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Abstract. Tissue composition of the atria plays a critical role in the pathology of cardiovascular disease, tissue
remodeling, and arrhythmogenic substrates. Optical coherence tomography (OCT) has the ability to capture the
tissue composition information of the human atria. In this study, we developed a region-based automated
method to classify tissue compositions within human atria samples within OCT images. We segmented regional
information without prior information about the tissue architecture and subsequently extracted features within
each segmented region. A relevance vector machine model was used to perform automated classification.
Segmentation of human atrial ex vivo datasets was correlated with trichrome histology and our classification
algorithm had an average accuracy of 80.41% for identifying adipose, myocardium, fibrotic myocardium,
and collagen tissue compositions. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction
Cardiovascular disease (CVD) is the leading cause of mortality
and morbidity in the United States.1 An important factor in the
pathophysiology of CVD is the composition and remodeling of
the myocardium. Myocardial tissue includes muscle, adipose
tissue, collagen fibers, and fibrotic myocardium, and the relative
percentage of each varies by chamber and with the progression
of the disease. Myofiber disarray can impair electrical conduc-
tion and result in arrhythmias or hypertrophic cardiomyopathy.2

The presence of adipose within the myocardium provides a high
indication of arrhythmogenic cardiomyopathy3 and thickened
layers of collagen fibers imply severe myocardial scar.4 The dif-
fusion of myocardial fibrosis, a fundamental process in the
remodeling of cardiomyopathy, is postulated to cause increased
cardiac stiffness and poor clinical outcomes.5 Due to the impor-
tance of myocardial tissue composition on normal heart function
and CVD, characterization of myocardial tissue can facilitate
the evaluation of tissue remodeling, identification of arrhythmo-
genic substrates, and diagnosis of CVD.

In the past decades, medical imaging modalities including
ultrasound,6–8 multidetector computed tomography,9,10 and mag-
netic resonance imaging have been used to characterize cardiac
tissue compositions such as collagen region during myocardial
infarction,6,9,10 adipose tissue,8,11 or organization of myofibers
within myocardium.7,12 However, the abovementioned modal-
ities suffer from either a low image resolution or a long data
acquisition time. Optical coherence tomography (OCT) has
been demonstrated to have the ability to image biological tissue
at a fast rate with a high resolution (∼10 μm) with a 2 mm im-
aging range13,14 in the axial direction. Previous research efforts

demonstrated that OCT can image important features within
the heart15 such as the purkinjie network,16 atrial ventricular
nodes,17,18 sinoatrial nodes,19 and myofiber organization.20–23

Given that the wall thickness in the human atria ranges from
2 to 5 mm,24 OCT has the ability to visualize a large percentage
of the human atrial wall. There is a great potential to classify
tissue compositions within human atria via OCT imaging.
However, manual interpretation of OCT images is time consum-
ing and not applicable for analysis on large three-dimensional
(3-D) volumetric datasets. Therefore, automated identification
of tissue composition in human atria from OCT images is greatly
needed.

In this study, we present an image-processing algorithm to
automate the classification of tissue compositions within atrial
OCT images. Layer structures of multiple tissue compositions
are automatically segmented using graph searching without
any prior information. Within each layer, optical properties,
statistical measurements, and texture features are extracted.
Features are subsequently used to build a statistical classifica-
tion model to distinguish tissue compositions of dense collagen,
loose collagen, adipose tissue, normal myocardium, and fibrotic
myocardium. Our work enables, to the best of our knowledge,
the first automated classification of myocardial tissue composi-
tions from human atrial OCT images.

2 Methods

2.1 Tissue Collection

Human hearts (n ¼ 15) were obtained under two approved pro-
tocols from the National Disease Research Interchange (NDRI).
The inclusion criteria for the first NDRI protocol are based on
the following diagnosis: end stage heart failure, cardiomyopa-
thy, coronary heart disease, or myocardial infarction. The sec-
ond protocol requests normal hearts. Fresh tissue samples were
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shipped submerged in ice-cold phosphate-buffered saline and
received within 48 h of donor death. Detailed characteristics
of the donor hearts within this study are listed in Table 1.

2.2 Image Protocol

All samples were imaged ex vivo, using a spectral domain OCT
system, Telesto I (Thorlabs GmbH, Germany). The system is an
InGaAs-based system with its source centered at 1325 nm and
a bandwidth of 150 nm. The axial and lateral resolutions are
6.5 and 15 μm in air, respectively. All datasets were acquired
at 28 kHz. In our experiments, each volume consists of
800 × 800 × 512 voxels, corresponding to a tissue volume of
4 mm × 4 mm × 2.51 mm (in air). To extract the raw OCT
data, the postprocessing algorithm, including λ to k space inter-
polation, windowing, and Fourier transform, was implemented
using MATLAB 2014b (Mathworks, Inc., Massachusetts).

2.3 Histological Evaluation

Sections of tissue from the imaging field of view were processed
for histopathology. Samples were sectioned parallel to the direc-
tion of the B-scans. Sample pieces were cut corresponding to the
size of the OCT volume, fixed in formalin for ∼24 h, and then
placed in ethanol (20%) for ∼24 h. After fixation, samples were
stained with Masson Trichrome. For 33.3% of the samples,

histology was taken every 2 mm to ensure multiple matches
between histology and the OCT image set. For validation,
two investigators, blind to the automated results, segmented
and classified the images based on the histology. One-way
analysis of variance with Tukey multiple comparison test tissue
were performed to detect differences between the tissue compo-
sitions for each of the extracted features. A p-value of 0.05
was considered statistically significant. All statistical analysis
was conducted with the software package Prism 6.03 2013
(GraphPad Software, Inc, California).

2.4 Algorithm Flow

To identify tissue compositions within OCT images, we present
a region-based classification method. A schematic of the work-
flow for the analysis of two-dimensional (2-D) images is shown
in Fig. 1. The algorithm consists of three steps: layer segmen-
tation, feature extraction, and tissue classification. In each
B-scan, OCT images were first segmented into multiple regions.
Within the segmented region, features such as optical properties,
texture analysis, and high order statistical moments were
extracted. The features were inputs to a tissue classifier whose
output was the tissue type for the region.

2.5 Layer Segmentation

For the first step, we divided OCT images into multiple layers
through segmentation for future feature extraction and classifi-
cation. Compared with existing segmentation methods, seg-
menting OCT images of atrial tissue is challenging. Within
prior work, layer boundaries were automatically determined
by minimizing a cost function25 or building a minimum weight
graph.26 The weighting scheme, and searching order are deter-
mined by prior knowledge of the layer structure,27,28 such as
empirical thickness measurements and knowledge of bright-
to-dark transition patterns between two layers. Unfortunately,
neither empirical thickness measurement or transition patterns
is consistent for atrial tissue. In the atrium, layer thicknesses
and tissue composition vary within a normal heart depending
on the region that is imaged. Furthermore, the layer thicknesses
and tissue composition change with the progression of the
disease. Therefore, the first step of our algorithm is layer seg-
mentation, which includes preprocessing, layer information
estimation, and boundary searching. A detailed flowchart of
the layer segmentation steps is shown in Fig. 2(a). The prepro-
cessing step improves the image quality through denoising and
flattens the image to reduce the boundary searching range. The
layer information estimation step determines the number of tis-
sue compositions and identifies starting points for boundary
searching. The image is segmented after boundary searching.

2.5.1 Preprocessing

The preprocessing procedure includes image denoising and flat-
tening. Given that OCT images are generally corrupted by
speckle noise,29 we used a block matching 3-D (BM3-D)30,31

method to denoise OCT images and enhance the boundaries.
Briefly, for the BM3-D algorithm we divide the original
OCT image into multiple blocks and denoise similar blocks.
The BM3D method exploits the sparsity of structural informa-
tion and is thus considered to be a good tool to denoise speckle
noise and enhance boundary information. To reduce the search-
ing range and maintain a smooth searching shape, we flattened

Table 1 Clinical characteristics of heart donors in dataset.

Characteristic Value

N 15

Demographic profile

Age in yrs, median (interquartile range) 66.0 (62.25 to 69.75)

Male, n (%) 5 (33.3)

BMI, median (interquartile range) 29.25 (24.3 to 34.2)

Medical history, n (%)

Diabetes 6 (40.0)

Hypertension 2 (13.3)

Heart failure 2 (13.3)

Cardiomyopathy 1 (13.3)

Cause of death, n(%)

Cardiac arrest 3 (20.0)

Cardiopulmonary arrest 3 (20.0)

Respiratory arrest 1 (6.7)

Respiratory failure 2 (13.3)

Chronic obstructive pulmonary disease 4 (26.7)

Congestive heart failure 2 (13.3)

Complete characteristics were not available for all donors
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and shifted the filtered image based on the tissue surface. To
flatten/shift images in a fast manner, we undersampled the origi-
nal image. In cardiac tissue, the most hyper reflective surface is
in the endocardium. Within a downsampled A-line, we thus
estimated the location of the maximum pixel value as the axial
location of the surface. Then the image was shifted based on an
interpolation of the axial location of the maximum value-pixels
within the downsampled image.

2.5.2 Layer information estimation

After image denoising and flattening, we estimated the layer
information within each OCT image. The layer information con-
sisted of the number of layers and the initial points for boundary
searching between layers. To count the number of layers, we
analyzed averaged A-lines in the OCT image. Due to the posi-
tioning of the sample and uneven sample surface, A-Lines
around the center of the B-scan had better image quality than
the regions toward the left and right edges of the image. To
ensure an accurate estimation, five A-Lines were selected

around the center of the image. The A-Lines were 200 μm
away from each other. For each A-Line, 20 A-lines were aver-
aged. In each averaged A-line, the intensity curve was linearly
fitted using a sliding window. The algorithm flow of linear
fitting is shown in Fig. 2(b). We first set the location of the
maximum pixel value as the first anchor. Within a window,
the intensity was linearly fitted. We calculated the root mean
square deviation (RMSD) error as following:

EQ-TARGET;temp:intralink-;e001;326;197RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðŷi − yiÞ2∕N
vuut ; (1)

where ŷi is the linearly fitted estimation and yi is the original
intensity value. If the RMSD is below a threshold, it is assumed
that the window is still within the same layer and thus the origi-
nal window is extended to cover more range. Otherwise, if the
RMSD is higher than the threshold, this iteration of layer search-
ing is completed and we record the end of the window as a
changing point. In the next layer, we set a new anchor that is

Fig. 1 Flowchart of the automated algorithm for tissue classification of OCT images of human atrial
tissues. B-scans from the OCT dataset were automatically segmentated into layers. Features were
extracted for each layer and input to a classifier. The final output was the tissue composition.

Fig. 2 Layer segmentation algorithm. (a) Flowchart of layer segmentation algorithm; (b) flowchart for
estimation of layer information within B-scan image; (c) schematic of boundary searching algorithm.
Layer information, including number of layers and changing point of tissue structure were estimated
in (b). Pixels at the boundary of each layer were searched from column to column within a range of
Δz pixels over depth in (c).
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one initial window size away from the recorded changing point
to start a new linear fit. Since the A-Line data is noisy, a fixed
distance between the changing points and the new anchor is
needed to ensure that we are analyzing a new layer rather
than repeatedly searching in the previous layer. In this study,
we empirically set the initial window size as 10 pixels and
the window size is extended three pixels during each iteration.
The estimation resulted in a piecewise linear function. The num-
ber of layers in the OCT image was defined by the number of
linear pieces within the A-line. In our implementation, we
deleted any two neighboring changing points that were too
close (<30 pixels) and set a new changing point that locates
in the middle of two deleted changing points. If the changing
points were due to high standard deviation of the intensities
within the pixels around the peak of the A-line, the changing
point would be deleted as well. Each changing point of the
piecewise linear function was considered as one of the candi-
dates used as initial boundary points for boundary searching.
Upon determining the number of layers and changing points
in each segment, a voting system was used to globally determine
the number of layers and corresponding initial boundary points.

2.5.3 Boundary searching

The boundaries were searched from the center of the image and
progressed outward to the left and right. The boundary search
algorithm minimizes the following function:

EQ-TARGET;temp:intralink-;e002;63;463EðfÞ ¼ EdataðfÞ þ EsmoothðfÞ; (2)

where f is the label of the estimated surface, Edatað:Þ is the
energy of each pixel, and Esmoothð:Þ is the energy quantifying
smoothness of the estimated surface. To minimize EðfÞ, we
set a cost function cðx; zÞ as following:

EQ-TARGET;temp:intralink-;e003;63;388cðx; zÞ ¼ c1gðx; zÞ þ c2iðx; zÞ þ c3pðx; zÞ; (3)

where gðx; zÞ is the gradient in the axial direction; iðx; zÞ is the
intensity; pðx; zÞ is a weight defining layer structure. The term
EdataðfÞ in Eq. (2) is represented by gðx; zÞ and iðx; zÞ and the
term EsmoothðfÞ in Eq. (2) is represented by pðx; zÞ. In general,
the highest value of cðx; zÞ in Eq. (3) corresponds to the lowest
energy in Eq. (2). This means that pixels at the boundary will
have a high gradient, a high intensity, and a high weight for the
shape constraint. The smoothness, pðx; zÞ, is determined by
the changing points obtained from the layer information estima-
tion step. Generally, for each column, pðx; zÞ is large when
ðx; zÞ is close to changing points and is small when the pixel
is in the middle of two estimated changing points. Three factors
are weighted by c1, c2, and c3 with a relationship of c1 þ
c2 þ c3 ¼ 1. A combination of the factors we empirically
used was 0.56, 0.38, and 0.06 for c1, c2, and c3, respectively.
Multiple boundaries were searched with the assumption that
each boundary intersected with one column once. For each
layer, starting from the changing point (from the anchor for
the first boundary), we searched the boundary from one column
to another. The searching range was ð−Δz;ΔzÞ of the deter-
mined boundary point in the previous column. Figure 2(c)
shows a schematic of the boundary searching algorithm, starting
from Colði − 1Þ. The cost of 2Δz pixels was examined and the
pixel with the highest weight was considered to be the boundary
of the layer within ColðiÞ. We then estimated the boundary point
for the next column. The searching algorithm was run in parallel
for multilayers within an image.

2.6 Feature Extraction

Within each segmented region, we extracted features from the
OCT images to study different patterns of tissue compositions.
The extracted features can be divided into three categories:
measured optical properties, statistical moments, and texture
analysis.

2.6.1 Measured optical properties

Optical property parameters that we studied were attenuation
coefficients (mm−1) and penetration depth (mm). Attenuation
coefficient was measured based on the method mentioned in
Ref. 32. Penetration depth was defined as the depth at which
the intensity drops to 1∕e of its original intensity33 when
light first reaches the layer. Additionally, we calculated the
distance between the centers of layers to the tissue surface.

2.6.2 Statistical moments

We performed histogram equalization and median filtering on
raw OCT data. Then we calculated the statistics of high order
moments (skewness and kurtosis), on the intensities of the
denoised image within the whole layer to analyze the distribu-
tion of intensity for various tissue types.

2.6.3 Texture analysis

We encoded OCT images with texture on equalized and filtered
OCT images. Texture feature number (TCN)34 is assigned to each
pixel. In TCN, the local feature of each pixel is represented by the
intensity change of its eight neighboring pixels. We analyzed the
statistics of the TCN number within each layer. In particular, we
calculated the coarseness and homogeneity from the histogram of
the TCN. We also quantified the mean and standard deviation
from the default texture analysis tool in MATLAB, such as
range filter and std filter, within each region. We also quantified
entropy within the region. In addition, we constructed gray level
cooccurrence matrices (GLCM)35 to extract more additional tex-
ture features. Specifically, contrast, energy, and correlation were
computed by setting the number of levels to 16.

Representative parametric images obtained from left and
right atrial samples are shown in Fig. 3, where we presented
typical pixel-based, A-Line-based, and layer-based features.
From pixel-based parametric images, such as attenuation coef-
ficients and entropy in Figs. 3(c)–3(d) and Figs. 3(i)–3(j), large
variations can be observed within a single layer. In A-line-based
features, such as distance to the surface, there are smaller var-
iations within each layer and the differences between tissue
compositions can be well observed. For layer-based features,
we performed texture analysis on pixels within the whole
layer. Representatives are shown in Figs. 3(f) and 3(i). To sim-
plify our model, we averaged the pixel-based and A-Line-based
feature values within each layer. This resulted in a vector of fea-
tures for each layer. The number of entries in the vector was
the number of features. In this study, we extracted 16 features,
listed in Table 2.

2.7 Relevance Vector Machine Classifier

The relevance vector machine (RVM)36 was used to classify tis-
sue compositions. For each feature vector x, the probability of
the vector belonging to a specific tissue composition c was
determined by the following equation:
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EQ-TARGET;temp:intralink-;e004;326;513pðc ¼ 1jw; xÞ ¼ σ

�XB
i¼1

ωiφiðxÞ
�
; (4)

where w is the weight, ϕðxÞ is a kernel function, σð·Þ is a sig-
moid function, and B is the number of vectors. A zero mean
Gaussian prior is typically chosen for computational conven-
ience for the weights.

EQ-TARGET;temp:intralink-;e005;326;428pðwijαiÞ ¼ Nðwij0; α−1i Þ: (5)

The distribution is determined by the values of the hyperpara-
meters αi. Given a dataset of input vectors with known tissue
composition, D ¼ fðxn; cnÞ; n ¼ 1;2; : : : ; Ng. The hyperpara-
meter αi can be set by maximizing the marginal likelihood

EQ-TARGET;temp:intralink-;e006;326;352pðDjαÞ ¼
Z

pðDjwÞpðwjαÞdw

¼
Z YN

n¼1

pðcnjxn; wÞ
�
α

2π

�
B∕2

exp

�
−
α

2
wTw

�
dw:

(6)

Here, we used the Gull–MacKay method to update αi.
New values for the weight vector w were estimated by cal-

culating the derivative of the expectation of the weights ∇E½w�
and the Hessian matrix of the weights H. Using a Newton update
method, the new weights were estimated as

EQ-TARGET;temp:intralink-;e007;326;206Wnew ¼ w −H−1ð∇EÞ: (7)

The classifier alternated in updating hyperparameters and
weights. After obtaining a converged w, the training of the
classifier terminated. Following the training, we estimated the
probability of each unknown layer belonging to a specified
tissue composition.

RVM is a Bayesian framework of the support vector machine
(SVM), which is widely used in classification37,38 and
segmentation.39 Compared with the SVM model, RVM obtains
sparser solutions for weight vector w. This is done by adopting a
nonGaussian prior for multiple hyperparameters αi, which only

Fig. 3 Example tissue images obtained from OCT, histology, and parametric images. (a) Original OCT
image collected from the left atrium. (b) Trichrome histology of the same sample used in (a).
(c) Attenuation coefficient map obtained from (a) (unit: mm−1). (d) Entropy map obtained from (a)
(unit: 1). (e) The layer depth map obtained from (a) (unit: pixel). (f) The skewness map obtained
from (a) (unit:1). (g) Original OCT image collected from the right atria. (h) Trichrome histology of
the same sample used in (g). (i) Attenuation coefficient map obtained from (g) (unit: mm−1).
(j) Entropy map obtained from (g) (unit: 1). (k) The layer depth map obtained from (g) (unit: pixel).
(l) The skewness map obtained from (g) (unit:1). For different tissue composition in OCT images,
they are showing different signatures in attenuation coefficients, entropy map, layer depth, and skew-
ness. Scale bar: 500 um.

Table 2 List of features used in the classifier.

Feature Description

1 Attenuation coefficients
(mean)

Mean value of attenuation
coefficient

2 Attenuation coefficients
(std)

Standard deviation of attenuation
coefficient

3 Penetration depth (mean) Mean value of penetration depth

4 Penetration depth (std) Standard deviation of penetration
depth

5 Std filter value (mean) Mean value of standard deviation
filtering results

6 Std filter value (std) Standard deviation value of
standard deviation filtering results

7 Range filter (mean) Mean value of range filtering results

8 Range filter (std) Standard deviation value of range
filtering results

9 Entropy Entropy of the pixel values

10 Coarseness (TCN) Coarseness analysis of texture
code number

11 Homogeneity (TCN) Homogeneity feature of texture
code number

12 Contrast (GLCM) Contrast feature from GLCM

13 Energy (GLCM) Energy feature from GLCM

14 Distance to surface The distance between the center of
the layer and the surface

15 Skewness Skewness within the whole layer

16 Kurtosis Kurtosis within the whole layer
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requires a limited number of weights w to be “active”. Once the
values for the hyperparameter are optimized, most of the hyper-
parameters tend to move toward infinity. This results in most
weights getting closer to zero, and becoming “irrelevant” in
establishing a decision boundary. Only relevant weights are
retained, which produced a significantly lower number of
relevance vectors compared to SVM.

A leave-one-out experiment was conducted on the whole
dataset. We used OCT images from 14 hearts as training data
and used the images from the remaining one heart as testing
data. The experiment was repeated such that images from any
heart would be the testing dataset once.

2.8 Three-Dimensional Visualization

Given boundary information from the B-scans, we reconstructed
the volumetric classification for myocardial tissue. Upon esti-
mating the boundary from each B-scan, each layer can be
roughly estimated. The detected boundary was arranged
along the direction perpendicular to the B-scan. We further
smoothed the estimated surface using a median filter and
reconstructed the 3-D surface based on the smoothed plane.
The estimated layer boundaries for each B-scan were modified
accordingly. We then performed the tissue classification algo-
rithm on each fine-tuned region in each B-scan. After perform-
ing the classification algorithm on each B-scan, the 3-D
classification results were realigned. We overlaid the tissue com-
position with OCT volumetric data in an hue saturation value
(HSV) scheme. In this study, tissue composition was encoded
as hue; saturation and value are encoded as intensity. All 3-D

results were visualized using the software package Amira
5.4.3 2012 (Zuse Institute Berlin, Germany).

3 Results

3.1 Segmentation Results

Figure 4 shows two typical segmentation results of human atrial
OCT volumes. In Figs. 4(a)–4(c), three layers are dense collagen
(dark blue in histology), loose collagen (light blue in histology),
and normal myocardium (red in histology) while in Fig. 4(d)–
4(f), three layers are dense collagen (dark blue in histology),
adipose tissue (white in histology), and normal myocardium
(red in histology). In general, segmented boundaries matched
the visible boundaries in the trichrome histology images.
Moreover, we conducted quantitative comparisons between
automated segmentations and manual segmentations from
two observers for images from all 15 human hearts with
corresponding histology. The results are listed in Table 3.
The difference between automated segmentation and manual
segmentation was 51.78� 50.96 μm, which is comparable to
results provided by the two investigators, 42.22� 33.87 μm.
To visualize boundaries in 3-D, multiple consecutive B-scans
were segmented based on the filtered surface using the method
in Sec. 2.8. The 3-D segmentation results are shown in Figs. 4(c)
and 4(f).

3.2 Feature Analysis

We performed statistical comparison of features for five tissue
compositions: normal myocardium, loose collagen, adipose

Fig. 4 Segmentation results from human atria. (a) and (d) Original OCT images overlaid with automated
segmentation result; (b) and (e) corresponding trichrome histology image; (c) and (e) 3-D segmentation
results. The automated results in both 2-D and 3-D show great agreement with histology images.

Table 3 Comparison between automated segmentation and manual measurements from two observers.

Automated versus observer 1 Automated versus observer 2 Observer 1 versus Observer 2

Mean (μm) Std (μm) Mean (μm) Std (μm) Mean (μm) Std (μm)

RA 42.26 57.48 51.72 61.12 42.89 55.57

LA 64.14 45.13 44.27 46.36 42.22 33.87
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Fig. 5 Statistical analysis of dense collagen, loose collagen, fibrotic myocardium, adipose tissue, and
normal myocardium tissue in (a) mean of attenuation coefficient; (b) standard deviation of attenuation
coefficient; (c) mean of penetration depth; (d) standard deviation of penetration depth; (e) mean of stan-
dard deviation filter; (f) standard deviation of standard deviation filter; (g) mean of range filter; (h) standard
deviation of range filter; (i) entropy; (j) coarseness; (k) homogenity; (l) distance to surface; (m) contrast;
(n) energy; (o) skewness; and (p) kurtosis. (p < 0.05).
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tissue, fibrotic myocardium, and dense collagen. Measurements
from optical properties, statistics, and texture analysis were
shown in Fig. 5. In general, we found that features from
OCT images of endomyocardium had a strong correlation
with tissue composition. We found that normal myocardial tis-
sue was only significantly different from the all four tissue com-
positions in homogeneity (p < 0.0074). Loose collagen was not
significantly different from fibrotic in homogeneity and energy,
but showed statistical differences in statistical moments (kurto-
sis, p < 0.0325) and optical properties (attenuation coefficients
p < 0.0092). Within texture analysis, dense collagen was not
significantly different from adipose tissue in homogeneity,
but had significantly different values in energy (p < 0.0144).
Similar observations were found in the rest of features, thus
all 16 features were used within the classification model.

3.3 Classification Results

We performed classification experiments on 60 B-scans from 15
human hearts. Representative classification results are shown in
Fig. 6. Similar to segmentation results, we performed compari-
son between automated classifications and trichrome histology
and presented the comparison in Fig. 6(a)–6(f), of which 6(a)
and 6(d) are raw OCT images, 6(b) and 6(e) are color-coded
classifications, and 6(c) and 6(f) are histology images. The tis-
sue compositions were color coded in HSV where hue encoded
the tissue composition and saturation and value encoded inten-
sity. Two layers are dense collagen (dark blue in histology) and
adipose tissue (white in histology) in Figs. 6(a)–6(c) while dense
collagen (dark blue in histology) and fibrotic myocardium (pur-
ple in histology) are shown in Figs. 6(d)–6(f). Both classifica-
tion results agree with the trichrome histopathology.

A leave-one-out experiment was conducted on the whole
dataset. We used OCT images from 14 hearts as training data
and used the images from the remaining one heart as testing
data. The experiment was repeated such that images from any
heart will be the testing dataset once. To validate the accuracy,
we compare the automated classification result with the tissue
types shown in histology on a layer-wise basis. We obtained
the confusion matrix to assess overall accuracy, Fig. 7. The
final tissue classification estimation for the region was the
class with the highest probability. Using this identification rule,
we achieved an average accuracy of 80.41% for classifying the
five tissue compositions.

Representative 3-D classification results are shown in Fig. 8.
The classified tissue compositions are overlaid on the original

3-D dataset using the HSV scheme. Gold, yellow, red, and blue
hues represent dense collagen, loose collagen, normal myocar-
dium, and adipose tissue, respectively. In Fig. 8(c), three tissue
compositions of dense collagen, loose collagen, and normal
myocardium are well classified and tissue compositions of
dense collagen and adipose tissue are well specified in Fig. 8(f).

4 Discussion
In this paper, we presented an automated algorithm to character-
ize tissue compositions in human atrial tissue. To the best of our
knowledge, it is the first work to automatically classify myocar-
dial tissue using OCT. Our algorithm builds a probabilistic
model to differentiate tissue compositions in OCT statistically,
and achieved a high accuracy to identify tissue composition
within human atrial samples ex vivo. Our method does not
take into account prior information, and thus can have potential
applications to other tissues including OCT images breast,40

oral,41 skin,42,43 and vascular tissues.44,45

Our classification algorithm had an 18% false positive rate of
normal myocardium being misclassified as fibrotic myocar-
dium. The tissue regions with small diffusion of fibrosis in
myocardium contributed toward this high false positive rate.
Moreover, the detection rate in adipose tissue was comparatively
low because the adipose tissue is located at different depths,
where the texture pattern varies. In Fig. 6(a), the adipose tissue
is in a honeycomb structure when it is imaged in focus. When

Fig. 6 Two dimensional classification results from human atria. (a) and (d) Original OCT images; (b) and
(e) color-coded automated classification image; (c) and (f) corresponding trichrome histology. The clas-
sification results show great agreement with histology images.

Fig. 7 Confusion matrix of classification results.
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out of focus, the adipose tissue appears as an area of iso-
lated dots.

In the preprocessing step, we detected the surface to shift
image. The image shifting, widely used in the existing segmen-
tation method,25,26 is necessary to determine the layer bounda-
ries. We found that the difference between estimated layer
boundaries and manual segmentation results were 203.61 μm
in LA and 259.35 μm in RA if we process our algorithm without
the flattening step. In the feature extraction step, our texture
analysis is based on segmented atrial layers. We thus analyze
the coarseness and homogeneity features in TCN. The index-
wise TCN feature could be considered if we extend our algo-
rithm to nonsegmented images.

One limitation of our study is that the time between a donor’s
death and heart imaging is variable among all samples. We
found that the viability of imaging is degraded when we com-
pared OCT images from early shipped hearts with the late
shipped hearts. We will consider the deliver time as a factor
to normalize the OCT image in the future; moreover, the process
of fixation during histology may result in shrinkage of the car-
diac sample. It can impair the accuracy of correlation between
histology and OCT image. In this study, we manually matched a
small number of histology and the OCT images. Serial sections
of histology can ensure that a variety of tissue features are
observed. However, care will need to be taken to account for
the fact that multiple samples are used in a training set from
a single patient/chamber. Furthermore, imaging depth has an in-
fluence on image quality of OCT B-scans. Thus, to minimize the
variations of imaging depth, we (i) maintain the distance
between the tissue surface and the objective to be the same
range in all our experimental scenarios and (ii) adjust image con-
trast based on the same thresholding and histogram equalization.
With the translation towards in vivo use with a forward viewing
catheter probe,46,47 contact imaging will be necessary and the
sample location within the image will be constant.

In the future, we will need to implement a robust algorithm
that take into account arbitrary shapes in which regions of tissue
may present themselves. Although most of the endomyocardial
tissue shows a layered structure, we notice there is a possibility
that certain tissue compositions such as adipose tissue or a mix-
ture of myocardium and blood vessels appear in a circular shape.
It is possible that such a contour would not be not identified
in the column-to-column search scheme. To overcome this

drawback and make our algorithm more generalized, we will
have a circular identification process and a refilling process.
In particular, the Hough transform can be used to find circles
and the snake algorithm to delineate the circular contour.
Intensity values inside the circle will be refilled with the mean
value of its neighboring pixels outside the circle. Then we will
process layer segmentation and the tissue classification method
as proposed in this study.

An important application of this work is for the development
of improved cardiac models. We will incorporate atrial tissue
characterization results into sample specific electrical physiol-
ogy models of the human atria. A 3-D finite element model48

will be built based on the geometry of human atria. Tissue com-
position is important for understanding conduction properties
and arrhythmia substrates.18 A second application is towards
the goal of performing an “optical biopsy.”Most biopsy samples
are around 1 to 2 mm3,49 similar to the size of volumetric data we
usually acquired in the OCT system. We will extend our tissue
classification algorithm to a model of ventricular myocardial
characterization and data acquired with high resolution OCT
systems.50 Our classification algorithm has the potential to
guide the procedure of endomyocardial biopsy by avoiding
areas with increased scar or/and performing optical biopsies
where conventional biopsy is unsafe. Lastly, our classification
method can be used to aid the treatment of atrial fibrillation
by radiofrequency ablation (RFA).24,51,52 In particular, the
identification of tissue composition can provide guidance for
ablation operation and facilitate the evaluation of ablation
performance.

5 Conclusion
We have developed an image processing tool to classify tissue
compositions. We proposed an automated algorithm to segment
layer structures within endomyocardium. Features including
optical properties, high moment statistics, and texture analysis
were extracted and compared. Based on extracted features, a
probabilistic model was used to identify the tissue composition
of segmentation. Segmentation results from human cardiac
images agreed with histology. We achieved an accuracy of
80.41% in classification. Tissue composition information pro-
vided by this method can be used for a range of applications,
to further understand the role of tissue composition on the
electrical function of the heart, and translational applications

Fig. 8 3-D classification results from human atria. (a) and (d) Original OCT volumes; (b) and (e) histology
images; (c) and (f) color-coded classification results. Gold, yellow, red, and blue colors represent dense
collagen, loose collagen, normal myocardium, and adipose tissue, respectively. The classification results
delineated the layer structure and agreed with trichrome histology.
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for the monitoring and guidance of diagnostic and therapeutic
interventions.

Acknowledgments
The authors would like to thank Christopher Hermawi, Christine
Fung, Theresa Lye, Nathan Lin, Xinwen Yao for their technical
assistance. The study was funded in part by National Institute of
Health (NIH) 1DP2HL127776- 01 (CPH), National Science
Foundation funding, NSF EEC-1342273 (CPH), NSF Career
Award 1454365 (CPH), SPIE educational Scholarship (YG),
and Wei foundation fellowship (YG).

References
1. S. L. Murphy, J. Xu, and K. D. Kochanek, “Deaths: preliminary data for

2010,” Natl. Vital Stat. Rep. 60(4), 1–51 (2012).
2. C. M.Wolf et al., “Somatic events modify hypertrophic cardiomyopathy

pathology and link hypertrophy to arrhythmia,” PNAS 102(50), 18123–
18128 (2005).

3. A. P. Burke et al., “Arrhythmogenic right ventricular cardiomyopathy
and fatty replacement of the right ventricular myocardium: are they
different diseases?,” Circulation 97(16), 1571–1580 (1998).

4. G. M. Tabel et al., “Collagen fiber morphology determines echogenicity
of myocardial scar: implications for image interpretation,”
Echocardiography 23(2), 103–107 (2006).

5. L. Iles et al., “Evaluation of diffuse myocardial fibrosis in heart
failure with cardiac magnetic resonance contrast-enhanced T1 map-
ping,” J. Am. Coll. Cardiol. 52(19), 1574–1580 (2008).

6. G. Limongelli et al., “Myocardial ultrasound tissue characterization in
patients with hypertrophic cardiomyopathy: noninvasive evidence of
electrical and textural substrate for ventricular arrhythmias,” J. Am.
Soc. Echocardiogr. 16(8), 803–807 (2003).

7. X. Qin and B. Fei, “Measuring myofiber orientations from high-
frequency ultrasound images using multiscale decompositions,” Phys.
Med. Biol. 59(14), 3907–3924 (2014).

8. G. Iacobellis, D. Corradi, and A. M. Sharma, “Epicardial adipose
tissue: anatomic, biomolecular and clinical relationships with the
heart,” Nat. Clin. Pract. Cardiovasc. Med. 2(10), 536–543 (2005).

9. A. C. Lardo et al., “Contrast-enhanced multidetector computed tomog-
raphy viability imaging after myocardial infarction: characterization
of myocyte death, microvascular obstruction, and chronic scar,”
Circulation 113(3), 394–404 (2006).

10. M. Carlsson et al., “Multidetector computed tomography for characteri-
zation of calcium deposits in reperfused myocardial infarction,” Acta
Radiol. 50(4), 396–405 (2009).

11. J. Zimmermann et al., “Cardiac MRI derived epicardial fat maps to
assist VT ablation procedures for subjects with implantable devices,”
in 2015 IEEE 12th Int. Symp. on Biomedical Imaging (ISBI),
pp. 747–750 (2015).

12. P. Helm et al., “Measuring and mapping cardiac fiber and laminar archi-
tecture using diffusion tensor MR imaging,” Ann. N.Y. Acad. Sci.
1047(1), 296–307 (2005).

13. D. Huang et al., “Optical coherence tomography,” Science 254(5035),
1178–1181 (1991).

14. A. Rollins et al., “In vivo video rate optical coherence tomography,”
Opt. Express 3(6), 219–229 (1998).

15. C. M. Ambrosi et al., “Virtual histology of the human heart using optical
coherence tomography,” J. Biomed. Opt. 14(5), 054002 (2009).

16. M. Jenkins et al., “Optical coherence tomography imaging of the
Purkinje network,” J. Cardiovasc. Electrophysiol. 16(5), 559–560 (2005).

17. M. Gupta et al., “Imaging of the atrioventricular node using optical
coherence tomography,” J. Cardiovasc. Electrophysiol. 13(1), 95 (2002).

18. W. J. Hucker et al., “Bimodal biophotonic imaging of the structure-
function relationship in cardiac tissue,” J. Biomed. Opt. 13(5), 054012
(2008).

19. C. M. Ambrosi et al., “Quantification of fiber orientation in the canine
atrial pacemaker complex using optical coherence tomography,”
J. Biomed. Opt. 17(7), 071309 (2012).

20. C. P. Fleming et al., “Quantification of cardiac fiber orientation using
optical coherence tomography,” J. Biomed. Opt. 13(3), 030505 (2008).

21. C. J. Goergen et al., “Optical coherence tractography using intrinsic
contrast,” Opt. Lett. 37(18), 3882–3884 (2012).

22. Y. Gan and C. P. Fleming, “Extracting three-dimensional orientation and
tractography of myofibers using optical coherence tomography,”
Biomed. Opt. Express 4(10), 2150–2165 (2013).

23. Y. Wang et al., “Histology validation of mapping depth-resolved cardiac
fiber orientation in fresh mouse heart using optical polarization tractog-
raphy,” Biomed. Opt. Express 5(8), 2843–2855 (2014).

24. R. P. Singh-Moon, C. C. Marboe, and C. P. Hendon, “Near-infrared
spectroscopy integrated catheter for characterization of myocardial tis-
sues: preliminary demonstrations to radiofrequency ablation therapy for
atrial fibrillation,” Biomed. Opt. Express 6(7), 2494–2511 (2015).

25. M. K. Garvin et al., “Automated 3-D intraretinal layer segmentation of
macular spectral-domain optical coherence tomography images,” IEEE
Trans. Med. Imaging 28(9), 1436–1447 (2009).

26. S. J. Chiu et al., “Automatic segmentation of seven retinal layers in
SDOCT images congruent with expert manual segmentation,” Opt.
Express 18(18), 19413–19428 (2010).

27. G. J. Ughi et al., “Automated segmentation and characterization of
esophageal wall in vivo by tethered capsule optical coherence tomog-
raphy endomicroscopy,” Biomed. Opt. Express 7(2), 409–419 (2016).

28. L. Qi et al., “Automatic airway wall segmentation and thickness
measurement for long-range optical coherence tomography images,”
Opt. Express 23(26), 33992–34006 (2015).

29. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coher-
ence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).

30. K. Dabov et al., “Image denoising by sparse 3-D transform-domain
collaborative filtering,” IEEE Trans. Image Process. 16(8), 2080–2095
(2007).

31. G. Yu et al., “BM3D-based ultrasound image denoising via brushlet
thresholding,” in 2015 IEEE 12th Int. Symp. on Biomedical Imaging
(ISBI), pp. 667–670 (2015).

32. G. van Soest et al., “Atherosclerotic tissue characterization in vivo by
optical coherence tomography attenuation imaging,” J. Biomed. Opt.
15(1), 011105 (2010).

33. E. Hecht, Optics, Addison-Wesley Longman, Incorporated, San
Francisco, California (2002).

34. M.-H. Horng, Y.-N. Sun, and X.-Z. Lin, “Texture feature coding method
for classification of liver sonography,” Comput. Med. Imaging Graphics
26(1), 33–42 (2002).

35. R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features
for image classification,” IEEE Trans. Syst. Man Cybern. SMC-3(6),
610–621 (1973).

36. D. Barber, Bayesian Reasoning and Machine Learning, Cambridge
University Press, Cambridge, United Kingdom (2012).

37. R. J. Zawadzki et al., “Adaptation of a support vector machine algorithm
for segmentation and visualization of retinal structures in volumetric
optical coherence tomography data sets,” J. Biomed. Opt. 12(4),
041206 (2007).

38. N. Anantrasirichai et al., “SVM-based texture classification in optical
coherence tomography,” in 2013 IEEE 10th Int. Symp. on
Biomedical Imaging (ISBI), pp. 1332–1335 (2013).

39. F. Liu et al., “Automated fiber-type-specific cross-sectional area assess-
ment and myonuclei counting in skeletal muscle,” J. Appl. Physiol.
115(11), 1714–1724 (2013).

40. M. Mujat et al., “Automated algorithm for breast tissue differentiation in
optical coherence tomography,” J. Biomed. Opt. 14(3), 034040 (2009).

41. P. Pande et al., “Automated classification of optical coherence tomog-
raphy images for the diagnosis of oral malignancy in the hamster cheek
pouch,” J. Biomed. Opt. 19(8), 086022 (2014).

42. D. Lian et al., “Automated classification of basal cell carcinoma in
mouse skin by polarization sensitive optical coherence tomography,”
in 2014 Conf. on Lasers and Electro-Optics (CLEO), pp. 1–2 (2014).

43. M. Sermesant et al., “An electro-mechanical model of the heart for
cardiac image analysis,” in Medical Image Computing and Computer-
Assisted Intervention– MICCAI 2001, W. Niessen and M. Viergever,
Eds., pp. 224–231, Springer, Berlin, Heidelberg (2001).

44. C. P. Fleming et al., “Depth resolved detection of lipid using spectro-
scopic optical coherence tomography,” Biomed. Opt. Express 4(8),
1269–1284 (2013).

45. C. Lorenz and J. von Berg, “Towards a comprehensive geometric
model of the heart,” in Functional Imaging and Modeling of the Heart

Journal of Biomedical Optics 101407-10 October 2016 • Vol. 21(10)

Gan et al.: Automated classification of optical coherence tomography images of human atrial tissue

http://dx.doi.org/10.1073/pnas.0509145102
http://dx.doi.org/10.1161/01.CIR.97.16.1571
http://dx.doi.org/10.1111/j.1540-8175.2006.00178.x
http://dx.doi.org/10.1016/j.jacc.2008.06.049
http://dx.doi.org/10.1067/S0894-7317(03)00213-X
http://dx.doi.org/10.1067/S0894-7317(03)00213-X
http://dx.doi.org/10.1088/0031-9155/59/14/3907
http://dx.doi.org/10.1088/0031-9155/59/14/3907
http://dx.doi.org/10.1038/ncpcardio0319
http://dx.doi.org/10.1161/CIRCULATIONAHA.105.521450
http://dx.doi.org/10.1080/02841850902756540
http://dx.doi.org/10.1080/02841850902756540
http://dx.doi.org/10.1109/ISBI.2015.7163980
http://dx.doi.org/10.1196/annals.1341.026
http://dx.doi.org/10.1126/science.1957169
http://dx.doi.org/10.1364/OE.3.000219
http://dx.doi.org/10.1117/1.3213604
http://dx.doi.org/10.1046/j.1540-8167.2005.30621.x
http://dx.doi.org/10.1046/j.1540-8167.2002.00095.x
http://dx.doi.org/10.1117/1.2975826
http://dx.doi.org/10.1117/1.JBO.17.7.071309
http://dx.doi.org/10.1117/1.2937470
http://dx.doi.org/10.1364/OL.37.003882
http://dx.doi.org/10.1364/BOE.4.002150
http://dx.doi.org/10.1364/BOE.5.002843
http://dx.doi.org/10.1364/BOE.6.002494
http://dx.doi.org/10.1109/TMI.2009.2016958
http://dx.doi.org/10.1109/TMI.2009.2016958
http://dx.doi.org/10.1364/OE.18.019413
http://dx.doi.org/10.1364/OE.18.019413
http://dx.doi.org/10.1364/BOE.7.000409
http://dx.doi.org/10.1364/OE.23.033992
http://dx.doi.org/10.1117/1.429925
http://dx.doi.org/10.1109/TIP.2007.901238
http://dx.doi.org/10.1109/ISBI.2015.7163961
http://dx.doi.org/10.1109/ISBI.2015.7163961
http://dx.doi.org/10.1117/1.3280271
http://dx.doi.org/10.1016/S0895-6111(01)00029-5
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1117/1.2772658
http://dx.doi.org/10.1109/ISBI.2013.6556778
http://dx.doi.org/10.1109/ISBI.2013.6556778
http://dx.doi.org/10.1152/japplphysiol.00848.2013
http://dx.doi.org/10.1117/1.3156821
http://dx.doi.org/10.1117/1.JBO.19.8.086022
http://dx.doi.org/10.1364/CLEO_AT.2014.ATh1O.3
http://dx.doi.org/10.1364/BOE.4.001269


A. Frangi et al., Eds., pp. 102–112, Springer, Berlin, Heidelberg
(2005).

46. C. P. Fleming et al., “First in vivo real-time imaging of endocardial RF
ablation by optical coherence tomography,” J. Innovations Cardiac
Rhythm Manage. 2 (2011).

47. C. P. Fleming et al., “Real-time monitoring of cardiac radio-frequency
ablation lesion formation using an optical coherence tomography
forward-imaging catheter,” J. Biomed. Opt. 15(3), 030516 (2010).

48. M. J. Gonzales et al., “A three-dimensional finite element model of
human atrial anatomy: new methods for cubic Hermite meshes with
extraordinary vertices,” Med. Image Anal. 17(5), 525–537 (2013).

49. L. T. Cooper et al., “The role of endomyocardial biopsy in the manage-
ment of cardiovascular disease: a scientific statement from the American
Heart Association, the American College of Cardiology, and the
European Society of Cardiology,” Circulation 116(19), 2216–2233
(2007).

50. X. Yao et al., “Myocardial imaging using ultrahigh resolution spectral
domain optical coherence tomography,” J. Biomed. Opt. (2015) (sub-
mitted for publication).

51. C. P. Fleming et al., “In vitro characterization of cardiac radiofrequency
ablation lesions using optical coherence tomography,” Opt. Express
18(3), 3079–3092 (2010).

52. C. P. Fleming, K. J. Quan, and A. M. Rollins, “Toward guidance of
epicardial cardiac radiofrequency ablation therapy using optical coher-
ence tomography,” J. Biomed. Opt. 15(4), 041510 (2010).

Yu Gan received his MS degree in communications and information
systems and electrical engineering, Chinese Academy of Sciences
and Stevens Institute of Technology, respectively, and his BS degree
in electronic and information engineering from Nanjing University of
Science and Technology. He is a doctoral candidate in electrical
engineering at Columbia University.

David Tsay received his MD, PhD, and BS degrees from Columbia
University. Currently, he is a cardiac electrophysiology fellow and
chief innovation fellow at New York-Presbyterian Hospital.

Syed Bin Amir received his MS degree in electrical engineering from
Columbia University. Currently, he is a doctoral candidate in biomedi-
cal engineering at the University of Connecticut.

Charles C. Marboe is a professor of pathology and cell biology at
Columbia University Medical Center. He has 34 years of experience
in cardiovascular pathology.

Christine P. Hendon received her PhD in biomedical engineering
from Case Western Reserve University and her bachelor's in electri-
cal engineering and computer science fromMassachusetts Institute of
Technology. Her research interests are in developing biomedical
optical systems and image analysis for applications for guidance of
therapy. Currently, she is an assistant professor of electrical engineer-
ing at Columbia University.

Journal of Biomedical Optics 101407-11 October 2016 • Vol. 21(10)

Gan et al.: Automated classification of optical coherence tomography images of human atrial tissue

http://dx.doi.org/10.1117/1.3459134
http://dx.doi.org/10.1016/j.media.2013.03.005
http://dx.doi.org/10.1161/CIRCULATIONAHA.107.186093
http://dx.doi.org/10.1364/OE.18.003079
http://dx.doi.org/10.1117/1.3449569

