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Abstract. Nondestructive imaging of physiological changes in plants has been intensively used as an invaluable
tool for visualizing heterogeneous responses to various types of abiotic and biotic stress. However, conventional
approaches often have intrinsic limitations for quantitative analyses, requiring bulky and expensive optical
instruments for capturing full spectral information. We report a spectrometerless (or spectrometer-free) reflec-
tance imaging method that allows for nondestructive and quantitative chlorophyll imaging in individual leaves
in situ in a handheld device format. The combination of a handheld-type imaging system and a hyperspectral
reconstruction algorithm from an RGB camera offers simple instrumentation and operation while avoiding the
use of an imaging spectrograph or tunable color filter. This platform could potentially be integrated into a com-
pact, inexpensive, and portable system, while being of great value in high-throughput phenotyping facilities and
laboratory settings. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.1.016008]
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1 Introduction
Abiotic and biotic stress (e.g., drought, nutrient deficiency, tem-
perature, and pathogen attack) impact plant growth and develop-
ment, eventually influencing crop yield.1 Thus, it is critical to
assess stress symptoms during early alteration stages before irre-
versible damage and yield loss occur.2 In addition, as transgenic
and conventional plant breeding strategies seek to continue to
improve plant input and output traits, researchers in laboratory
and industry settings often require quantitative plant phenotyp-
ing technologies for specific selection of pathogen-resistant,
stress-tolerant, and high-yielding plants.3 Indeed, there is a
strong need for plant imaging technologies that nondestructively
and quantitatively visualize stress traits in situ. Importantly,
alterations in chlorophyll content are one of the key symptoms
that plants display under stresses as a major component of
photosynthesis.3

There are a few methods currently available for quantifying
chlorophyll content. Since subtle alterations in chlorophyll are
not visible until they reach a certain level, destructive biochemi-
cal analyses serve as the gold standard. Optical meters, which
quantify chlorophyll content as spot measurements, are also
used as an advanced method, given the nondestructive nature
of the technologies.4 However, these methods provide chloro-
phyll content in a single spot area, lacking the information
on spatial distribution. In this respect, fluorescent imaging of
chlorophyll has received considerable attention as a nondestruc-
tive imaging method.5–7 Indeed, chlorophyll fluorescence imag-
ing serves as a valuable tool for quantifying leaf photosynthetic
efficiency. On the other hand, quantitative assessment of abso-
lute chlorophyll content using chlorophyll fluorescence is often
limited, because fluorescent signals depend on measurement
parameters, including the duration (e.g., continuous or pulsed)
and the bandwidth (e.g., laser or incoherent light source) of the

excitation source as well as quenching of fluorescence. Thus, it
would not be straightforward to obtain an absolute value of
chlorophyll content when different instruments for detecting
chlorophyll fluorescence are utilized. As a result, fluorescence
signals in plants often serve as a proxy measure or an indirect
indicator of photosynthesis. On the other hand, reflectance mea-
surements are based on elastic light scattering and absorption, in
which the wavelength is not changed by the scattering or absorp-
tion processes without energy conversion. In this respect, reflec-
tance-based approaches could potentially provide simple and
reliable quantification of chlorophyll content while resolving
its spatial heterogeneity.

For label-free imaging, conventional hyperspectral imaging
systems rely on the use of a mechanical filter wheel, an imaging
spectrograph, or a liquid crystal tunable filter, all of which
limit the development of simple, compact, and cost-effective
systems. To build compact and affordable systems for wide-
spread utilization, it would be desirable to realize a spectrome-
terless (or spectrometer-free) imaging system. Such a system
can be implemented by utilizing an algorithm that can reliably
reconstruct full spectral information from RGB image data,
which are easily acquired by commonly used three-color
CCD (or CMOS) cameras. Fortunately, several methods for
spectral reconstruction with RGB data have been studied exten-
sively.8–10 Thus, hyperspectral reconstruction approaches using
RGB data could potentially lead to simplicity for instrumenta-
tion and operation without using bulky and expensive color
filters and spectrometers.

In this study, we report that a spectrometerless reflectance
imaging method can map out the detailed spatial distributions
of chlorophyll content in individual leaves in situ in a handheld
device format. First, we confirm that reflectance spectral pat-
terns correlate with chlorophyll content in leaves assessed by
biochemical analyses. Initially, we utilize a laboratory system
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coupled with an imaging spectrograph with a high spectral res-
olution for obtaining a full reflectance spectrum in each ðx; yÞ
location. As a testing model, Arabidopsis thaliana is used. We
also measure the total chlorophyll content in each sample using
conventional biochemical assays. Second, we conduct numeri-
cal experiments for extracting chlorophyll content without using
hyperspectral imaging data. We implement a hyperspectral
reconstruction algorithm that reliably reconstructs the full spec-
tral information in plant leaves from RGB data. Third, we test
a handheld-type spectrometerless imaging system consisting of
a three-color CCD camera and a white-light light-emitting diode
(LED) as a detector and a light source, respectively. Finally, we
demonstrate detailed chlorophyll imaging in a whole leaf by
acquiring RGB data only, without using an imaging spectro-
graph, in a pilot testing study.

2 Materials and Methods

2.1 Plant Models and Biochemical Assays for
Chlorophyll Quantitation

A series of 24 leaf samples from A. thaliana, a well-known
model plant, were utilized for covering a wide range of total
chlorophyll content from 0.17 to 1.68 μg∕mg. A. thaliana eco-
type Col-0 was cultivated at a light intensity of 100 μEm−2 s−1

at 22 °C under a photoperiod of 16-h light/ 8-h dark. Rosette
leaves were detached from 4-week-old plants, were incubated
in a solution of 3-mM MES (2-[N-morpholino]ethanesulfonic
acid) at pH 5.7, and were kept under dark for up to 6 days.
For conventional biochemical assays, we extracted chlorophyll
with 95% ethyl alcohol after incubating the samples at 70 °C
for 1 h. Then, absorbance at 665 and 649 nm was measured
using a UV/visible spectrophotometer. Finally, total chlorophyll
content (i.e., chlorophyll a and chlorophyll b) was calculated in
the unit of μg∕mg (i.e., chlorophyll/fresh weight) as previously
described.11

2.2 Laboratory Hyperspectral Imaging System

For obtaining experimental spectra from leaf samples, our
recently developed system described elsewhere was used.12–14

This system allowed us to acquire a matrix of reflectance inten-
sity (also known as a hypercube) rðx; y; λÞ as a function of the
position ðx; yÞ and the wavelength λ of light. The specification
included a transverse resolution of ∼100 μmwith a field of view
of 15 × 15 mm2, an imaging depth of ∼1 mm, and a spectral
range of 400 to 770 nm with a spectral resolution of 2 nm.
A back-directional (angular) filtering scheme in the detection
part collected the light reflected from the sample within a narrow
solid angle in the exact backward direction. Importantly,
this configuration avoided spectral variations originating from
different systems, because reflectance spectra, in particular
scattering components, are highly sensitive to illumination and
detection geometries.15 It should be noted that this aspect is
crucial to apply a hyperspectral image reconstruction algorithm,
trained by hyperspectral data obtained from the laboratory sys-
tem, to a spectrometerless imaging system.

To remove the stray background light and to compensate for
the system responses, the following procedures were imple-
mented:13,16 First, after the acquisition of a raw intensity matrix
from the sample rspecimenðx; y; λÞ, a background intensity matrix
rbackgroundðx; y; λÞ without the sample was measured and then
subtracted from the raw intensity matrix. Second, by placing

a reflectance reference standard (Labsphere, North Sutton,
New Hampshire) on the sample stage, a reference intensity
matrix rreferenceðx; y; λÞ was measured. Because the reflectance
reference standard had flat spectral and uniform spatial
responses in the entire visible range, rreferenceðx; y; λÞ captured
the entire system responses. Third, rspecimenðx; y; λÞ was normal-
ized by rreferenceðx; y; λÞ such that

EQ-TARGET;temp:intralink-;e001;326;675rðx; y; λÞ ¼ rspecimenðx; y; λÞ − rbackgroundðx; y; λÞ
rreferenceðx; y; λÞ − rbackgroundðx; y; λÞ

: (1)

Thus, the resultant intensity matrix rðx; y; λÞ was mainly deter-
mined by the scattering and absorption properties of the sample,
without being affected by the system responses, including the
light source or the camera.

2.3 Spectrometerless Imaging System Using
a Three-Color CCD

A working prototype of the spectrometerless hyperspectral
imaging system was also constructed, as shown in Fig. 1. To
directly use a hyperspectral reconstruction algorithm trained
using the laboratory system, it was important to minimize
any spectral variations resulting from different illumination
and detection configurations.15 Thus, the illumination and detec-
tion configurations of the laboratory system were mimicked in
the prototype system. In particular, a telecentric lens with
coaxial illumination (magnification of 0.3×, Schott Moritex,
Japan) allowed us to image the light scattered from the sample
in the exact backward direction with respect to the incident
light, acting as back-directional angular gating in the reflection
mode.17 A white-light LED (0.315 0 0 LED Spot Light, Edmund
Optics, Barrington, New Jersey) was coupled to the telecentric
lens via a fiber-optic light guide and was illuminated onto the
plant sample. The light reflected from the sample was collected
using the same telecentric lens mounted with a three-color CCD
(Color Grasshopper3, Point Grey Research, Richmond, British
Columbia). The system had a field of view of 70 mm × 60 mm
with a pixel size of 56 μm. Similarly to the hyperspectral
measurements, an RGB intensity matrix was normalized by
a reference signal from the reflectance reference standard to
compensate for the spectral and spatial responses of the entire
system, including the light source, the fiber-optic light guide, the
telecentric lens, and the CCD camera. Thus, it should also be

Fig. 1 (a) Schematic diagram of the spectrometerless hyperspectral
imaging system. Inset: Spectral profile of the white-light LED.
(b) Photograph of the current working prototype.
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noted that this resultant intensity matrix was relatively indepen-
dent of the spectral responses of the light source and the camera.

2.4 Reconstruction of Hyperspectral Image Data
from RGB Data

The relationship between a full reflectance spectrum and an
RGB reflectance spectrum in each ðx; yÞ position can be mod-
eled such that8–10

EQ-TARGET;temp:intralink-;e002;63;656x3×1 ¼ S3×NrN×1 þ e3×1; (2)

where x is a 3 × 1 vector that has RGB intensities, S is a 3 × N
matrix of the spectral responses of the three-color camera sensor,
r is an N × 1 vector that has the reflectance intensity normalized
by the reflectance standard, and e is a 3 × 1 vector of system
noise with zero mean. N indicates the number of wavelengths.
In our case, N ¼ 186 from 400 to 770 nm with an interval of
2 nm. In general, S can be obtained from the sensor manufac-
turer or estimated mathematically from training color sam-
ples.18,19 Then, the problem to reconstruct a full spectrum
from an RGB spectrum is to solve the following question:
“Would it be possible to compute or estimate r given S and
x are known?” In fact, Eq. (2) can be considered as a system
of linear equation. However, since the dimension of S is
a 3 × N, an infinite number of solutions of r can exist to
satisfy Eq. (2). Fortunately, several methods and techniques for
reconstructing full spectra from RGB data have been studied
extensively, such as Wiener estimation8–10,20–22 and regression
methods.23–25

Suppose that a reflectance spectrum r and a corresponding
RGB spectrum x are collected for each sample. Then, R̂m×N and
Xm×3 can be formed by stacking the spectra from several inde-
pendent samples, where m is the number of different samples
and N is the number of wavelengths. This reconstruction prob-
lem is to learn a conversion matrix T from a training set such that

EQ-TARGET;temp:intralink-;e003;63;369R̂m×N ¼ Xm×3T3×N: (3)

T can be solved using a method of least squares that minimizes
differences between the original spectra and the reconstructed
spectra. Once a conversion matrix T is built from a training
set, a reflectance spectrum r̂ can be predicted given a new
RGB spectrum x as a testing set. In particular, the prediction
ability for full spectral construction can be improved with poly-
nomial regression.23,24 In our case, a possibly nonlinear relation-
ship between full and RGB spectra can be captured by extending
x ¼ ðx1; x2; x3Þ to x ¼ ð1; x1; x2; x3; x21; x22; x23Þ for polynomials
with the second degree.

3 Results and Discussion

3.1 Hyperspectral Chlorophyll Imaging

To map out detailed spatial distribution of leaf chlorophyll con-
centration in the actual unit of μg∕mg, we utilized a chlorophyll
spectral index and converted the spectral index to an absolute
value of chlorophyll concentration. First, for plant chlorophyll
content quantification, we exploited the extensively used spec-
tral index (SI) for chlorophyll content26

EQ-TARGET;temp:intralink-;e004;63;104SI ¼ rð750 nmÞ − rð445 nmÞ
rð705 nmÞ − rð445 nmÞ ; (4)

where rðλÞ is the reflectance intensity at λ given an ðx; yÞ posi-
tion. We note that this approach has not yet been used for
detailed visualization of chlorophyll content in individual
leaves, in part because of the lack of appropriate hyperspectral
systems, although this has been widely used in canopy and
remote sensing measurements. Second, we validated the corre-
lation between SI and chlorophyll content, when the reflectance
spectra from the entire leaves were averaged and the total
chlorophyll content was measured with the biochemical assays.
Indeed, Fig. 2 shows that the p-value of the slope estimate of
linear regression between SI and chlorophyll content is <0.001,
and that the correlation coefficient is 0.89, supporting the sta-
tistically significant linear association. In turn, this relationship
served as a conversion curve from SI to chlorophyll content to
extract an absolute value of chlorophyll content. Third, we
extended this spectral calculation in each ðx; yÞ pixel to generate
a planar image of chlorophyll content in each leaf sample. As
shown in Fig. 3, chlorophyll images reveal unique spatial dis-
tributions of chlorophyll content, which are not obvious from
conventional photographs.

Fig. 2 Correlation between the spectral index SI for chlorophyll con-
tent and the biochemical assays. The solid line is a linear regress fit
and the dotted lines are 95% confidence intervals.

Fig. 3 Nondestructive, quantitative, and label-free chlorophyll imaging
of individual leaves. (a) and (c) Photographs of A. thaliana samples.
(b) and (d) Corresponding chlorophyll images.
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3.2 Reconstruction of Reflectance Image Data
Using RGB Data

We computationally implemented a hyperspectral reconstruc-
tion algorithm that can reliably predict detailed spectral infor-
mation from RGB data. Among several different reconstruction
methods, we chose polynomial multivariate regression, described
in Sec. 2.4, for reconstructing reflectance spectra for optimal
performance. To generate a conversion matrix T in Eq. (3), we
imaged 24 A. thaliana leaf samples as follows: first, because of
the relatively small sample size (m ¼ 24), we used the entire
data set for training. To build a model for reconstructing reflec-
tance spectra using RGB data, an RGB camera response x was
expressed in terms of r and S in Eq. (2). We obtained S from
the manufacturer (Sony ICX625) that was used in the handheld
system [inset in Fig. 4(a)]. Second, we determined a conversion
matrix T by applying multivariate polynomial regression in
Eq. (3). Finally, we computed a reconstructed reflectance
spectrum r̂ for a new RGB spectrum. In this step, to determine
the best polynomial degree, x was varied such that x ¼
ð1; x1; x2; x3; x21; x22; x23Þ for second-order polynomial regression,
which provided reliable performance in our plant hyperspectral
image data.

The overall performance of the reconstruction method was
validated utilizing a leave-one-out cross-validation method
with all of the plant samples (m ¼ 24). In this validation,
each round of cross-validation used 23 spectra as a training
set to reconstruct a full spectrum from the RGB data, and a
total of 24 rounds were performed. The accuracy of the recon-
structed spectral information was evaluated using goodness-of-
fit metrics [i.e., coefficient of determination R2 and root
mean square error (RMSE)]. Given the relatively small sample
size, leave-one-out cross-validation was a reasonable validation
method for avoiding over-fitting. It should be noted that
reconstruction models were built using only the training data
set. The representative spectra in Fig. 4(a) show that a full reflec-
tance spectrum can be reliably reconstructed from the RGB data,
compared to the original hyperspectral data. To estimate errors
of the hyperspectral reconstruction method, we further analyzed
differences between the original reflectance spectra and the
estimated spectra in the entire wavelength range. Figure 4(b)
shows 95% confidence intervals for mean differences between
the original reflectance spectra and the estimated spectra. As
expected, the wavelength regions around 400 nm and above
700 nm have wider confidence intervals because of the limited
spectral range of the RGB channel of the camera, as shown in
the inset of Fig. 4(a). After including all of the samples with
second-order polynomial multivariate regression, the average
RMSE of cross-validation from 24 samples was 0.013
(min ¼ 0.001 and max ¼ 0.030) and the average adjusted R2

was 0.99 (min ¼ 0.966 and max ¼ 0.999), as shown in the
inset of Fig. 4(b). This numerical evaluation supports the fea-
sibility that chlorophyll content can be sensitively and accu-
rately predicted using the three-color sensor-based system.

3.3 Spectrometerless Chlorophyll Imaging

As a pilot test, we acquired hyperspectral image data and RGB
image data from Arabidopsis samples in a sequential manner.
After the samples were imaged using the original laboratory im-
aging system (with the imaging spectrograph), the identical sam-
ples were also imaged using the handheld prototype system with
the three-color CCD. Figures 5(a) and 5(b) depict representative
chlorophyll images from the original hyperspectral imaging
system and the prototype spectrometerless system, respectively.
We compared the spatial distribution patterns of chlorophyll
content Iðx; yÞhyperspectral and Iðx; yÞspectrometerless obtained from
the laboratory hyperspectral system and the spectrometerless
system. Specifically, we calculated a two-dimensional (2-D) cor-
relation coefficient C2-D, which is defined as

Fig. 4 (a) Reconstruction of full spectral information from RGB data.
Representative comparison between an original reflectance spectrum
obtained from the laboratory hyperspectral system and a recon-
structed one from RGB data. Inset: Spectral response of the three-
color CCD camera. (b) 95% confidence intervals of mean differences
(dark line) between the original reflectance spectra and the estimated
spectra at each wavelength. Inset: Goodness-of-fit metrics from all of
the plant samples using the leave-one-out cross-validation method.

Fig. 5 (a) and (b) Chlorophyll images generated by the laboratory
hyperspectral system and the current prototype system with the
three-color CCD camera using the hyperspectral reconstruction,
respectively.
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EQ-TARGET;temp:intralink-;e005;63;740C2-D ¼
P

x

P
yðIhyperspectral − IhyperspectralÞðIspectrometerless − IspectrometerlessÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�P

x

P
y
ðIhyperspectral − IhyperspectralÞ2

��P
x

P
y
ðIspectrometerless − IspectrometerlessÞ2

�s : (5)

A calculated C2-D in this specific case was 0.93, support-
ing the strong similarity of spectrometerless chlorophyll
imaging. We note that the subtle discrepancy in the
two chlorophyll images originated from rapid dehydration
in detached leaves, because the data acquisition time of
the original system was relatively slow (∼10 min). In
addition, the exact validation of the hyperspectral recon-
struction algorithm was challenging, because the two sys-
tems had different pixel sizes and imaging areas, and the
sample orientation to the system was not the same. Thus, a
next-generation integrated imaging system would produce
more reliable comparisons. Overall, this pilot test demon-
strates that the working prototype of the spectrometerless
imaging system has the potential for detailed spatial and
high-temporal imaging of chlorophyll content.

4 Conclusion
This study demonstrates that the proposed spectrometerless
imaging method is capable of nondestructive and quantitative
in situ imaging of chlorophyll content. A reliable spectrometer-
less (or spectrometer-free) hyperspectral imaging system was
developed using a commonly used three-color CCD (or CMOS)
camera. Detailed spatial distribution of chlorophyll content in
a whole leaf was successfully visualized with a high correlation
between the reflectance spectra pattern and the chlorophyll
content. Although our hyperspectral reconstruction is currently
applicable for Arabidopsis samples, due to the Arabidopsis-
based model training, future systematic studies will allow us
to image other type of plants and crops as well as various pig-
ments besides chlorophyll (e.g., anthocyanin and carotenoid).
This capability of imaging multiple stress traits would help to
deepen our understanding of stress and coping mechanisms in
plants. Further, this prototype could potentially serve as a plat-
form for easy integration into an imaging instrument of modest
price, potentially leading to widespread uses.
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