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Abstract. To obtain the initial pressure from the collected data on a planar sensor arrangement in photoacoustic
tomography, there exists an exact analytic frequency-domain reconstruction formula. An efficient realization of
this formula needs to cope with the evaluation of the data’s Fourier transform on a nonequispaced mesh. We use
the nonuniform fast Fourier transform to handle this issue and show its feasibility in three-dimensional experi-
ments with real and synthetic data. This is done in comparison to the standard approach that uses linear, poly-
nomial, or nearest neighbor interpolation. Moreover, we investigate the effect and the utility of flexible sensor
location to make optimal use of a limited number of sensor points. The computational realization is accomplished
by the use of a multidimensional nonuniform fast Fourier algorithm, where nonuniform data sampling is per-
formed both in frequency and spatial domain. Examples with synthetic and real data show that both approaches
improve image quality. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or repro-
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1 Introduction
Photoacoustic tomography is an emerging imaging technique
that combines the contrast of optical absorption with the reso-
lution of ultrasound images (see, for instance, Ref. 1). In experi-
ments, an object is irradiated by a short-pulsed laser beam.
Depending on the absorption properties of the material, some
of the pulse energy is absorbed and converted into heat. This
leads to a thermoelastic expansion, which causes a pressure
rise, resulting in an ultrasonic wave called photoacoustic signal.
The signal is detected by an array of ultrasound transducers out-
side the object. Using this signal, the initial pressure is recon-
structed, offering a three-dimensional (3-D) image proportional
to the amount of absorbed energy at each position. This is the
imaging parameter of photoacoustics.

Common measurement setups rely on small ultrasound sen-
sors, which are arranged “uniformly” along simple geometries,
such as planes, spheres, or cylinders (see, for instance, Refs. 1–
5). A nonequispaced arrangement of transducers aligned on a
spherical array has already been used by Xiang et al.6 Here,
we investigate photoacoustic reconstructions from ultrasound
signals recorded at “not necessarily equispaced” positions on
a planar surface. In other words, we use an irregular sensor
point arrangement, where sensor points are denser toward the
center. This is done in order to maximize image quality, when
the number of sensor points is a limiting factor. Our current
setup allows to acquire data from 50 sensor points each second.
As a consequence, data acquisition of a typical sample requires
several minutes. Reducing this acquisition time is a crucial
step in advancing photoacoustic tomography toward clinical

and preclinical application. This approach can also be seen as
new way for dealing with the limited view problem, where defi-
ciencies are caused by a small detection region.

For the planar arrangement of point-like detectors, there exist
several approaches for reconstruction, including numerical algo-
rithms based on filtered backprojection formulas and time-rever-
sal algorithms (see, for instance, Refs. 3 and 7–9).

The suggested algorithm in the present work realizes a
Fourier inversion formula [see Eq. (1) below] using a fast
Fourier transform (FFT) method suitable for nonequispaced
grid points and frequencies.10–12 Such methods have been
designed for evaluation of Fourier transforms at nonequispaced
points in frequency domain, or nonequispaced data points in
spatial, respectively, temporal domain. In the present realization
introduced in Ref. 13, the prior is called nonequispaced range
nonuniform FFT (NER-NUFFT), whereas the latter is called
nonequispaced data nonuniform FFT (NED-NUFFT). Both
NUFFT methods have proven to achieve high accuracy and
simultaneously reach the computational efficiency of conven-
tional FFT computations on regular grids.13

For the reconstruction, we propose a novel combination of
NED- and NER-NUFFT, which we call NEDNER-NUFFT,
based on the following considerations:

1. The discretization of the analytic inversion formula
[Eq. (1)] contains evaluations at nonequidistant sample
points in frequency domain.

2. In addition, and this comes from the motivation of this
paper, we consider evaluation at nonuniform sampling
points.

The first issue can be solved by a NER-NUFFT implemen-
tation: For two-dimensional (2-D) photoacoustic inversion with
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“uniformly” placed sensors on a “measurement line,” such an
implementation has been considered in Ref. 14. Furthermore,
this method was used for biological photoacoustic imaging in
Ref. 15. In both papers, the imaging was realized in 2-D due
to the use of integrating line detectors.16,17 In this paper, we
will analyze the NER-NUFFT in a 3-D imaging setup with
point sensors for the first time. The second issue is solved by
employing the NED-NUFFT;13 thus, the name NEDNER-
NUFFT for the combined reconstruction algorithm.

The outline of this work is as follows: In Sec. 2, we outline
the basics of the Fourier reconstruction approach by presenting
the underlying photoacoustic model. We state the Fourier
domain reconstruction formula [Eq. (1)] in a continuous setting.
Moreover, we figure out two options for its discretization. We
point out the necessity of a fast and accurate algorithm for com-
puting the occurring discrete Fourier transforms (DFTs) with
nonuniform sampling points. In Sec. 3, we briefly explain the
idea behind the NUFFT. We state the NER-NUFFT (Sec. 3.1)
and NED-NUFFT (Sec. 3.2) formulas in the form we need it to
realize the reconstruction on a nonequispaced grid. In Sec. 4, we
introduce the 3-D experimental setup.

The sections thereafter describe the realized experiments. In
Sec. 5, we compare the NER-NUFFT with conventional FFT
reconstruction for synthetic data in 3-D. For the real data
comparisons, we add a time-reversal reconstruction. Section 6
explains how we choose and implement the nonequispaced sen-
sor placement. In Sec. 7, we turn to the NEDNER-NUFFT in
2-D with simulated data, in order to test different sensor arrange-
ments in an easily controllable environment. In Sec. 8, we inter-
polate an irregular equisteradian sensor arrangement data from
experimentally acquired datasets. We apply our NEDNER-
NUFFT approach to the nonuniform data and quantitatively
compare the reconstructions to regular grid reconstructions.
We conclude with a summary of the results in Sec. 9, where
we also discuss the benefits and limitations of the presented
methods.

2 Numerical Realization of a Photoacoustic
Inversion Formula

Let U ⊂ Rd be an open domain in Rd, and Γ a d − 1 dimen-
sional hyperplane not intersecting U. Mathematically, photo-
acoustic imaging consists in solving the operator equation:

EQ-TARGET;temp:intralink-;sec2;63;288Q½f� ¼ pjΓ×ð0;∞Þ;

where f is a function with compact support in U and Q½f� is
the trace on Γ × ð0;∞Þ of the solution of the equation:
EQ-TARGET;temp:intralink-;sec2;63;233

∂ttp − Δp ¼ 0 in Rd × ð0;∞Þ;
pð·; 0Þ ¼ fð·Þ in Rd;

∂tpð·; 0Þ ¼ 0 in Rd:

In other words, the photoacoustic imaging problem consists
in identifying the initial source f from measurement data
g ¼ pjΓ×ð0;∞Þ.

An explicit inversion formula for Q in terms of the Fourier
transforms of f and g :¼ Q½f� has been first formulated by
Norton and Linzer18 and introduced to photoacoustics by
Köstli et al.19 Let ðx; yÞ ∈ Rd−1 × Rþ. Assume without loss
of generality (by choice of proper basis) that Γ is the hyperplane
described by y ¼ 0. Then, the reconstruction reads as follows:

EQ-TARGET;temp:intralink-;e001;326;752F½f�ðKÞ ¼ 2Ky

κðKÞF½Qf�½Kx; κðKÞ�; (1)

where F denotes the d-dimensional Fourier transform:

EQ-TARGET;temp:intralink-;sec2;326;706F½f�ðKÞ :¼ 1

ð2πÞn∕2
Z
Rd

e−iK·ðx;yÞfðxÞdx;

and

EQ-TARGET;temp:intralink-;sec2;326;651κðKÞ ¼ signðKyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

x þ K2
y

q
; K ¼ ðKx; KyÞ:

Here, the variables x, Kx are in Rd−1, whereas y, Ky ∈ R.
For the numerical realization, these three steps have to be

realized in discrete form. We hereby largely follow the descrip-
tion in Ref. 14. In addition, we give the formula accordingly for
the case of measurements taken on nonequispaced grid points.

Let us denote evaluations of a function φ at sampling points
ðxm; ynÞ ∈ ð−X∕2; X∕2Þd−1 × ð0; YÞ by

EQ-TARGET;temp:intralink-;e002;326;539φm;n :¼ φðxm; ynÞ: (2)

For convenience, we will modify this notation in case of eval-
uations on an equispaced Cartesian grid. We define the d-dimen-
sional grid

EQ-TARGET;temp:intralink-;sec2;326;475Gx × Gy :¼ f−Nx∕2; : : : ; Nx∕2 − 1gd−1 × f0; : : : ; Ny − 1g;

and assume our sampling points to be located on mΔx, nΔy,
where

EQ-TARGET;temp:intralink-;sec2;326;415ðm; nÞ ∈ Gx × Gy;

and write

EQ-TARGET;temp:intralink-;e003;326;372φm;n ¼ φðmΔx; nΔyÞ; (3)

where Δx :¼ X∕Nx, respectively. Δy :¼ Y∕Ny are the occurring
step sizes.

In frequency domain, we have to sample symmetrically with
respect to Ky. Therefore, we also introduce the interval:

EQ-TARGET;temp:intralink-;sec2;326;302GKy
:¼ f−Ny∕2; : : : ; Ny∕2 − 1g:

Since we will have to deal with evaluations that are partially
in-grid, partially not necessarily in-grid, we will also use com-
binations of Eqs. (2) and (3). In this paper, we will make use of
discretizations of the source function f, the data function g and
their Fourier transforms f̂ and ĝ, respectively.

Let, in the following,

EQ-TARGET;temp:intralink-;sec2;326;203f̂j;l ¼
X

ðm;nÞ∈Gx×Gy

fm;ne
−2πiðj·mþlnÞ∕ðNd−1

x NyÞ

denote the d-dimensional DFT with respect to space and time.
By discretizing formula [Eq. (1)] via Riemann sums, it follows

EQ-TARGET;temp:intralink-;e004;326;135f̂j;l ≈
2l
κj;l

X
n∈Gy

e−2πi κj;ln∕Ny ·
X
m∈Gx

e−2πiðj·mþlnÞ∕Nd−1
x gm;n; (4)

where
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EQ-TARGET;temp:intralink-;sec2;63;752κj;l ¼ signðlÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ l2

q
; ðj; lÞ ∈ Gx × GKy

:

This is the formula from Ref. 14.

Remark 1 Note that we use the interval notation for the integer
multi-indices for notational convenience. Moreover, we also
choose the length of the Fourier transforms to be equal to Nx
in the first d − 1 dimensions, respectively. This could be gener-
alized without changes in practice.

Now, we assume to sample g at M, not necessarily uniform,
points xm ∈ ð−X∕2; X∕2Þd−1: then,

EQ-TARGET;temp:intralink-;e005;63;622f̂j;l ≈
2l
κj;l

X
n∈Gy

e−2πiκj;ln∕Ny ·
XM
m¼1

hm
Δd−1

x
e−2πiðj·xmÞ∕Mgm;n: (5)

The term hm is a weighting term. It is inversely proportional to
the local sampling point density of xm on the detector surface
and has to fulfill

P
M
m¼1 hm ¼ ðNxΔxÞd−1 ¼ Xd−1. Note that the

original formula [Eq. (4)] can be received from [Eq. (5)] by
choosing fxmg to contain all points on the grid ΔxGx.

Equation (5) can be interpreted as follows: once we have
computed the Fourier transform of the data and evaluated the
Fourier transform at nonequidistant points with respect to the
third coordinate, we obtain the (standard, equispaced) Fourier
coefficients of f. The image can then be obtained by applying
standard FFT techniques.

The straightforward evaluation of the sums on the righthand
side of Eq. (5) would lead to a computational complexity of
order N2

y ×M2. Usually, this is improved by the use of FFT
methods, which have the drawback that they need both the
data and evaluation grid to be equispaced in each coordinate.
This means that if we want to compute Eq. (5) efficiently,
we have to interpolate both in domain and frequency space.
A simple way of doing that is by using polynomial interpolation.
It is used for photoacoustic reconstruction purposes, for
instance, in the “k-wave” toolbox for MATLAB.20

Unfortunately, this kind of interpolation seems to be suboptimal
for Fourier interpolation with respect to both accuracy and com-
putational costs.13,21

A regularized inverse k-space interpolation has already been
shown to yield better reconstruction results.22 The superiority of
applying the NUFFT, compared to linear interpolation, has been
shown theoretically and computationally by Haltmeier et al.14

3 Nonuniform Fast Fourier Transform
This section is devoted to the brief explanation of the theory and
the applicability of the nonuniform Fourier transform, where we
explain both the NER-NUFFT (Sec. 3.1) and the NED-NUFFT
(Sec. 3.2) in the form (and spatial dimensions) we utilize them
afterward.

The NEDNER-NUFFT algorithm used for implementing
[Eq. (5)] essentially (up to scaling factors) consists of the
following steps:

1. Compute a d − 1 dimensional NED-NUFFT in the
x-coordinates due to our detector placement.

2. Compute a one-dimensional NER-NUFFT in the
Ky-coordinate as indicated by the reconstruction for-
mula [Eq. (5)].

3. Compute an equispaced d-dim inverse FFT to obtain
a d-dimensional picture of the initial pressure
distribution.

Such an algorithm has been introduced in Ref. 11. In contrast
to the present approach that is based on Ref. 13, it uses Gaussian
bells as window functions. The presented error estimate could
be improved in Ref. 12. For a qualitative comparison of the most
common available methods, see Ref. 13.

3.1 Nonequispaced Range Nonuniform Fast Fourier
Transform Case

With the NER-NUFFT, it is possible to efficiently evaluate
the DFT at nonequispaced positions in frequency domain.

To this end, we introduce the one-dimensional DFT, evalu-
ated at nonequispaced grid points κl ∈ R:

EQ-TARGET;temp:intralink-;e006;326;571φ̂l ¼
X
n∈Gy

φne
−2πiκln∕N; l ¼ 1; : : : ;M: (6)

In order to find an efficient algorithm for evaluation of
Eq. (6), we use a window function Ψ, an oversampling factor
c > 1 and a parameter c < α < πð2c − 1Þ that satisfy:

1. Ψ is continuous inside some finite interval ½−α; α� and
has its support in this interval and

2. Ψ is positive in the interval ½−π; π�.
Then (see Refs. 13 and 14), we have the following represen-

tation for the Fourier modes occurring in Eq. (6):

EQ-TARGET;temp:intralink-;e007;326;415e−ixθ ¼ cffiffiffiffiffi
2π

p
ΨðθÞ

X
k∈Z

Ψ̂ðx − k∕cÞe−ikθ∕c; jθj ≤ π: (7)

By assumption, bothΨ and Ψ̂ are concentrated around 0. So, we
approximate the sum over all k ∈ Z by the sum over the 2K
integers k that are closest to κl þ k. By choosing θ ¼ 2πn∕N −
π and inserting Eq. (7) in Eq. (6), we obtain

EQ-TARGET;temp:intralink-;e008;326;327φ̂l ≈
XK

k¼−Kþ1

Ψ̂l;k

X
n∈Gy

φn

Ψn
e−2πi ln ∕cN; l ¼ 1; : : : ;M: (8)

Here, K denotes the interpolation length and

EQ-TARGET;temp:intralink-;e009;326;264

Ψn :¼ Ψð2πn∕Ny − πÞ;
Ψ̂l;k :¼

cffiffiffiffiffi
2π

p e−iπ½κl−ðμl;kÞ�Ψ̂½κl − ðμl;kÞ�; (9)

where μl;k is the nearest integer (i.e., the nearest equispaced grid
point) to κl þ k.

The choice of Ψ is made in accordance with the assumptions
above, so we need Ψ to have compact support. Furthermore, to
make the approximation in Eq. (8) reasonable, its Fourier trans-
form Ψ̂ needs to be concentrated as much as possible in ½−K;K�.
In practice, a common choice for Ψ is the Kaiser–Bessel func-
tion, which fulfills the needed conditions, and its Fourier trans-
form is analytically computable.
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3.2 Nonequispaced Data Nonuniform Fast Fourier
Transform Case

A second major aim of the present work is to handle data mea-
sured at nonequispaced acquisition points xm in an efficient and
accurate way. Therefore, we introduce the nonequispaced data,
d − 1 dimensional DFT

EQ-TARGET;temp:intralink-;e010;63;679φ̂j ¼
XM
m¼1

φme
−2πiðj·xmÞ∕N; j ∈ Gx: (10)

The theory for the NED-NUFFT is largely analogous to the
NER-NUFFT,13 as described in Sec. 3.1. The representation
[Eq. (7)] is here used for each entry of j and inserted (with
now setting θ ¼ 2πn∕N) into formula [Eq. (10)], which leads to

EQ-TARGET;temp:intralink-;e011;63;586φ̂j ≈
1

Ψj

XM
m¼1

X
k∈f−K;: : : ;K−1gd−1

φmΨ̂j;k · e−2πiðj·μm;kÞ∕cM; (11)

where the entries in μm;k are the nearest integers to xm þ k;.
Here, we have used the abbreviations
EQ-TARGET;temp:intralink-;sec3.2;63;511

Ψj;k :¼
Yd−1
i¼1

Ψð2πj∕NxÞ;

Ψ̂j;k :¼
Yd−1
i¼1

�
cffiffiffiffiffi
2π

p
�
Ψ̂½ðxmÞi − ðμm;kÞi�;

for the needed evaluations of Ψ and Ψ̂.
Further remarks on the implementation of the NED- and

NER-NUFFT, as well as a summary about the properties of
the Kaiser–Bessel function and its Fourier transform can be
found in Refs. 13 and 14.

4 Experimental Setup
Before we turn to the evaluation of the algorithm, we describe
the photoacoustic setup. A detailed explanation and characteri-
zation of the working principles of our setup can be found in
Ref. 23. It consists of a Fabry–Pérot (FP) polymer film sensor
for interrogation,24,25 a 50-Hz pulsed laser source and a sub-
sequent optical parametric oscillator, which emits optical pulses.
These pulses have a very narrow bandwidth and can be tuned
within the visible and near-infrared range. The optical pulses
propagate through an optical fiber. When the light is emitted,
it diverges and impinges upon a sample. Some of this light is
absorbed and partially converted into heat. This leads to a
pressure rise generating a photoacoustic wave, which is then
recorded via the FP-sensor head. The sensor head consists of
an ∼38 μm thick polymer (Parylene C), which is sandwiched
between two dichroic dielectric coatings. These dichroic mirrors
have a noteworthy transmission characteristic. Light from 600 to
1200 nm can pass the mirrors largely unattenuated, whereas the
reflectivity from 1500 to 1650 nm (sensor interrogation band) is
about 95%.23 The acoustic pressure of the incident photoacous-
tic wave produces a change in the optical thickness of the poly-
mer film. A focused continuous wave laser, operating within the
interrogation band, can now determine the change of thickness
at the interrogation point via FP interferometry. The frequency
response of this specific setup of up to 100 MHz has been
analytically predicted, based on a model used in Ref. 25 and

experimentally confirmed.23 There is a linear rolloff reaching
zero at 57.9 MHz, with a subsequent rise.

5 Comparison of the Nonequispaced Range
Nonuniform Fast Fourier Transform
Reconstruction with Fast Fourier
Transform and Time Reversal

In this section, several reconstruction methods will be compared
for regular grids. This will be done with synthetic data as well as
with experimental data. All CPU-based reconstructions are car-
ried out with a workstation PC (Quad Core at 3.6 GHz). All
parameters that are not unique to the reconstruction method
are left equal.

5.1 Synthetic Data

For the comparison of different implementations of the FFT-
based reconstruction, we conduct a forward simulation of a
solid sphere on a 200 × 200 × 100 computational grid, using
the “k-wave 1.1” MATLAB library. The maximum intensity
projections of the xy and the xz plane of all reconstructions
are shown in Fig. 1.

To obtain the closest possible numerical reconstruction of the
Fourier-based inversion formula, we directly evaluate the right-
hand side of Eq. (4), and subsequently invert a 3-D equispaced
Fourier transform by applying the conventional 3-D (inverse)
FFT. We call this reconstruction “direct FT.” It serves as ground
truth for computing the correlation coefficient (Appendix B).

For the NUFFT reconstruction, the temporal frequency over-
sampling factor in Eq. (8) is set to c ¼ 2 and the interpolation
length is set to K ¼ 2. In the linear interpolation FFT case, we
use both c ¼ 1 and c ¼ 2. The FFT reconstruction with c ¼ 1
was conducted via the k-wave toolbox, which does not provide
oversampling options out of the box. However, the oversam-
pling still can be achieved in a computationally not optimal
way by adding zeros at the end of the data term in the time
dimension. After reconstruction, the temporal dimension trans-
lates into the z axis. In the xy dimension, no oversampling is
performed.

The correlation coefficient and the computational time of
the methods can be found in Table 1. The errors indicate the
superiority of the NUFFT reconstruction in comparison to linear
interpolation, with a comparable computational effort (Table 1).
The results also show that in the FFT case, an artificial
oversampling in the temporal frequency dimension is highly
recommended.

5.2 Experimentally Acquired Data

For an overall qualitative assessment, two datasets, of a 3.5- and
a 5-day-old chick embryo, are used.26 This corresponds to the
development stages HH21 and HH27 of the Hamburger–
Hamilton (HH) criterion.27 The data are sampled with a spatial
step size of 60 μm, covering an area of 1.008 × 1.008 mm2

(3.5 days) and 1.02 × 1.02 mm2 (5 days) and a time step size
of 16 ns, corresponding to a maximum frequency of
31.25 MHz. To avoid aliasing, the signal is low pass filtered
to the maximal spatial frequency of 25.3 MHz. A full
reconstruction with the NER-NUFFT for the 5-day-old embryo
is shown in Fig. 6.

The time reversal reconstruction is performed via the k-wave
toolbox. The spatial upsampling factor in the x, y direction is set
to 2. For time reversal, this is realized by linearly interpolating
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the sensor data to a finer grid, whereas for the FFT-based recon-
structions, zero padding in the Fourier domain is performed.

The oversampling factor for the FFT reconstructions in the
time domain is c ¼ 2. The number of time steps used for the

reconstruction covers more than twice the depth range of the
visible objects and is 280 for the HH21 and 320 for the
HH27 embryo.

In Table 2, a comparison for the computational time is
shown. For the NUFFT case, Ψ as defined in Eq. (9) can be
precomputed, which roughly halves reconstruction time in sub-
sequent reconstructions using the same discretization, as has
been already reported in Ref. 15. Moreover, the computation
time improves by a factor of 200 when using FFT-based recon-
structions instead of time reversal.

The relative Tenenbaum sharpness (Appendix B) for the 3-D
data of the 3.5-day-old chick embryo was slightly better for the
NER-NUFFT reconstruction (44.2) than for time reversal (43.0)
and FFT with linear interpolation (41.1). A comparison of clip-
pings of the maximum intensity projection (MIP) in the xz plane
is shown in Fig. 2. The time reversal reconstruction seems
smoothed compared to the FFT reconstructions, which is prob-
ably a result of the different spatial upsampling modalities.

In the bottom graphs of Fig. 2, the cumulative reconstructed
signal for each layer is plotted, as fraction of the NER-NUFFT
cumulative signal. The additional falloff for the FFT with linear
interpolation has been determined by a line fit. For the 3.5-day-
old embryo, it was 10.6% per mm and 13.7% per mm for the 5-
day-old embryo. While it intuitively makes sense that the z-axis
is primarily affected by errors introduced by a suboptimal imple-
mentation of Eq. (1), this problem needs further research to be
fully understood.

6 Nonequispaced Sensor Placement
The current setups allow data acquisition at just one single sen-
sor point for each laser pulse excitation. Since our laser is oper-
ating at 50 Hz, data recording of a typical sample requires
several minutes. In an effort to reduce data acqusition time,

Table 2 Comparison of the computational effort of two chick embryo
data sets, with different reconstruction methods.

Time (s)

Embryo stage27 HH21 HH27

NER-NUFFT (k ¼ 2, c ¼ 2) 21 24

NER-NUFFT with precomputed Ψ 13 14

FFT with linear interpolation (c ¼ 2) 20 23

Time reversal 7236 7659

Fig. 1 MIPs in the xy and xz plane of different reconstructions, for a
solid sphere. The direct Fourier transform (top) serves as ground
truth. c denominates the upsampling factor in the time domain and
k the interpolation width of the Kaiser–Bessel function in Eq. (4).

Table 1 The first column compares computational times. In the last
four columns, the difference to a full correlation with the direct FT
reconstruction method is given in %, for the three-dimensional data
and the three maximum intensity projections.

Time (Correlation-100) in %

(s) 3-D xy xz yz

NER (c ¼ 2) 59 0.005 0.0003 0.001 0.001

FFT (c ¼ 2) 56 3.457 0.54 0.45 0.45

FFT (c ¼ 1) 53 14.00 0.65 0.81 0.81
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we try to maximize the image quality for a given number of
acquisition points and a given region of interest.

Our newly implemented NEDNER-NUFFT is ideal for deal-
ing with nonequispaced positioned sensors, as error analyses for
the NED- and the NER-NUFFT indicate.13 This newly gained
flexibility of sensor positioning offers many possibilities to
enhance the image quality compared to a rectangular grid.

Also any nonequispaced grids that may arise from a specific
experimental setup can be efficiently computed via the
NEDNER-NUFFT approach.

6.1 Equiangular and Equisteradian Projections

In this article, we use the NEDNER-NUFFT to tackle the limited
view or limited aperture problem, for the case of a limited

number of available detectors, which can be placed discretion-
ary on a planar surface. To understand the limited view problem,
it is helpful to define a detection region. According to Ref. 28,
this is the region which is enclosed by the normal lines from the
edges of the sensor. Mathematically speaking, the wavefront
propagates on straight lines in the direction of the singularity
[Ref. 29, Chapter VIII]. As a consequence, the reconstruction
is locally stable if the straight line through the normal to
the object boundary passes through the detector surface.30

Therefore, certain edges are invisible to the detector, as depicted
in Fig. 3. One approach to overcome this problem experimen-
tally has been made by enclosing the target in a reverberant
cavity.31 In addition, a lot of effort has been made to enhance
reconstruction techniques in order to deal with the limited
view problem.28,32–36
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Our approach to deal with this problem is different. It takes
into account that in many cases, the limiting factor is the number
of sensor points and the limited view is a consequence of this
constraint. We use an irregular grid arrangement that is dense
close to a center of interest and becomes sparser the further

away the sampling points are located. We realize this by
means of an equiangular, or equisteradian sensor arrangement,
where for a given point of interest, each unit angle or steradian
gets assigned one sensor point. This arrangement can also be
seen as a mock hemispherical detector.

For the equiangular sensor arrangement, a point of interest is
chosen. Each line, connecting a sensor point with the point of
interest, encloses a fixed angle to its adjacent line. In this sense,
we mimic a circular sensor array on a straight line. The position
of the sensor points is pictured on top of the third image
in Fig. 4.

The obvious expansion of an equiangular projection to 3-D is
the equisteradian projection. Here, we face a problem analogous
to the problem of placing equispaced points on a 3-D sphere and
then projecting the points, from the center of the sphere, onto
a 2-D plane outside the sphere (the detector plane).

The algorithm used for this projection is explained in detail
in Appendix A. Our input variables are the diameter of the
detection region, which we define as the diameter of the disc
where the sensor points are located, the distance of the center
of interest from the sensor plane r and the desired number of

detection region

sensor

Fig. 3 Depiction of the limited view problem. Edges whose normal
vectors cannot intersect with the sensor surface are invisible to the
sensor. The invisible edges are the coarsely dotted lines. The detec-
tion region is marked by a gray background. The finely dotted lines are
used to construct the invisible edges. Edges perpendicular to the
sensor surface are invisible for a plane sensor.
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Fig. 4 Various reconstructions of a tree phantom (top) with different sensor arrangements. All sensor
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on the top of the images. The second image shows the best (see Fig. 5) equispaced sensor arrangement,
with a distance of 13 points between each sensor. The third image shows the NEDNER-NUFFT
reconstruction with equiangular arranged sensor positions. The bottom image shows the same sensor
arrangement, but all omitted sensor points are polynomially interpolated and afterwards a NER-NUFFT
reconstruction was conducted.
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acquisition points. In the top left section of Figs. 7 and 8, the
sensor arrangements are depicted.

6.2 Weighting Term

To determine the weighting term hm in [Eq. (5)] for 3-D, we
introduce a function that describes the density of equidistant
points per unit area ρp. In our specific case, ρp describes the
density on a sphere around a center of interest. Further we
assume that ρp is spherically symmetric and decreases quadrati-
cally with the distance from the center of interest r∶ρp;s ∝ 1∕r2.
We now define ρp;m for a plane positioned at distance r0 from
the center of interest. In this case, ρp;sðrÞ attenuates by a factor
of sin α, where α ¼ arcsinðr0∕rÞ is the angle of incidence.
Hence, ρp;m ∝ r0∕r3. This yields a weighting term of

EQ-TARGET;temp:intralink-;sec6.2;63;590hmðrÞ ∝ r3:

Analogously, we can derive hm for 2-D:

EQ-TARGET;temp:intralink-;sec6.2;63;548hmðrÞ ∝ r2:

For the application of this method to the FP setup, it is note-
worthy that there is a frequency dependency on sensitivity
which itself depends on the angle of incidence. These character-
istics have been extensively discussed in Ref. 37.

7 Application of the Nonequispaced Data and
Nonequispaced Range Nonuniform Fast
Fourier TransformCase with Synthetic Data
in Two Dimensions

A tree phantom, designed by Brian Hurshman and licensed
under CC BY 3.0,38 is chosen for the 2-D computational experi-
ments on a grid with x ¼ 1024 z ¼ 256 points. A forward sim-
ulation is conducted via k-wave 1.1.20 The forward simulation of
the k-wave toolbox is based on a first order k-space model.
A perfectly matched layer of 64 grid points is added. Also,
white noise is added to obtain an signal to noise ratio of 30 dB.

In Fig. 4, our computational phantom is shown at the top. For
each reconstruction, a subset of 32 out of the 1024 possible sen-
sor positions was chosen. In Fig. 4, their positions are marked at
the top of each reconstructed image. For the equispaced sensor
arrangements, we let the distance between two adjacent sensor
points sweep from 1 to 32, corresponding to a detection region
sweep from 32 to 1024. The sensor points are always centered in
the x-axis.

To compare the different reconstruction methods, we use
the correlation coefficient and the Tenenbaum sharpness. These
quality measures are explained in Appendix B.

We apply the correlation coefficient only within the region
of interest marked by the white circle in Fig. 4. The
Tenenbaum sharpness was calculated on the smallest rectan-
gle, containing all pixels within the circle. The results are
shown in Fig. 5.

The Tenenbaum sharpness for the equiangular sensor place-
ment is 23001, which is above all values for the equispaced
arrangements. The correlation coefficient is 0.913 compared
to 0.849, for the best equispaced arrangement. In other words,
the equiangular arrangement is 42.3% closer to a full correlation
than any equispaced grid.

In Fig. 4, the competing reconstructions are compared. While
the crown of the tree is depicted quite well for the equispaced
reconstruction, the trunk of the tree is barely visible. This is
owed to the limited view of the detection region. As the equi-
spaced interval and the detection region increase, the trunk
becomes visible, but at the cost of the crown’s quality. In the
equiangular arrangement, a tradeoff between these two effects
is achieved. Additionally, the weighting term for the outmost
sensors is 17 times the weighting term for the sensor point
closest to the middle. This amplifies the occurrence of artifacts,
particularly outside the region of interest.

The bottom image in Fig. 4 shows the equiangular sensor
arrangement, where the missing sensor points are polynomially
interpolated to an equispaced grid and a NER-NUFFT
reconstruction is applied afterward. The interpolation is con-
ducted for every time step from our subset to all 1024 sensor
points. The correlation coefficient for this outcome was 0.772
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while the sharpness measure is 15654. This outcome exempli-
fies the clear superiority of the NUFFT to conventional FFT
reconstruction when dealing with irregular grids.

8 Application of the Nonequispaced Data and
Nonequispaced Range Nonuniform Fast
Fourier Transform Case with Experimental
Data in Three Dimensions

We will now examine if the positive effects of the NEDNER-
NUFFT reconstruction with nonequispaced detectors are trans-
ferred to 3-D data. For these comparisons, we use the datasets of
the two chick embryos already presented in Sec. 5.2. By the use
of polynomial interpolation for each time step, we map this data
to discretionarily placed points on the acquisition plane. Thus,
sensor data is obtained for regular and irregular grids with arbi-
trary step sizes. The sensor positions are indicated by the red
dots in Figs. 7 and 8.

This procedure allows us to use a full reconstruction as a
ground truth and thus ensures a quantitative quality control
via the correlation coefficient (Appendix B). We are also safe
from any experimental errors that could be introduced between
measurements. A drawback is that we can only interpolate to
step sizes ≧60 μm without loss of information. Therefore,
the presented images are always made with rather few sensor
points and naturally of a lower quality. However, we want to
emphasize that this is a result of our experimental procedure.

For all comparison reconstructions, the NEDNER-NUFFT
has been used for practical reasons. While the NER-NUFFT
cannot deal with nonrectangular grids, it is equivalent to the
NEDNER-NUFFT for rectangular regular grids. Using the
NEDNER-NUFFT, the spacing of the computational grid
can be chosen freely. It corresponds to the width of the
Kaiser–Bessel function for interpolation [see Eq. (11)]. If
the computational grid is much finer than the local sensor
point density, a strong signal close to the sensor surface
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will produce high intensity spots with an intensity distribution
according to the Kaiser–Bessel function, instead of a homo-
geneous area. Making the computational grid coarser than
the sensor point density produces a more blurry reconstruction
with a reduced lateral resolution. The computational grid there-
fore is chosen as fine as possible without reducing the lateral
resolution.

We use the two chick embryo datasets to extract the irregular
sensor data via layerwise polynomial interpolation. A clipping
of the MIPxz of reconstruction of both chick embryos is shown
in Fig. 2. A full NER-NUFFT reconstruction of the 5-day-old
chick embryo is shown in Fig. 6. For the comparisons, we define
a region of interest (ROI) in the form of a cylinder with a height
to diameter ratio of 8:9. The area where the sensor points are
located for a given reconstruction will be called the “detection
region.” The proportions between the ROI and the detection
region are the same for all measurements as depicted in Fig. 8.

In order to avoid spatial aliasing, the time data have been
lowpass filtered with a cutoff frequency according to
Fcutoff ¼ csound∕2dx, where csound is the sound speed and dx
is the step size. In the equisteradian grid, the (locally varying)
stepsize dx has been defined as the distance to the nearest neigh-
boring point.

We now conduct a fair comparison between the equisteradian
sensor arrangement described in Appendix A and regular grid
arrangements for the given ROI. This is done by maximizing
image fidelity, while always using (approximately) the same
number of sensor points. The comparisons are undertaken for
three different ROIs. This is done to show that the advantages
of the equisteradian arrangement are not confined to a single
case, but rather consistent for different features and volume
sizes. All selected ROIs need to have a detection region, that
is, fully covered by the underlying data set.
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The results are shown in Figs. 2, 7, and 8. The figures are
organized in a similar manner and depict different reconstruc-
tions via MIPs. On the top left segment, the equisteradian
grid arrangement is shown. The top right segment shows the
ground truth: a NEDNER-NUFFT reconstruction using all origi-
nal sensor points that are placed within the detection region. In
the segments below, the regular grid reconstructions are shown.
On the left, the detection region coincides with the region of
interest, on the right, it coincides with the detection region.
Figures 7 and 8 also show the sensor point placement. While
in the small detection region, the reconstructions have a good
resolution, edges are blurred and certain features are invisible.
As the detection region increases, these features appear, at the
cost of reduced overall resolution. The equisteradian grid
arrangement has a rather high resolution toward the center,
while still displaying the mentioned features.

All the above figures contain four graphs, which depict the
correlation coefficient for the three MIPs and the volume data.
The detection region for the regular grids is increased and shown
on the x-axis, while the number of acquisition points stays con-
stant. The computational grid was chosen to be as small as pos-
sible but greater than the step size and has been increased in
steps of 30 μm in order to have a consistent μm∕pixel spacing
in the reconstruction.

The results show that the equisteradian arrangement consis-
tently produces reconstructions that outperform every regular

grid arrangement. It provides a good combination of a large
detection region and high resolution at the region of interest.
This is demonstrated by the juxtaposition of different recon-
structions and also confirmed via the correlation coefficient.

9 Conclusions

9.1 Summary and Results

We computationally implemented a 3-D nonuniform FFT
photoacoustic image reconstruction, called NER-NUFFT to effi-
ciently deal with the nonequispaced Fourier transform evalua-
tions arising in the reconstruction formula.

In the computational results, it could be shown that the NER-
NUFFT is much closer (more than 100 times in the test piece) to
perfect correlation than the FFT reconstruction with linear
interpolation.

We then used real datasets for comparison, recorded with a
FP-planar sensor setup23 and included the k-wave time reversal
algorithm. Regarding reconstruction time, the results of
Haltmeier et al.14 and Schulze et al.15 could be confirmed for
3-D, where the FFT with linear interpolation performs similar
to NER-NUFFT. Additionally, the NER-NUFFT reconstruction
time could be significantly reduced (almost halved), if the values
of the interpolation functions Ψ and Ψ had already been pre-
computed for the chosen discretization. The time reversal
computation took more than 300 times longer on a CPU,
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than any FFT-based reconstruction. Concerning image quality,
the NER-NUFFT and time reversal reconstruction perform on a
very similar level, while the conventional FFT method fails to
correctly image the depth-dependent intensity falloff. While
this falloff is almost synchronous for time reversal and NER-
NUFFT, there was an additional intensity drop of about 10%
per mm in the linear interpolation FFT-based reconstruction.

The second application of the NUFFT approach concerned
the applicability of irregular grid arrangements, which were
new in photoacoustic tomography. In fact, this was done by
implementing the NEDNER-NUFFT. Our goal was to maximize
image quality in a given region of interest, using a limited num-
ber of sensor points. To do this, we developed an equiangular
sensor placement for 2-D and an equisteradian placement in
3-D, which assigns one sensor point to each angle/steradian
for a given center of interest.

For the 2-D simulations, we showed that this arrangement
enhances the image quality for a given region of interest and
a confined number of sensor points in comparison to regular
grids.

In 3-D, we used the aforementioned chick embryo data and
reconstructed with an interpolated subset of the original sensor
data. We thus conducted a fair comparison between regular
grid arrangements and the equisteradian arrangement with a
limited number of sensor points for three ROIs. While the
volume of these regions ranged from 1.7 to 13.7 mm3, the
shape always remained a cylinder with a height-to-diameter
ratio of 8∶9.

For our ROIs, the correlation of the equisteradian arrange-
ment to the full reconstruction was consistently higher than
any regular grid arrangement, using an almost equal number
of sensor points.

9.2 Discussion

For the case of regular sampled grids, the results of Haltmeier
et al.14 were confirmed for 3-D in the synthetic data experiments.
The synthetic data results further show the importance of using a
zero-pad factor of at least 2 in the time domain, when using FFT-
based reconstruction methods. In the case of real data, the main
identifiable difference was the additional intensity drop for
greater depth of the FFT reconstruction in comparison to the
other two methods. The great computational advantage of
using FFT-based reconstructions makes it the most suitable
method for most cases in a planar sensor geometry setup.
There was no detectable difference in the reconstruction quality
between the NER-NUFFT and time reversal. From our point of
view, the use of the NER-NUFFT therefore seems to be espe-
cially useful in the case of high resolution imaging in relatively
deep-lying regions.

The NEDNER-NUFFT implementation allowed to effi-
ciently reconstruct data from nonequispaced sensor points.
This is used to extend the primary application of a planar sensor
surface, recording images over a large area, by the possibility to
image a well defined region of interest with a shorter acquisition
time. Thus, we designed a sensor mask to better image small
regions in larger depths at a fixed number of sensor points,
using a design that projects an equispaced hemispherical detec-
tor geometry onto a planar sensor surface. For this case, our sen-
sor arrangement produced consistently better reconstructions
than any regular grid, because it allowed to maintain a high res-
olution within our ROI, while still capturing features that could
only be detected outside the region of interest. In our test

examples, the NEDNER-NUFFT further enhances the image
quality in deep regions while maintaining a reasonable computa-
tional effort.

In comparison to a real hemispherical detector, there is an
increase of acoustic attenuation. This is countered by greater
accessibility, scalability, and flexibility on the planar detector.
The ROI not necessarily needs to fit into a spherical shape,
the size of the region of interest just has an upper bound and
the number of acquisition points is limited by the measurement
time.

As an outlook, we mention that the case where the field of
view is much larger than the imaging depth has not been inves-
tigated in this paper. For this case, a similar approach of expand-
ing the field of view by nonequispaced sensor point placement is
possible. This could mitigate the image degradation toward the
boundaries of the detection region. However, the achievable
benefit of such a method would decrease with an increase of
the ratio of the detection region area to the detection region
boundary and the maximum imaging depth.

Appendix A: Algorithm for Equisteradian
Sensor Arrangement
In our algorithm, the diameter of the detection region and the
distance of the center of interest from the sensor plane is defined.
The number of sensor points N will be rounded to the next con-
venient value.

Our point of interest is placed at z ¼ r0, centered at a square
xy grid. The point of interest is the center of a spherical coor-
dinate system, with the polar angle θ ¼ 0 at the z-axis towards
the xy-grid.

First, we determine the steradian Ω of the spherical cap from
the point of interest that projects onto the acquisition point plane
via

EQ-TARGET;temp:intralink-;x1;326;373Ω ¼ 2π½1 − cosðθmaxÞ�:

This leads to a unit steradian ω ¼ Ω∕N with N being the num-
ber of sensors one would like to record the signal with. The
sphere cap is then subdivided into slices k which satisfy the con-
dition:

EQ-TARGET;temp:intralink-;x1;326;298ωjk ¼ 2π½cosðθk−1Þ − cosðθkÞ�;

where θ1 encloses exactly one unit steradian ω and jk has to be a
power of two, in order to guarantee some symmetry. The value
of jk doubles, when rs > 1.8 · rk, where rs is the chord length
between two points on k and rk is the distance to the closest
point on k − 1. These values are chosen in order to approximate
local equidistance between acquisition points on the sensor
surface.

The azimuthal angles for a slice k are calculated according to

EQ-TARGET;temp:intralink-;x1;326;180φi;k ¼ ð2πiÞ∕jk þ π∕jk þ φr;

with i ¼ 0; : : : ; j − 1, where

EQ-TARGET;temp:intralink-;x1;326;137φr ¼ φjk−1;k−1 þ ðk − 1Þ2π∕ðjk−1Þ

stems from the former slice k − 1. The sensor points are now
placed on the xy-plane at the position indicated by the spherical
angular coordinates:
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EQ-TARGET;temp:intralink-;x1;63;752ðpol; azÞ ¼ ½ðθk þ θkþ1Þ∕2;φi;k�.

Appendix B: Quality Measures
In the case where a ground truth image is available, we choose
the correlation coefficient ρ, which is a measure of the linear
dependence between two images U1 and U2. Its range is
½−1;1�. A correlation coefficient close to 1 indicates linear
dependence.39 It is defined via the variance VarðUiÞ of each
image and the covariance CovðU1; U2Þ of the two images:

EQ-TARGET;temp:intralink-;e012;63;636ρðU1; U2Þ ¼
CovðU1; U2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðU1ÞVarðU2Þ

p : (12)

We decided not to use the widely applied Lp distance mea-
sure because it is a morphological distance, meaning it defines
the distance between two images by the distance between their
level sets. Therefore, two identical linearly dependent images
can have a correlation coefficient of 1 and still a huge Lp dis-
tance. This can be dealt with by normalizing the data as in
Refs. 28 and 35. We choose the correlation coefficient instead,
because in experimentally acquired data, single high intensity
artifacts can occur, which would have a disproportionately
large effect on the normalized Lp distance.

In case of experimentally collected data, there are only a few
methods available for the comparison of different reconstruction
methods. A possible way for measuring sharpness is obtained
from a measure for the high frequency content of the
image.40 Out of the plethora of published focus functions, we
select the Tenenbaum function, because of its robustness to
noise:

EQ-TARGET;temp:intralink-;e013;63;402FTenenbaum ¼
X
x;y

ðg � Ux;yÞ2 þ ðgT � Ux;yÞ2; (13)

with g as the Sobel operator:

EQ-TARGET;temp:intralink-;e014;63;348g ¼
0
@−1 0 1

−2 0 2

−1 0 1

1
A: (14)

Like the L2 norm and unlike the correlation coefficient,
the Tenenbaum function is an extensive measure, meaning it
increases with image dimensions. Therefore, we normalized
it to F̄Tenenbaum ¼ FTenenbaum∕N, where N is the number of
elements in U.
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