 4 × 4 or a 3 × 3 decomposition method, both simulations
and experiments show a similar tendency of the depolarization
varying with the scattering coefficient and the scatterer’s size.
Quantitatively, the derived depolarization of spheres is larger
for the 3 × 3 decomposition. However, Figs. 4(a) and 4(b)
also show that the 3 × 3 decomposition results in an apparent
retardance. This is an artifact because symmetry analysis
does not support the existence of birefringence in such an iso-
tropic system of spheres. The results from 4 × 4 decomposition
in Fig. 4(c) also show no clear signs of retardance.

For anisotropic samples, we can use a birefringent interstitial
medium and the SBM. We compare the 4 × 4 and 3 × 3 decom-
position data for both simulated and experimental results, as
shown in Figs. 5(a) and 5(b).The simulated curves of depolari-
zation and linear retardance as functions of birefringence indi-
cate that linear retardance derived by both the 4 × 4 and 3 × 3

Mueller matrix decomposition methods are similar. The
deviation is attributed to the abnormal linear retardance due
to the 3 × 3 Mueller matrix decomposition as discussed in
the previous section. As for depolarization, it agrees with
what we conclude in Fig. 4. Figure 5(b) is the experimental
result when stretching the polyacrylamide to produce birefrin-
gence and also confirms the consistent trends of depolarization,
retardance, and the corresponding explanations.

It has been found in previous works that cylindrical scatterers
also produce retardance.18,19 The properties of cylinders, such as
density, diameter, and orientation, also influence the anisotropy
of the media. Here, we set the cylinders perpendicular to the z
axis and make the angle between the cylinder axis and x axis
follow a Gaussian distribution described by its full width at
half maximum (FWHM). Both the simulation results in
Fig. 6(a) and experimental results in Fig. 6(b) show that the
depolarization and linear retardance increase monotonously
with the scattering coefficient for both 3 × 3 and 4 × 4

Mueller matrix decompositions. In experiments, the aligned
cylindrical scatterers are glass fibers wound around a metal
frame. We overlay several layers of the fibers to change the
thickness of the sample, which is equivalent to changing the
scattering coefficient of the cylinders. As shown in Figs. 6(c)
and 6(d), Δ and δ from the two decomposition methods are usu-
ally different but follow similar relationships with the diameter
of the cylinders. Figure 6(e) also shows that the linear retardance
and depolarization derived from both the 4 × 4 and 3 × 3

Mueller matrix are usually different but follow the same
trend. As the orientations of the cylinders become increasingly
randomized, the system gets closer to isotropy. The 3 × 3

Mueller matrix can produce nearly the same depolarization
and linear retardance as the 4 × 4Mueller matrix if the cylinders

Fig. 4 Mueller matrix polar decomposition results: (a) Monte Carlo (MC) simulation of different scattering
coefficients, (b) experiments of different scattering coefficients, and (c) MC simulation of different diam-
eters. In (a) and (b), the diameter of sphere is 1 μm. In (c), the scattering coefficient of spheres is 40 cm−1.
For all of them, the refractive index is 1.59 for spheres and 1.33 for ambient medium.
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Fig. 5 Mueller matrix polar decomposition results: (a) MC simulation and (b) experiments in forward
direction. The sample of polyacrylamide is 4 cm × 2 cm × 1 cm with microspheres uniformly distributed
in it. The refractive index is 1.393. Stretching produces variable linear birefringence. The scattering coef-
ficients for both simulation and experiment are set to 30 cm−1 with microspheres of 1 μm diameter and
refractive index of 1.59.

Fig. 6 Mueller matrix polar decomposition results: (a) MC simulation on a layer of cylinders with fixed
thickness and varying scattering coefficient and (b) experiment in forward direction on varying number of
layers of glass fiber. (c) and (d) MC simulation on different sizes of cylinders. (e) MC simulation on differ-
ent orientation angle of cylinders. In both simulation and experiment, the refractive index of cylinder is
1.547. The refractive index of surrounding medium is 1.33.
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are totally disordered. In both simulations and experiments, the
3 × 3 Mueller matrix produces higher retardance. But different
from the case of spheres as scatterers, the cylindrical scatterers
generate less depolarization. Considering only using the linear
depolarization from the 3 × 3 Mueller matrix, the decreased
depolarization can be due to the weakened depolarization proc-
ess for the incident linear polarization status parallel and
perpendicular to the cylinders. For a 3 × 3 Mueller matrix, cyl-
inders with a good order corresponding to less depolarization
also can be used to explain Fig. 6(e), where the depolarization
value is sensitive to the FWHM of orientation distribution and
apparently disordered cylinders depolarize light more. In short,
for qualitative analysis, both decomposition methods show a
similar regularity with the change of the anisotropy degree
induced by cylindrical scatterers.

Furthermore, we mix the isotropic spherical scatterers with
the anisotropic cylindrical scatterers to build the SCM whose
anisotropy degree can be adjusted by changing the ratio between
these two types of scatterers. Here, the orientation distribution of
cylinders has a FWHM of 5 deg. Figures 7(a) and 7(b) demon-
strate the results from a simulated forward scattering Mueller
matrix with varying scattering coefficients of either spheres
or cylinders. For both the 4 × 4 and 3 × 3 Mueller matrix
decompositions, the magnitudes and their differences of depo-
larization and retardance increase as the proportion of the cyl-
inders increases. The 3 × 3 Mueller matrix always gives a
smaller depolarization and bigger linear retardance. The results
are consistent with what we conclude in Fig. 6(a). Meanwhile, in
Fig. 7(b), the variation tendency of the depolarization curves is
similar for 3 × 3 and 4 × 4 Mueller matrix decompositions, but

the retardance changes with the increasing spherical scattering
coefficient are different. Linear retardance is smaller for the 3 ×
3Mueller matrix but remains stable for the 4 × 4Mueller matrix.
Both Figs. 7(a) and 7(b) support that larger cylinder-sphere
ratios increase the quantitative difference between 3 × 3 and 4 ×
4 Mueller matrix decompositions. In addition, the crossing of
the depolarization curves in Fig. 7(b) can be explained as fol-
lows: the cylindrical scattering effect is dominant at the begin-
ning, meaning a lower depolarization from a 3 × 3 Mueller
matrix similar with Fig. 6(a). But gradually, spherical scattering
contributes more and more, then a higher depolarization can be
generated from the 3 × 3 Mueller matrix similar to Fig. 4(a). In
brief, the comparison using forward MMPD indicates once
again the feasibility of qualitative analysis and the difference
of quantitative characterization using a 3 × 3 Mueller matrix
decomposition method.

We also carried on a similar analysis for backward scattering.
Figures 7(c) and 7(d) correspond to the simulation results of
SCM in the backward direction. We just change the detection
direction and count the backscattered photons in the same sim-
ulation for the same scattering model with Figs. 7(a) and 7(b). It
can be seen that the depolarization change with the scattering
coefficient of cylinders in the media is different using backward
MMPD from the forward case. In the backward condition,
increasing the content of the cylinders has little influence on
the depolarization and even causes a slight decrease for the 3 ×
3 Mueller matrix decomposition. But for the comparison
between these two types of decomposition methods, the rela-
tionship between MMPD parameters and the scatterer change
always has the same variation tendency. The backward

Fig. 7 MC simulation on SCM: (a) and (b) forward direction detection; (c) and (d) backward direction
detection. (a) and (c) the scattering coefficient of the spheres 10 cm−1 remains unchanged and increases
the scattering coefficient of the cylinders. (b) and (d) the scattering coefficient of the cylinders 10 cm−1

remains unchanged and increases the scattering coefficient of spheres. For the sphere, its diameter is
1 μm and refractive index is 1.59. For the cylinder, its diameter is 10 μm and refractive index is 1.547.
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simulation results confirm again the feasibility of the 3 × 3
Mueller matrix decomposition method applied in qualitative
analysis and the deviation for quantitative characterization.

4 Conclusion
Using MC simulations based on various models composed of
spherical scatterers, cylindrical scatterers, and birefringent inter-
stitial medium, we compare the polarization parameters
extracted, respectively, with the 4 × 4 and 3 × 3 Mueller matrix
decompositions in the forward scattering direction. The simula-
tions are backed up by experiments when suitable samples are
available. The simulated and the experimental results show that
the depolarization and linear retardance obtained from the 3 × 3
and 4 × 4 Mueller matrix decompositions are usually not the
same quantitatively, but display similar qualitative relations to
changes in the microstructure of the sample, such as the density,
size, and orientation distributions of the scatterers and birefrin-
gence of the interstitial medium. For depolarization, the 3 × 3
Mueller matrix decomposition results in bigger contributions
from the spheres and a smaller contribution from the cylinders.
For retardance, both decomposition methods can present the
phase retardance, respectively, due to two types of anisotropy
sources in the tissue models: birefringence in the ambient
medium and the cylindrical scatterers. Compared with birefrin-
gence, the retardance deviation due to cylinders using the 3 × 3
Mueller matrix is more apparent. Additionally, it should be
noted that the decomposition of the 3 × 3 Mueller matrix for
spheres can generate a singularly higher linear retardance,
which can be confused with the real anisotropic microstructure
or optical birefringence. We also carried on the above compari-
son of these two decomposition methods in the backward scat-
tering detection and obtained similar conclusions. Therefore, the
parameters for the 3 × 3 Mueller matrix decomposition method
follow the same qualitative trends as the corresponding results
for the 4 × 4 Mueller matrix decomposition method, although
quantitatively, the two sets of parameters could be significantly
different. Images of the corresponding 3 × 3 and 4 × 4 decom-
position parameters should display similar patterns but different
contrasts.

Acknowledgments
This work has been supported by National Natural Science
Foundation of China (NSFC). Grants No. 11174178,
11374179, 61205199, 41475125.

References
1. T. Novikova et al., “The origins of polarimetric image contrast between

healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102(24),
241103 (2013).

2. Y. A. Ushenko et al., “Mueller-matrix diagnostics of optical properties
of polycrystalline networks of human blood plasma,” Opt. Spectrosc.
112(6), 884–892 (2012).

3. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based
on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).

4. N. Ortega-Quijano and J. L. Arce-Diego, “Mueller matrix differential
decomposition,” Opt. Lett. 36(10), 1942–1944 (2011).

5. M. Sun et al., “Characterizing the microstructures of biological tissues
using Mueller matrix and transformed polarization parameters,”
Biomed. Opt. Express 5(12), 4223–4234 (2014).

6. S. Manhas et al., “Mueller matrix approach for determination of optical
rotation in chiral turbid media in backscattering geometry,”Opt. Express
14(1), 190–202 (2006).

7. H. He et al., “Two-dimensional and surface backscattering Mueller
matrices of anisotropic sphere-cylinder scattering media: a quantitative
study of influence from fibrous scatterers,” J. Biomed. Opt. 18(4),
046002 (2013).

8. F. Boulvert et al., “Decomposition algorithm of an experimental Mueller
matrix,” Opt. Commun. 282(5), 692–704 (2009).

9. J. Chung et al., “Use of polar decomposition for the diagnosis of oral
precancer,” Appl. Opt. 46(15), 3038–3045 (2007).

10. P. Shukla and A. Pradhan, “Mueller decomposition images for cervical
tissue: Potential for discriminating normal and dysplastic states,” Opt.
Express 17(3), 1600–1609 (2009).

11. P. G. Ellingsen et al., “Quantitative characterization of articular cartilage
using Mueller matrix imaging and multiphoton microscopy,” J. Biomed.
Opt. 16(11), 116002 (2011).

12. X. Wang, J. Lai, and Z. Li, “Polarization studies for backscattering of
RBC suspensions based on Mueller matrix decomposition,” Opt.
Express 20(18), 20771–20782 (2012).

13. W. Wang et al., “Roles of linear and circular polarization properties and
effect of wavelength choice on differentiation between ex vivo normal
and cancerous gastric samples,” J. Biomed. Opt. 19(4), 046020 (2014).

14. M. Zhang et al., “Bioinspired focal-plane polarization image sensor
design: from application to implementation,” Proc. IEEE 102(10),
1435–1449 (2014).

15. M. K. Swami, H. S. Patel, and P. K. Gupta, “Conversion of 3 × 3

Mueller matrix to 4 × 4 Mueller matrix for non-depolarizing samples,”
Opt. Commun. 286, 18–22 (2013).

16. M. K. Swami et al., “Polar decomposition of 3 × 3 Mueller matrix: a
tool for quantitative tissue polarimetry,” Opt. Express 14(20), 9324–
9337 (2006).

17. J. Qi et al., “Narrow band 3 × 3 Mueller polarimetric endoscopy,”
Biomed. Opt. Express 4(11), 2433–2449 (2013).

18. H. He et al., “Two-dimensional backscattering Mueller matrix of
sphere-cylinder scattering medium,” Opt. Lett. 35(14), 2323–2325
(2010).

19. T. Yun et al., “Monte Carlo simulation of polarized photon scattering in
anisotropic media,” Opt. Express 17(19), 16590–16602 (2009).

20. E. Du et al., “Two-dimensional backscattering Mueller matrix of sphere-
cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).

21. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent
turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290
(2002).

22. R. Ossikovski, “Differential matrix formalism for depolarizing aniso-
tropic media,” Opt. Lett. 36(12), 2330–2332 (2011).

23. H. Arwin et al., “Sum decomposition of Mueller-matrix images and
spectra of beetle cuticles,” Opt. Express 23(3), 1951–1966 (2015).

24. B. Kunnen et al., “Application of circularly polarized light for non-inva-
sive diagnosis of cancerous tissues and turbid tissue-like scattering
media,” J. Biophotonics 8(4), 317–323 (2015).

25. M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in
multiply scattering media exhibiting both linear birefringence and
optical activity: Monte Carlo model and experimental methodology,”
J. Biomed. Opt. 12(1), 014029 (2007).

26. Y. Guo et al., “A study on forward scattering Mueller matrix decompo-
sition in anisotropic medium,” Opt. Express 21(15), 18361–18370
(2013).

Biographies for the authors are not available.

Journal of Biomedical Optics 065003-7 June 2015 • Vol. 20(6)

Wang et al.: Study on the validity of 3 × 3 Mueller matrix decomposition

http://dx.doi.org/10.1063/1.4811414
http://dx.doi.org/10.1134/S0030400X12050232
http://dx.doi.org/10.1364/JOSAA.13.001106
http://dx.doi.org/10.1364/OL.36.001942
http://dx.doi.org/10.1364/BOE.5.004223
http://dx.doi.org/10.1364/OPEX.14.000190
http://dx.doi.org/10.1117/1.JBO.18.4.046002
http://dx.doi.org/10.1016/j.optcom.2008.10.076
http://dx.doi.org/10.1364/AO.46.003038
http://dx.doi.org/10.1364/OE.17.001600
http://dx.doi.org/10.1364/OE.17.001600
http://dx.doi.org/10.1117/1.3643721
http://dx.doi.org/10.1117/1.3643721
http://dx.doi.org/10.1364/OE.20.020771
http://dx.doi.org/10.1364/OE.20.020771
http://dx.doi.org/10.1117/1.JBO.19.4.046020
http://dx.doi.org/10.1016/j.optcom.2012.08.094
http://dx.doi.org/10.1364/OE.14.009324
http://dx.doi.org/10.1364/BOE.4.002433
http://dx.doi.org/10.1364/OL.35.002323
http://dx.doi.org/10.1364/OE.17.016590
http://dx.doi.org/10.1117/1.JBO.17.12.126016
http://dx.doi.org/10.1117/1.1483315
http://dx.doi.org/10.1364/OL.36.002330
http://dx.doi.org/10.1364/OE.23.001951
http://dx.doi.org/10.1002/jbio.v8.4
http://dx.doi.org/10.1117/1.2434980
http://dx.doi.org/10.1364/OE.21.018361

