Hyperspectral imaging fluorescence excitation scanning for colon cancer detection

Silas J. Leavesley
Mikayla Walters
Carmen Lopez
Thomas Baker
Peter F. Favreau
Thomas C. Rich
Paul F. Rider
Carole W. Boudreaux
Hyperspectral imaging fluorescence excitation scanning for colon cancer detection

Silas J. Leavesley, a,b,c * Mikayla Walters, a Carmen Lopez, d Thomas Baker, b Peter F. Favreau, a,c Thomas C. Rich, b,c Paul F. Rider, e and Carole W. Boudreaux

a University of South Alabama, Department of Chemical and Biomolecular Engineering, 150 Jaguar Drive, SH 4129, Mobile, Alabama 36688, United States
b University of South Alabama, Department of Pharmacology, 5851 USA North Drive, MSB 3372, Mobile, Alabama 36688, United States
c University of South Alabama, Center for Lung Biology, 5851 USA North Drive, MSB 3340, Mobile, Alabama 36688, United States
d University of South Alabama, Department of Pathology, 2451 Fillingim Street, Mobile, Alabama 36617, United States
e University of South Alabama, Department of Surgery, 2451 Fillingim Street, Mastin Building, Suite 701, Mobile, Alabama 36617, United States

Abstract. Optical spectroscopy and hyperspectral imaging have shown the potential to discriminate between cancerous and noncancerous tissue with high sensitivity and specificity. However, to date, these techniques have not been effectively translated to real-time endoscope platforms. Hyperspectral imaging of the fluorescence excitation spectrum represents new technology that may be well suited for endoscopic implementation. However, the feasibility of detecting differences between normal and cancerous mucosa using fluorescence excitation-scanning hyperspectral imaging has not been evaluated. The goal of this study was to evaluate the initial feasibility of using fluorescence excitation-scanning hyperspectral imaging for measuring changes in fluorescence excitation spectrum concurrent with colonic adenocarcinoma using a small pre-pilot-scale sample size. Ex vivo analysis was performed using resected pairs of colorectal adenocarcinoma and normal mucosa. Adenocarcinoma was confirmed by histologic evaluation of hematoxylin and eosin (H&E) permanent sections. Specimens were imaged using a custom hyperspectral imaging fluorescence excitation-scanning microscope system. Results demonstrated consistent spectral differences between normal and cancerous tissues over the fluorescence excitation range of 390 to 450 nm that could be the basis for wavelength-dependent detection of colorectal cancers. Hence, excitation-scanning hyperspectral imaging may offer an alternative approach for discriminating adenocarcinoma from surrounding normal colonic mucosa, but further studies will be required to evaluate the accuracy of this approach using a larger patient cohort. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.10.104003]

Keywords: endoscopy; spectral; colorectal; spectroscopy; optical biopsy; hyperspectral imaging fluorescence excitation.

Paper 160335SSPRR received May 25, 2016; accepted for publication Oct. 4, 2016; published online Oct. 28, 2016.

1 Introduction

Colorectal cancer is the second leading cause of cancer death in the United States.1 Early detection may play a key role in reducing cancer mortality—the end goal of most colorectal screening exams is to identify lesions prior to malignancy or tissue invasion.3,4 Endoscopic procedures are the standard method for colorectal screening. There are currently several complementary endoscopic technologies for colorectal exams: white light endoscopy (WLE), narrow-band imaging, autofluorescence imaging, and chromoendoscopy.5–7 Interestingly, although the specificity and sensitivity of these endoscopic technologies have been estimated in a range of studies,3,5,6,8–11 no single technology has emerged as clearly superior. As such, WLE remains the gold standard and is often the “de facto” imaging modality for colorectal screening. However, recent studies have identified a need for improved screening effectiveness, showing that current methods are limited in their ability to detect flat8 or small (<5 mm diameter) lesions.3,12,13 Two studies suggest that flat adenomas may account for 22% and 36% of adenomas.14,15 Hence, there is a need for colorectal screening approaches that offer improved sensitivity and specificity, especially for detection of flat and/or small lesions.

WLE is the current standard for colorectal cancer screening and one of the most commonly performed medical procedures in the United States.16 WLE has been shown to reduce mortality rates by as much as 50% in symptomatic patients.16 Although WLE can provide visualization of large-scale architectural and morphological features, it does not provide information coincident with early cancer development, such as changes in molecular composition or metabolic activity.17 In addition, the sensitivity and specificity of WLE is debated. Studies have estimated that the miss rates for large adenomas (≥10 mm) can range anywhere from 0% to 20%.18,19 A multicenter retrospective review estimated that the overall miss rate for colonic adenomas was 24% and for adenomas ≤5 mm, 27%.12 However, there is also evidence for variance in sensitivity between endoscopists. A comprehensive review, performed by Rex, estimated that less-sensitive endoscopists may be missing the vast majority of colonic adenomas (miss rates as high as 90%).3 In addition to detection sensitivity, WLE has shown limited specificity in differentiating lesion histology. In a meta-analysis review, Ignjatovic et al.5 estimated that the accuracy...
for differentiating hyperplastic polyps and adenomas could range from 59% to 84% (Ref. 5 and references found therein: Refs. 7, 9, 20–23). Taken together, these data indicate a need for endoscopic technologies with improved sensitivity and specificity, as well as technologies or approaches that lead to reduced interoperator variation.

Several alternative endoscopic imaging modalities have been developed in an effort to increase detection sensitivity and specificity. Narrow-band imaging (NBI) utilizes optical filters with a narrow wavelength band to increase the contrast between an epithelial surface and the vascular pattern. This allows analysis of the surface epithelium and the underlying vascular network.20,24,25 Autofluorescence imaging (AFI) is an alternative approach for creating increased contrast in endoscopic images.26–31 AFI uses short-wavelength light or laser illumination to excite endogenous fluorophores within a tissue.32–34 In general, the autofluorescence intensity of cancerous and precancerous lesions is lower, due to mucosal thickening and reduced collagen fluorescence.35 However, tissue autofluorescence has been attributed to many sources,36 including metabolic molecules (NADH, FAD),37 proteins, and other molecules (flavins, collagen, elastin, hemoglobin),38 breakdown of certain biomolecules (hematoporphyrin, flavins),39 and induced molecular changes concurrent with inflammation.40–42 Hence, the molecular and histologic basis for AFI is still uncertain.

Several comparative studies have shown that NBI may provide increased sensitivity and specificity over conventional WLE5,6,8,11 and that AFI may provide increased sensitivity.11,46 Ignjatovic et al.47 compared the sensitivity, specificity, and accuracy of WLE to AFI, NBI, and NBI with magnification (NBlmag) by using sequentially captured image sets of lesions and postprocedure scoring by expert and novice evaluators. Results revealed that both NBI and NBlmag provided improved sensitivity, but reduced specificity, when compared to conventional WLE. Interestingly, AFI provided both reduced sensitivity and specificity.

Chromoendoscopy (CE) is a third alternative endoscopic imaging modality, which creates contrast by introducing topical labels (targeted dyes) into the visualized area through a working channel or injection port on the endoscope. Dyes or dye conjugates are selected to preferentially bind one or more types of tumor. Su et al.7 demonstrated a very high sensitivity of 95.7% using CE, with a specificity of 87.5%, and a diagnostic accuracy of 92.7%. Combining CE with pit pattern assessment may further raise diagnostic accuracy (85% to 96%).5,8,10,22,23,47 The drawbacks of CE—the additional labor and procedural times involved, requirement for specialized training, use of additional topical reagents (dyes), and the specificity of dyes across a wide range of tumor subtypes—have hindered wide-spread adoption of the technique.5,8,48–50

Arguably, early and/or flat adenomas pose the most difficult detection challenge.11,17,31 None of the techniques discussed (WLE, NBI, AFI, and CE) provides a single fail-safe screening technology. Hence, there is a significant need for technologies that offer improved sensitivity and specificity, while maintaining normal procedure times and nominal procedure costs. One alternative detection approach may be through analysis of reflectance or fluorescence spectroscopic data. Both reflectance51 and fluorescence52,53 spectroscopy have been evaluated for their ability to detect colon cancers. In principle, the additional information provided by spectroscopic measurements should allow estimation of molecular composition as well as more accurate detection sensitivity and specificity. For example, using a fluorescence spectroscopic approach, Cothren et al.53 reported an incredibly high sensitivity of 100% and specificity of 97% for differentiating adenoma from normal mucosa and hyperplasia. A limitation of spectroscopic approaches is that only a single point-measurement is made, usually by inserting a fiber-optic probe through the working channel of the endoscope. Hence, this technique can be very tedious and time consuming, requiring the probe to be contacted with many locations of the mucosa to effectively locate the lesional border.

The goal of this preliminary study was to assess the potential feasibility of an alternative imaging technology54,55—hyperspectral imaging with reflectance and fluorescence excitation scanning—for detecting differences between adenocarcinoma and surrounding normal tissue in resected colorectal cancer specimens. We have previously shown that hyperspectral imaging using fluorescence emission scanning can be used to accurately detect discrete molecular signals in cells and tissues.41,56–60 However, we have found that fluorescence excitation scanning provides 10- to 30-fold higher signal sensitivity than traditional (emission-based) spectral imaging approaches.55 This technology allows fluorescence and absorbance image data to be acquired across a range of narrow-wavelength illumination bands, spanning the ultraviolet (UV) through visible spectrum and can easily be adapted for endoscopic use. We present initial data from four patients comparing fluorescence excitation spectral properties of cancerous to normal colon tissues, as well as a preliminary comparison of different structures within healthy colon and a brief discussion of effects of specimen preparation on measured excitation spectra. Initial results indicate that excitation-scanning hyperspectral imaging may be a viable technology for detecting spectral differences between normal and cancerous colon tissues.

2 Methods

2.1 Tissue Specimens

All studies were performed in conjunction with University of South Alabama Institutional Review Board protocol: IRB # 445452-3. Colorectal tissue samples were obtained by the University of South Alabama Departments of Surgery and Pathology from colorectal surgical resection specimens. The samples were collected as pairs of adenocarcinoma and normal mucosa and were ~0.5 to 1.0 mm in thickness. The tissues were flash frozen in liquid nitrogen. Confirmation of adenocarcinoma was determined by histologic evaluation of hematoxylin and eosin (H&E) permanent sections. Samples were maintained at −80°C until prior to hyperspectral imaging, typically within 1 to 2 days. For imaging, tissues were reconstituted in cold phosphate-buffered saline (PBS) and placed onto a 25-mm round coverslip.

A total of eight patients have been enrolled thus far in the study. However, data from the first three patients are not presented here, due to variations in specimen processing and imaging protocol. In addition, one patient was not considered, as surgical exam revealed extreme fibrosis, possibly due to perforation of the bowel, but no evidence of adenocarcinoma. Fresh rat tissues were obtained postmortem from an ongoing, unrelated animal study. All procedures in the unrelated animal study were conducted in accordance with approved University of South Alabama Institutional Animal Care and Use Committee (IACUC) protocol #623125.
Table 1. Equipment settings for each type of hyperspectral imaging fluorescence excitation scanning. Different dichroic beamsplitters were used to allow a range of fluorescence excitation scanning, with cut-off wavelengths at 458, 495, 555, and 594 nm cut-off wavelengths (part numbers: BLP01-458R-25, FF01-495/LP-25, BLP02-561R-25, and BLP01-594R-25, respectively, Semrock, Inc.). For transmission and absorbance scanning, no dichroic beamsplitter was used.

<table>
<thead>
<tr>
<th>Type of scan</th>
<th>Dichroic beamsplitter cut-off wavelength (nm)</th>
<th>Starting wavelength (nm)</th>
<th>Ending wavelength (nm)</th>
<th>Step size wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescence excitation</td>
<td>458</td>
<td>390</td>
<td>450</td>
<td>5</td>
</tr>
<tr>
<td>Fluorescence excitation</td>
<td>495</td>
<td>390</td>
<td>480</td>
<td>5</td>
</tr>
<tr>
<td>Fluorescence excitation</td>
<td>555</td>
<td>390</td>
<td>550</td>
<td>5</td>
</tr>
<tr>
<td>Fluorescence excitation</td>
<td>594</td>
<td>390</td>
<td>580</td>
<td>5</td>
</tr>
<tr>
<td>Transmission/absorbance</td>
<td>None</td>
<td>390</td>
<td>700</td>
<td>5</td>
</tr>
</tbody>
</table>

2.2 Hyperspectral Microscope

An inverted fluorescence microscope (TE2000-U, Nikon Instruments) with a 10× objective (10×/0.25 Ph1 ADL, infinity/1.2 WD 6.2, Nikon Instruments) was used as the imaging platform. Illumination light was provided by a 300-W Xe arc lamp (TITAN 300ST-K, Sunoptics Technologies). An evaluation prototype thin-film tunable excitation filter system (Semrock, Inc.) containing six separate tunable filters (Versachrome, Semrock, Inc.) was used to filter the excitation light illuminating the sample. Our group has previously described this tunable filter system in detail.

Fluorescence excitation was scanned using four different wavebands at 458, 495, 555, and 594 nm cut-off wavelengths (Table 1). The optical path for the microscope in both fluorescence and reflectance configurations is shown in Fig. 1.

2.3 Image Acquisition

Fields of view within tissue specimens were identified for imaging using fluorescence with 480-nm excitation and 495-nm long-pass emission and transmission at 515 nm. Multiple fields of view were acquired to sample the range of structures in each specimen. An additional field of view was acquired that included the tissue edge and surrounding background region (with no tissue). The background spectrum was used during spectral correction (described below). All fluorescence hyperspectral images were acquired with the following detector settings: electron multiplying (EM) gain of 3800, 14-bit dynamic range, and binning of 2 × 2. Transmission images were acquired using an EM gain of 1. Image acquisition for each type of fluorescence and transmission spectral image stack was performed sequentially.

2.4 Image Processing and Analysis

Spectral images were postprocessed using MATLAB software (MathWorks). Absorbance data were calculated from transmission values, using the transmission spectrum from a background region as reference. ENVI software (Exelis Visual Information Solutions, Boulder, Colorado) was used to identify regions of interest (ROIs) and extract spectral data. Fluorescence images were corrected to flat spectral response using background subtraction and multiplication by a correction factor. Correction coefficients were determined using a NIST-traceable lamp (LS-1-CAL-INT, Ocean Optics, Inc.) and fiber-coupled spectrometer (QE65000, Ocean Optics, Inc.), as described previously.

Multiple ROIs were identified according to the structural features of each specimen. In addition, a region encompassing the entire field of view was selected. The average spectrum from each region was extracted. Extracted spectra were plotted using Excel (Office 2010, Microsoft Corporation).

2.5 Results and Discussion

Colonic adenocarcinoma and surrounding normal tissue were imaged using a hyperspectral imaging fluorescence excitation (HIFEX)-scanning microscope configuration. An example image of normal mucosa is shown in Fig. 2. For each pixel in the image, fluorescence excitation, transmission, and absorbance spectra were acquired [Figs. 2(a)–2(c)]. These images can be visualized as three-dimensional spectral image stacks, in which the first two dimensions represent spatial data and the third dimension represents spectral data. ROIs were selected based on structural/anatomical features in the image. For each ROI, the pixel-averaged spectrum was calculated for each hyperspectral imaging mode [Figs. 2(d)–2(h)]. In cases in which a desired structure of the specimen (e.g., mucosa)
spanned several fields of view, the spectra from multiple ROIs were averaged to obtain a representative spectral signature for the structure.

To assess tissue heterogeneity, vascular, adipose, and mucosal structures of noncancerous colon were imaged (Fig. 3). Different tissue structures had similar fluorescence spectral shapes with large differences in magnitude [Figs. 3(d)–3(e)], suggesting that the bulk fluorescence excitation spectrum of a healthy colon is homogeneous. However, normalizing fluorescence data to a peak value of unity [Figs. 3(g)–3(h)] revealed subtle differences, likely indicating that many autofluorescent molecules contribute to the overall spectrum. A possible explanation is that less stable autofluorescent molecules—such as NADH or FAD, whose fluorescence properties depend on the oxidative state of the molecule—may have been degraded or compromised during the flash freezing and sample preparation process.

Unfortunately, there are relatively few spectroscopic studies of tissue autofluorescence that report fluorescence excitation spectral data. Richards-Kortum and Sevick-Muraca\(^{35}\) have reported flavomononucleotides, with a peak fluorescence excitation wavelength of 436 nm. However, Wagnieres et al.\(^{37}\) (in a comprehensive review) have also reported that flavins have a peak excitation wavelength of 455 nm and that porphyrins have a peak excitation wavelength of 400 nm. A definitive answer as to which molecules contribute to colon autofluorescence is not possible until a more detailed study of the components of fluorescence excitation spectra is performed. Further work is also warranted to develop specialized spectral analysis approaches that can identify weak signatures in the presence of much stronger signatures, such as matched filtering and energy minimization algorithms.\(^{63-65}\)

Interestingly, the absorbance data of colonic mucosa were much smaller, and of a different spectral shape, than that of vascular and adipose tissues [Figs. 3(f) and 3(i)]. This indicates that the composition of absorbing (but not fluorescing) molecules in the mucosa is different from that of vascular and adipose tissues. In addition, mucosa may be more transparent than either of the other tissue types and may allow a higher optical penetration depth, as indicated by the lower magnitude of absorbance. This observation indicates that absorbance or reflectance spectral image data may provide complimentary information to fluorescence spectral image data in differentiating among tissue types.

In this pilot study, four pairs of adenocarcinoma and surrounding normal mucosa were analyzed. While this is not a large enough sample size to calculate sensitivity and specificity

Fig. 2 Example image of normal colonic mucosa. For each pixel in the image, fluorescence excitation, transmission, and absorbance spectra were acquired. These images can be visualized as three-dimensional spectral image stacks, in which the first two dimensions represent spatial data and the third dimension represents spectral data. (a) HIFEX scan acquired from 390 to 480 nm. Three wavelength bands are shown for visualization (red = 465 nm, green = 430 nm, and blue = 390 nm). Spectral data are shown in the z-axis (going into the page). Arrows point to colonic crypts. (b) Transmission scan and (c) absorbance scan from 390 to 700 nm (red = 650 nm, green = 525 nm, and blue = 410 nm). (d–h) Pixel-averaged spectral data for a representative ROI: (d) fluorescence excitation scan from 390 to 450 nm, (e) fluorescence excitation scan from 390 to 480 nm (corresponding to the image in panel a), (f) fluorescence excitation scan from 390 to 550 nm, (g) transmission scan from 390 to 700 nm (corresponding to the image in panel b), and (h) absorbance scan from 390 to 700 nm (corresponding to the image in panel c).
metrics, it does provide a proof-of-principle or early feasibility demonstration for visualizing differences in spectral signatures of cancerous and normal tissues. At short excitation wavelengths, the fluorescence total intensity of adenocarcinomas was lower than normal tissue [Fig. 4(a), data shown for two specimen pairs]. This is consistent with prior literature, which indicates that fluorescence emission decreases in colonic adenoma and carcinoma,29,53 as well as cancer progression in bronchial and oral mucosa.27,30 However, fluorescence resulting from excitation at higher wavelengths was increased, and in the S4 sample was higher than normal tissue [Figs. 4(b) and 4(c)]. Transmission and absorbance spectral data indicate that adenocarcinoma displays increased optical absorbance, as compared to surrounding normal tissue [Figs. 4(d) and 4(e)], with additional spectral differences that could be exploited to increase sensitivity and specificity for tumor detection. These preliminary data demonstrate that there may be differences in spectral signature (also called spectral fingerprint) between cancerous and normal tissue and indicate that the excitation-scanning approach could provide high specificity (and likely high sensitivity) for detecting adenocarcinomas. It is likely that hyperspectral imaging can detect subtle changes in spectral signatures coincident with cancer stage that may not be detectable with NBI or AFI. In addition, due to the high sensitivity of fluorescence excitation-scanning hyperspectral imaging,55 this technology could likely be translated to an endoscope or similar clinical imaging platform, enabling real-time hyperspectral imaging for endoscopy procedures. Finally, these data indicate that lesions are molecularly complex, likely heterogeneous, and should be investigated further to understand the relationship between cancer progression and spectral signature.

The wavelength range of 390 to 450 nm was selected to visualize key spectral differences for all specimen pairs (Fig. 5). For all tissue pairs, the fluorescence intensity of normal tissues was higher than cancerous tissues. This is consistent with prior literature that indicates that fluorescence emission decreases with adenocarcinoma,29,53 as well as bronchial and oral cancer.27,30 In addition, cancerous tissues presented several common spectral features, including a local peak excitation wavelength of 400 nm and a local minimum at 430 nm [Figs. 5(e) and 5(h)]. This indicates that adenocarcinomas have common aspects of molecular composition.

It is currently not clear which molecules contributed to changes in the fluorescence excitation spectrum of adenocarcinomas. Zângaro et al.66 reported a similar peak excitation wavelength of 440 to 450 nm but did not attribute this to a specific
molecule. Wagnieres et al.37 summarized fluorescence excitation data, indicating that flavins have peak excitation wavelengths at 380 and 460 nm. In addition, lipopigments were reported to have a secondary excitation peak at 440 nm. By contrast, NADH was reported to have lower peak excitation wavelengths, at 260 and 350 nm. However, the fluorescence excitation spectrum of tissues has been reported only in a small number of studies, and even fewer studies have measured the fluorescence excitation spectrum from the UV through the visible range. Hence, future work is needed to study autofluorescence molecules under a broad range of fluorescence excitation wavelengths.

In the long term, a spectral library of fluorescence excitation spectra could be used to assist physicians in the diagnostic process in several ways: (1) by providing an estimate of tissue composition for specified areas of interest, (2) by providing molecular maps of a tissue using linear unmixing69,70 or other spectral analysis technique,69-51 (3) by allowing calculation of derived maps (such as redox ratio72,73 or blood oxygen saturation74-76), which may correlate with cancer development. If unmixing or spectral analysis is performed, it may be advantageous to employ more sophisticated nonlinear unmixing approaches, especially if reflectance and fluorescence image data can be combined to better estimate tissue parameters, such as scatter.74 Regardless of the algorithm employed, the ability to visualize spectrally analyzed “molecular maps” during endoscopic navigation could improve the ability to detect small lesions and delineate the margins of larger lesions.

An advantage of fluorescence excitation scanning is that it can offer a large increase in signal strength.55 As shown in Fig. 1(a), there is no need to spectrally resolve the fluorescence emission, as long as there is clean separation of the emission from excitation light using an appropriate long-pass fluorescence emission filter. In this configuration, all of the fluorescence emission is detected in a single long-pass emission channel for each excitation wavelength band, greatly increasing the signal strength. The increased signal strength can, in turn, allow proportional increases in imaging speed. In addition, the microscope configuration used for this study lends itself to an endoscope design in which fluorescence and reflectance may be measured simultaneously (Fig. 6). A future endoscope system using this design would provide identical fluorescence information as the microscope lightpath used in this study, but would be limited to measuring spectral reflectance instead of transmission. However, due to the increased signal strength provided by the fluorescence excitation-scanning approach and due to the ability to simultaneously measure fluorescence and reflectance, it is likely that this technology could be implemented in real time for screening during an endoscopy procedure.

It should be noted that images of transmission or reflectance represent combined characteristics of the tissue, at the point of measurement. Even in current endoscopes, reflected light images are likely affected by several terms, including wavelength-dependent variations in refractive index of the tissue. Hence, for the case of transmission- or reflectance-based spectral imaging, the measured spectrum represents the composite effects of absorption, scatter, anisotropy, and wavelength-dependent refractive index changes. Many of these parameters have previously been shown to be heterogeneous across tissue types.77 Hence, the basis for detecting colorectal lesions using reflectance-based spectral imaging would incorporate these variations, even if only from a lumped-parameter perspective.

Tissue preparation and/or fixation may affect the spectral properties and hence, the perceived feasibility of excitation-scanning hyperspectral imaging for colorectal screening. As...
Fig. 5 Fluorescence excitation scans from 390 to 450 nm of normal mucosa (solid red line) and adenocarcinoma (dashed blue line) from four patients. The total fluorescence excitation intensity (magnitude) of adenocarcinomas is lower than normal mucosa. In addition, adenocarcinomas present several characteristic spectral features, which normalized to a peak value of unity, including a local peak at 400 nm and a local minimum at 430 nm. These differences in spectral signature (fingerprint) offer a potential approach for discriminating cancerous and noncancerous tissues with high accuracy. (a–d) Raw spectra, corrected to NIST-traceable response. (e–h) Spectra normalized to a peak value of unity.

3 Conclusion

In this pilot study, we present data indicating that fluorescence excitation-scanning hyperspectral imaging offers an alternative approach that may be feasible for identifying adenocarcinoma of the colon. From the initial cohort of four patients, adenocarcinomas presented consistency among spectral features within the wavelength range of 390 to 450 nm. Unfortunately, few spectroscopic studies of tissue autofluorescence report fluorescence excitation spectral data, and the exact molecular composition of each tissue type is yet to be determined. These
preliminary data indicate that the excitation-scanning approach could be effective for detecting differences in spectral signature concurrent with cancer development (Fig. 5). However, further studies are needed to verify these results using a larger patient base, to estimate the sensitivity and specificity of this approach, and to determine the molecular contributors to mucosal autofocuscence.

Acknowledgments

The authors would like to acknowledge support from NIH under Grant Nos. UL1 TR001417 and P01 HL066299, the University of Alabama at Birmingham Center for Clinical and Translational Science (CCTS), and the Abraham Mitchell Cancer Research Fund. We would also like to acknowledge the use of the evaluation thin-film tunable filter system, provided by Semrock, Inc., a unit of IDEX. Drs. Rich and Leavesley disclose financial interest in a start-up company, SpectraCyte, for commercializing spectral imaging technologies. Some of the results in this paper have been also described in a corresponding SPIE Photonics West conference proceedings, paper #970315.

References

Journal of Biomedical Optics

104003-8

October 2016 • Vol. 21(10)
Silas J. Leavesley received his BSc degree in chemical engineering in 2003 from Florida State University and his PhD in biomedical engineering in 2008 from Purdue University. Currently, he is an associate professor in the Departments of Chemical and Biomolecular Engineering, Pharmacology, and the Center for Lung Biology at the University of South Alabama. His research interests lie in the development of spectral imaging technologies for medical sciences research and clinical applications.

Mikayla Walters is a senior chemical engineering student at the University of South Alabama. She worked in the Leavesley-Rich Lab the summer after her freshman year, and since she has been studying heterogeneous catalysis for fuel cell applications with Dr. Christy Wheeler West. She plans to complete an engineering internship in Chile this summer before starting her master’s in chemical engineering at USA in fall 2017.

Peter F. Favreau received his BS degree in physics in 2010, and his PhD in basic medical sciences—biomedical engineering track in 2015 from the University of South Alabama. Currently, he is a postdoctoral fellow at the Morgridge Institute for Research in Madison, Wisconsin. His research focuses on the development of rapid imaging platforms for drug discovery in cancer therapy and beyond. Specifically, using fluorescence lifetime approaches to quickly determine drug efficacy “at-a-glance” for personalized cancer therapies.

Thomas C. Rich received his BAE and MS degrees in aerospace engineering from Georgia Institute of Technology in 1988 and 1990, respectively, and his PhD in biomedical engineering from Vanderbilt University in 1996. Currently, he is a professor in the Department of Pharmacology and Center of Lung Biology at the University of South Alabama. His research interests include the implementation of spectral imaging approaches for both basic and translational research.

Paul F. Rider is an associate professor in the Department of Surgery, and Chief of the Division of Colorectal Surgery. He also serves as associate program director of the Surgery Residency Program. He is board certified in both general and colorectal surgery. He is a fellow in the American College of Surgeons and the American Society of Colorectal Surgery. He is actively engaged in medical research and community service.

Carole W. Boudreaux graduated from Louisiana State University School of Medicine in Shreveport, Louisiana in 1990. She completed a combined anatomic and clinical pathology residency at the University of South Alabama in Mobile, Alabama, in 1995. She is certified in anatomic and clinical pathology by the American Board of Pathology with added certification in cytopathology. Currently, she is an associate professor in the Department of Pathology at the University of South Alabama.

Biographies for the authors are not available.