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Abstract. Near-infrared diffuse optical tomography (DOT), one of the most sophisticated optical imaging tech-
niques for observations through biological tissue, allows 3-D quantitative imaging of optical properties, which
include functional and anatomical information. With DOT, it is expected to be possible to overcome the limitations
of conventional near-infrared spectroscopy (NIRS) as well as offering the potential for diagnostic optical imaging.
However, DOT has been under development for more than 30 years, and the difficulties in development are
attributed to the fact that light is strongly scattered and that diffusive photons are used for the image
reconstruction. The DOT algorithm is based on the techniques of inverse problems. The radiative transfer equa-
tion accurately describes photon propagation in biological tissue, while, because of its high computation load, the
diffusion equation (DE) is often used as the forward model. However, the DE is invalid in low-scattering and/or
highly absorbing regions and in the vicinity of light sources. The inverse problem is inherently ill-posed and highly
undetermined. Here, we first summarize NIRS and then describe various approaches in the efforts to develop
accurate and efficient DOT algorithms and present some examples of clinical applications. Finally, we discuss
the future prospects of DOT. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or

reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.21.9.091312]
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1 Introduction
Jöbsis1 first reported biomedical applications of near-infrared
spectroscopy (NIRS); NIRS was originally designed for clinical
monitoring, and it has also become a useful tool for neuroimag-
ing studies with the so-called functional NIRS (fNIRS).2–5

(In this context, the term “NIRS” is sometimes used to express
the optical method for studying brain functions apart from the
original meaning of NIRS, causing some confusions in the com-
munity. In this article, the authors keep the original meaning of
NIRS.) In parallel to these developments, optical computed
tomography (CT) using near-infrared (NIR) light has been
and is still being developed. Optical CT is a technique to recon-
struct images of optical properties, including the absorption (μa)
and reduced scattering coefficients (μ 0

s), within highly scattering
media from measurements of the light propagation at the tissue
boundary.6–9

The photons emerging from a thin turbid medium consists of
ballistic (coherent), snake (quasicoherent), and diffusive (inco-
herent) components. The ballistic, snake, and diffusive compo-
nents refer to photons traveling along the straight-line path
without being scattered, photons traveling along quasis-
traight-line paths with experiencing only a few scattering events,
and photons traveling along zig-zag paths with being scattered
many times in all directions, respectively.10,11 When the thick-
ness of biological tissue is sufficiently thin (less than a few milli-
meters) so that ballistic and/or snake photons can reach a
detector,10,11 a conventional image reconstruction algorithm
for x-ray CT can be applied to optical CT.12–14 However, in

the case of thicker tissue, the ballistic and snake components
of the transmitted light are extremely rare due to the strong
light scattering, and here, the diffusive component is exclusively
detected at the tissue boundary. Because of this image
reconstruction algorithms utilizing diffusive photons were pro-
posed in the early 1990s,15–17 and a variety of algorithms for
diffuse optical tomography (DOT) based on the technique of
the inverse problem has been proposed.18–20 However, DOT
is still a technique that is under development and not fully
ready for full-scale application.

Today, DOT is often confused with optical topography based
on the spatial interpolation method (see below) with multichan-
nel NIRS instruments, in general, continuous wave (CW) instru-
ments (see Sec. 2.3). Optical topography, which is typically
applied in functional brain mapping, is roughly divided into
two categories on the basis of the selected image reconstruction
approach. The first is to generate topographic images using a
spatial interpolation method for the changes in NIRS signals
at all measurement points without depth discrimination.21,22

This approach is commonly used in fNIRS studies, although
the lateral spatial resolution is limited to the source-detector
distance.23,24 Since the depth resolution is not considered,
i.e., it is assumed that all changes are occurring in a single
layer, these topographic images are inherently influenced by
variations in the depth direction, such as the presence of the cer-
ebrospinal fluid (CSF)25 and changes in the optical properties of
the extracerebral tissue including skin blood flow changes.26,27

These problems could be solved by DOT.
The other category of optical topography is to reconstruct

images based on the techniques of inverse problems using
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approach improves the spatial resolution and provides some
depth discrimination. A research group at the University College
London (UCL) argued that topography of this type be distin-
guished from optical tomography based on the aims of the
experiments involved.30 When a three-dimensional (3-D) vol-
ume is intended to be reconstructed from light detected at the
surface opposite to the source position in the transmittance
mode, they propose to term it optical tomography. If the inten-
tion is to measure activity in a small portion of the head with
limited depth discrimination and high temporal resolution, the
term they propose is optical topography. In the report here, we
will consider the topography of this type as being DOT, based on
the classification of the image reconstruction algorithms
involved, which has since been also adopted by the UCL group.

In this paper, we first describe the basic theory of NIRS
and then review the image reconstruction algorithms and the
clinical applications. Finally, future prospects for DOT will
be discussed.

2 Basic Principles of Near-Infrared
Spectroscopy

2.1 Near-Infrared Spectroscopy

NIRS, utilizing light in the NIR region, wavelength range
approximately from 700 to 2500 nm, is a noninvasive technique
for analysis of various substances including agricultural prod-
ucts and food. Biological tissue is relatively transparent for light
in the wavelength range from 650 to 950 nm,31 the so-called
optical window, where absorption spectra vary with the oxy-
genation–deoxygenation states of hemoglobin (Hb) and myo-
globin and the redox state of cytochrome c oxidase. These
spectroscopic characteristics were the background for the bio-
medical applications of NIRS: light sources emit NIR light
on the body surface, and the light propagates through biological
tissue and the reflected light emerging a few centimeters from
the incident position is detected. This kind of NIRS has typically
been applied to measure concentration changes in cerebral Hb
qualitatively, although organs and tissue other than the brain,
such as muscle tissue,32,33 and the redox state of cytochrome
c oxidase34,35 have also been measured with NIRS.

Presently, NIRS has become widely applied in a variety of
neuroimaging studies as well as in clinical monitoring of tissue
oxygenation.36 The introduction of multichannel NIRS instru-
ments, which are mainly used for optical topography, is facili-
tating neuroimaging studies using light, while difficulties in
the selective and quantitative measurements of cerebral Hb,
a central issue in the NIRS field, remain to be overcome.

2.2 Modeling Light Propagation in Biological Tissue

The main interaction between light and biological tissue is
absorption and scattering when the wave nature of light is
neglected. Biological tissue, in which scattering is generally
dominant over absorption, exhibits a highly anisotropic forward
scattering,37,38 and light propagation in biological tissue is char-
acterized by the optical properties of absorption, scattering,
scattering anisotropy, and refractive indexes. Understanding
light propagation is crucial for developing therapeutic and diag-
nostic optical techniques and for the quantitative analysis of
measurements.39,40 The radiative transfer equation (RTE) and
diffusion equation (DE) are the most commonly used as light
propagation models.

2.2.1 Radiative transfer equation

It is widely accepted that the RTE, which is based on the law of
conservation of energy for light propagation through a volume
element of a medium with absorbers and scatterers, correctly
describes light propagation in biological tissue.41–44 The time-
domain (TD) RTE is expressed as
EQ-TARGET;temp:intralink-;e001;326;679�

∂
vðrÞ∂t þΩ · ∇þ μaðrÞ þ μsðrÞ

�
Iðr;Ω; tÞ

¼ μsðrÞ
Z
4π

dΩ 0Pðr;Ω · Ω 0ÞIðr;Ω; tÞ þ qðr;Ω; tÞ; (1)

where Iðr;Ω; tÞ is the energy radiance (the light intensity) as
a function of the position r ¼ ðx; y; zÞ, angular direction
Ω ¼ ðsin θ cos ϕ; sin θ sin ϕ; cos θÞ with the zenith angle θ
and azimuth angle ϕ, and time t. The μaðrÞ and μsðrÞ terms
are the absorption and scattering coefficients, respectively, v
is the velocity of light in a turbid medium, and qðr;Ω; tÞ is
the light source. Further, Pðr;Ω · Ω 0Þ is the scattering phase
function that describes the probability that a photon with the
direction Ω 0 is scattered to the direction Ω during a scattering
event. The phase function P is normalized with

EQ-TARGET;temp:intralink-;e002;326;490

Z
4π

dΩ 0Pðr;Ω · Ω 0Þ ¼ 2π

Z 1

−1

Pðcos θÞd cos θ ¼ 1: (2)

The Henyey–Greenstein function [Eq. (3)] is commonly
employed as the scattering phase function45

EQ-TARGET;temp:intralink-;e003;326;410Pðr;Ω · Ω 0Þ ¼ 1

4π

1 − gðrÞ2
½1þ gðrÞ2 − 2gΩ · Ω 0�32 ; (3)

where gðrÞ is the anisotropic factor ranging from −1 (complete
backscattering) via 0 (isotropic scattering) to þ1 (complete
forward scattering).

2.2.2 Diffusion equation

The RTE is an integro-differential equation, and it is difficult to
solve it analytically; also, the computation load for numerical
solutions is extremely heavy. Alternatively, light propagation
in biological tissue is commonly modeled by the DE based on
the assumption that the radiance in an optically thick medium, in
which multiple scattering occurs, is almost isotropic. The DE is
derived from a diffusion approximation to the RTE in which the
intensity Iðr;Ω; tÞ is approximated by the first two terms of a
series expansion in spherical harmonics (P1 approximation), the
temporal variation in the flux vector [Jðr;tÞ¼ ∫ 4πΩIðr;Ω;tÞdΩ]
is assumed to be negligible, and the light source is isotropic.7 The
time domain DE is expressed as

EQ-TARGET;temp:intralink-;e004;326;168

�
∂

vðrÞ∂t −D∇2 þ μaðrÞ
�
Φðr; tÞ ¼ qðr; tÞ; (4)

where Φðr; tÞ is the fluence rate given by ∫ 4πdΩIðr;Ω; tÞ, D is
the diffusion coefficient given by ½3ð1 − gÞμsðrÞ�−1 for the
time domain,46,47 and qðr; tÞ is the isotropic source given by
∫ 4πdΩqðr;Ω; tÞ. The term ð1 − gÞμs ¼ μ 0

s is the reduced scatter-
ing coefficient.
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2.3 Types of Near-Infrared Spectroscopy
Measurements

A wide range of NIRS instruments, which are able to perform
various types of measurement, have been developed. Figures 1–3
show three representative types of measurements: (1) CWmeas-
urement (steady-state domain measurement), (2) TD measure-
ment, and (3) frequency-domain (FD) measurement.

2.3.1 Continuous wave measurements

In CW measurement, the light source emits light at a constant
intensity into the tissue and the transmitted and back scattered
light intensities are measured (Fig. 1). In general, commonly
available CW instruments analyze the transmitted light based
on the modified Beer–Lambert law (MBLL).48 The MBLL is
expressed as

EQ-TARGET;temp:intralink-;e005;63;320A ¼ − log I∕I0 ¼ εCLþ S; (5)

where A is the attenuation measured in optical density, I and I0
are the intensities of the detected and incident light, ε is the
molar absorption coefficient, C is the concentration of chromo-
phore (e.g., Hb), and L is the mean length of the optical path,
also known as the “mean total pathlength” (t-PL), and S denotes
the optical attenuation mainly due to scattering. However, CW
instruments cannot measure the optical pathlength, with the
result that instruments of this type do not provide absolute val-
ues of concentration changes, and the NIRS signal is expressed
as the product of concentration change and optical pathlength.
To overcome the problem with quantification, TD (time-
resolved spectroscopy, TRS)48,49 and FD measurements (fre-
quency-domain spectroscopy),50,51 which can determine the
t-PL have been developed. However, functional brain activation
is accompanied by localized Hb concentration changes within
the cerebral tissue, which requires the determination of mean
partial optical path lengths (p-PL) in the cerebral tissue for
the quantification, something that is not feasible at present.
Since both the t-PL and p-PL vary with the region of measure-
ment, the amplitudes of NIRS signals for different regions
reflect both concentration changes in the cerebral Hb and also
other phenomena in the tissue involved.

2.3.2 Time-domain measurements

In TD measurements, the tissue is irradiated by ultrashort (pico-
second order) laser pulses, and the intensity of the emerging
light is recorded over time to show a temporal point spread func-
tion (TPSF) with picosecond resolution (Fig. 2). The mean t-PL
is determined by multiplying the light speed in the media by the
mean transit time of the scattered photons, which is calculated
with the TPSF. The TRS data carry information about depth-
dependent attenuation based on the correlation of the detection
time to the penetration depth of photons. Changes in cerebral
Hb concentrations can be more selectively and quantitatively
determined by analyzing the TPSF, as the TPSF contains infor-
mation about the optical properties of the media, i.e., the absorp-
tion (μa) and reduced scattering (μ 0

s) coefficients.
Several different methods for analyzing the TPSF have been

proposed.52–55 One method is a curve-fitting method based on the
diffusion equation (the DE, DE-fit method) (see Sec. 2.2). In this
method, optical properties are determined by fitting the TPSF, the
temporal probability function for all detected photons, obtained
from the analytical solution to the DE to the measured TPSF
with the assumption that the human head is a semi-infinite
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homogeneous medium. Here it has been reported that the esti-
mated μa by the DE-fit method is very similar to the deeper-
layer μa under conditions where the μa of the upper layer is larger
than that of the lower layer in two-layered slab models.56 We have
also confirmed that the DE-fit method is more sensitive to μa
changes in cerebral tissue by measuring adult heads with TRS
during carotid endoarterectomy.57 This is explained by the fact
that the later (falling) part of the TPSF, which includes more pho-
tons traveling through the cerebral tissue, is critical for the deter-
mination of the μa in the fitting process.58 Overall, this allows
changes in cerebral Hb concentrations to be more selectively mea-
sured by TRS than with CW measurements, although the selec-
tive and quantitative accuracies are not perfect.

2.3.3 Frequency-domain measurements

In FD measurements shown in Fig. 3, the light source is sinus-
oidally intensity-modulated at radio frequencies, in general,
between 100 and 1000 MHz,59 and the light intensity (I, the
DC component), its phase shift (Φ), and modulation depth
(M), the ratio of AC (the amplitude of the intensity oscillations,
the AC component) to DC with respect to the incident light are
measured. The information obtained with TPSF through TDmea-
surements can be obtained by FD measurements, the relation
between the time and frequency information being the Fourier
transform; however, measuring I, Φ, and M for all frequencies
(from DC to 10 GHz, when TD measurements are made with
a resolution of 10 ps) are required to obtain the TD data.60 It
has been demonstrated that for typical tissue, and at frequencies
below 200 MHz, Φ is linearly related to the mean t-PL.60 Based
on analytical solutions of the frequency domain DE for a homo-
geneous infinite medium,61,62 numerical expressions including μa
and μ 0

s in the FDmeasurement parameters have been derived, ena-
bling experimentally based estimates of optical properties.63,64

3 Diffuse Optical Tomography Algorithms

3.1 General Concept of Diffuse Optical Tomography

DOT recovers 3-D distributions of the optical properties from
multiple boundary measurements. With μa ¼ 2.303εC (molar
absorption coefficient x concentration), and unlike conventional

NIRS, DOT could enable a quantitative determination of
regional cerebral Hb without contamination of signals arising
from extracerebral tissue (Fig. 4). The DOT algorithm essen-
tially consists of two parts: one is a forward model to calculate
the light propagation and the resultant outward re-emissions at
the boundary of the tissue, typically based on the DE or the RTE.
The other is an inverse model searching for the distribution of
optical properties.

The DOT image reconstruction can be approximately divided
into two kinds: one is a linearization approach and another is a
nonlinear iterative approach. The linearization approaches use
Born or Rytov approximations, and the linearization is developed
from an analytical (Green’s function) solution to the DE for a
homogeneous semi-infinite background54,65 with assumed known
optical properties. Linearization approaches were employed to
earlier DOT algorithms,66,67 but as they cannot correctly predict
large changes in the optical properties because of the limitations
of the Born or Rytov approximations,68 nonlinear iterative
approaches have also been investigated. Recently, however, DOT
based on linearization approaches has attracted attention in neuro-
imaging studies. Here, brain activity-related μa changes are very
small, the Born and Rytov approximations hold, and high-quality
images are provided by high-density DOT systems (CW instru-
ments with spatially overlapping multidistance source-detector
arrangements).69,70 This approach reconstructs only qualitative
images of measured changes, which is, however, sufficient for
functional neuroimaging studies. In clinical use, quantitative
images of steady-state Hb are further useful with diagnostic opti-
cal imaging, and DOT based on the nonlinear approaches have
been developed to enable this. Implementation of DOTwith both
approaches is possible with CW, TD, and FD measurements,
where the TD measurements provide more of the information
required for image reconstruction.

3.2 Linearization Approaches

In linearization approaches, the relationship between the optical
properties and measurements of the diffusive light is linearized;
here, the forward problem is expressed as

EQ-TARGET;temp:intralink-;e006;326;326y ¼ Ax: (6)

(a)

RightLeft

(mm)

(m
m

)

(b)

Fig. 4 DOT image of total Hb concentrations of the brain in an extremely low birth weight infant under
hypocapnic conditions. (a) Sixteen coaxial optical fibers, consisting of a single fiber for illumination in the
center and outer bundle fibers for detection, were placed on the scalp of the infant. (b) Image
reconstruction was performed by using the DE-based algorithm. The axial image shows the total Hb
concentration changes cause by hypocapnia in comparison with normocapnic conditions. (From
Ref. 123, with permission.)
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The vectors y and x are a set of measurements and perturbed
optical properties (μa and μ 0

s) in discrete volume elements (vox-
els), respectively. The matrix A is the Jacobian or sensitivity
matrix. The vector x can be obtained from the vector y through
inversion of matrix A. Since, however, the number of unknowns
is larger than the number of measurements, regularization meth-
ods are usually used to solve inverse problems. While various
inverse solutions have been developed, a widely used approach
is the single step solution with Tikhonov regularization and a
Moore–Penrose generalized inverse.28,69–71

The main issues of single step algorithms are the difficulty
in depth localization and low-image quality.72 To solve these
issues, spatial variant regularization73,74 and high-density
source-detector arrangements68 have been used. Further, recent
studies have proposed a variety of advanced methods, such as
methods using sparse regularization75,76 and a Bayesian
approach,72,77–79 which require iterative processes. To reduce
calculation times and avoid Born and Rytov approximation
errors, a noniterative linear approach based on compressed sens-
ing theory has also been developed.80,81

3.3 Nonlinear Iterative Approaches

3.3.1 Model-based iterative image reconstruction

In general, the DE is used as the forward model and it is
typically solved numerically by the use of the finite element
method. A number of image reconstruction methods have
been reported, but the most widely used is based on the iterative
optimization scheme, in which the distribution of optical proper-
ties is searched for by minimizing the differences between the
calculated and the measured data (model-based iterative image
reconstruction,82,83 Fig. 5).

There are two approaches to this optimization problem:
one is based on a perturbation method that requires repeated
construction and inversion of a large full Jacobian matrix
(Newton-like methods).84,85 The other is an approach using gra-
dient-based reconstruction techniques, such as the conjugated
gradient method.86,87 In this approach, an objective function
describes the difference between the calculated and measured
data; the gradient of the objective function in a line minimization
is used for the updating. This approach does not require inver-
sion of the Jacobian matrix, offering a reduction in computation
load, while the convergence is slow. The Newton-like methods,
in which the convergence is faster, were the most commonly
applied image reconstruction method in the 1990s, while they

are computationally expensive and need to meet the assumption
that changes in optical properties are small. As an alternative,
a gradient-based iterative image reconstruction scheme has
been proposed. However, these optimization problems are inher-
ently ill-posed, and regularization terms generally have to be
added.

3.3.2 Data types

As detailed in Sec. 3.1, TD measurements provide more data
that can be used for image reconstruction than CWand FD mea-
surements. With the TD data, the temporal profile of the
detected light (Fig. 2), the (1) integral intensity, (2) n’th tempo-
ral moment, (3) n’th central moment, (4) normalized Laplace
transform, and (5) Mellin–Laplace are derived.88 It has been
demonstrated that image reconstruction using all of the time-
resolved data improves image quality over that reconstructed
with a single or combined moments,89 but it is still not conclu-
sively established which data should be used to obtain high qual-
ity images.90,91

3.4 Hybrid Model Based on the Radiative Transfer
Equation and the Diffusion Equation

The DE is widely used as the forward model, but it becomes
invalid in low-scattering regions (e.g., CSF space and trachea),
highly absorbing regions (e.g., hematoma), and in the vicinity of
light sources, where the diffusion approximation does not
hold,92,93 and under such disadvantageous conditions, RTE-
based DOT algorithms94,95 are required. Several studies on the
RTE-based forward model have been reported.96–98 Typically,
the RTE is solved numerically, with only a few analytical sol-
utions reported.99,100 One of the most common methods for
solving the RTE is the discrete-ordinate method, which is com-
patible with finite difference, finite volume, or finite element
schemes.97,101

Even with current advanced computer technology, however,
the heavy computational load is still the biggest drawback with
the RTE. A variety of fast solvers of the RTE have been pro-
posed,102–105 and among these a hybrid model-based the RTE
and DE is one of the most promising approaches. The hybrid
model is based on the idea that the DE is an accurate model
for measurements far from a light source. This model has been
proposed in frequency domains102,106,107 where a medium is di-
vided into RTE and DE regions by a crossover interface that is
determined by the crossover length beyond which the DA is
valid. The concept of the hybrid model in the steady state has
recently been extended into the time domain.93,108 Here, light
propagation in homogeneous two-dimensional rectangular media
(3.2 cm × 4.0 cm), like with the optical properties shown in
Table 1, is estimated by using three numerical models, the DE,
the RTE with g ¼ 0.8, and the RTE with g ¼ 0. Figure 6(a)93

Measurement

µa, µs’

Incident light

Detectors

Comparison of 
predicted and 

measured data

Guess of µa and µs’

Forward model
prediction of detected 

light  

Reconstructed image

Agree

Update 
of

µa and µs’

Disagree

Fig. 5 Model-based iterative image reconstruction scheme.

Table 1 Optical properties of the numerical models.

μa (cm−1) μs (cm−1) μ 0
s (cm−1) g n

RTE 0.35 11.6 11.6 0.0 1.56

RTE 0.35 58.0 11.6 0.8 1.56

DE 0.35 11.6 1.56
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shows the spatial distributions of the fluence rates at early times
(t ¼ 20 ps) after a light pulse has been irradiated, and here, the
spatial distributions are dependent on the numerical models and
conditions. At late times (t ¼ 500 ps), the spatial distributions cal-
culated from the DE and RTE are quite similar [Fig. 6(b)] sug-
gesting that a spatially and temporally hybrid is possible in TD.

3.5 Improvement of Diffuse Optical Tomography
Image Quality

The quality of DOT images depends on several factors, includ-
ing the spatial resolution, image contrast, and artifacts that may
be present. These factors are affected by the DOT algorithms as
well as the quality of the instruments. As the inverse problem is
ill-posed, a regularization term is generally incorporated, and
various regularization methods have been tried. Finding an
appropriate regularization parameter is crucial to the reconstruc-
tion of high-quality images.109,110 A recent cerebral DOT study
has reported that the appropriate regularization parameter varies
with the number of activation spots; the linearly constrained
minimum variance beamforming is the best for single spot acti-
vation, while the minimum l1-norm estimate resolves two acti-
vation spots best.110

Unlike magnetic resonance imaging (MRI) and x-ray CT,
DOT itself does not provide anatomical (structural) informa-
tion, which makes it difficult to solve the forward model cor-
rectly. Combining DOT and MRI is a useful approach to get
around this issue. Tissue geometry obtained from segmented
MR images is used to constrain the optical model, leading to
improvements in the quality of reconstructed images.111–113

However, it is not always possible to obtain MRI data. When
DOT is applied to neuroimaging studies, a general head atlas
(the Montréal Neurological Institute template114)-guided DOT
has also been proposed.115,116 For measurements of organs/
tissue other than the brain, x-ray-guided (e.g., bone)117 and
ultrasound-guided DOT118,119 (e.g., the breast and prostate)
have also been reported to improve the accuracy of image
reconstruction.

4 Clinical Applications
Linearization approaches applying DOT are exclusively used in
neuroimaging studies,28,29,70,120 while various other organs and
tissue including breast cancer, are measured by DOT based on
the nonlinear iterative approaches. The following presents
examples of clinical applications of DOT.

4.1 Brain Imaging

The DOT studies based on linearization approaches are typically
performed by CW instruments, with fast sampling rates prefer-
able to neuroimaging studies. Zeff et al.28 first succeeded in ret-
inotopic mapping of adult human visual cortex using DOT,
and then the DOT has found a wide variety of applications in
brain science, such as somatosensory processing29 and speech
processing.121 DOT has also been applied to investigation of
infants (cerebral hemodynamic changes during face percep-
tion)122 and neonates (cortical hemodynamics during seiz-
ures).123 However, using TD instruments is also possible. A
study with a TD system has clearly demonstrated that DOT ena-
bles detection of brain activity-related changes in the cerebral
Hb with little contamination from hemodynamic changes in
the extracerebral tissue.124 Currently, resting-state fMRI (func-
tional MRI) is a focus of research interest, and NIRS has also
been employed in investigating functional connectivity. How-
ever, the scalp blood flow fluctuates during resting, as it is
also the case with the cerebral blood flow, making it necessary
to distinguish NIRS signals originating in cerebral tissue from
those coming from the scalp. With DOT, this issue would be
solved and such investigations should be performed by
DOT.125,126 Very recently, resting-state functional connectivity
in infants has been investigated at the bedside by using high-
density DOT. The results have indicated that this technique
is a powerful approach to understand functional cerebral
development.127

The DOT based on nonlinear iterative approaches was
developed mainly aiming to reconstruct 3-D images of tissue
oxygenation and blood volume in the neonatal brain at bed-
side,128,129 and multichannel TD systems were developed to
be able to do this.130,131 Iterative approaches were also applied
to functional brain mapping in neonates.132 Except with
extremely low birth weight infants, where the head circumfer-
ence is very small as in Fig. 4(b), light re-emitting from the
human head is hardly detected at the head surface opposite
to the source position. It may be concluded that DOT based
on either linear or nonlinear iterative approaches rarely provides
information of subcortical structures, and this is a limitation for
DOT when it is applied to brain imaging.

4.2 Breast Cancer Imaging

Breast cancer is one of the most common cancers and screening
is recommended for early detection of these cancers. Currently,
the most common and effective screening technique is x-ray
mammography combined with a physical examination of the
breast. Although the overall specificity of x-ray mammography
in breast cancer detection is high, it presents a number of draw-
backs such as radiation exposure and a relatively high probabil-
ity of both false-positives and false-negatives. Here DOT has
been considered a promising alternative approach, and it has
been extensively studied for diagnosis and evaluation of treat-
ment responses.118,133–137 However, the minimum reliably
resolved feature size is still insufficient for clinical application

Fig. 6 Spatial distributions of fluence rate (Φ) normalized by its maxi-
mum value (Φpeak) at a given time (a) t ¼ 20 ps and (b) 500 ps based
on the RTE with g ¼ 0.8 and the anisotropic source, the RTE with
g ¼ 0.0 and anisotropic source, and the DE. (From Ref. 91, with
permission).
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(7 to 10 mm),138,139 and newmethods to improve the image qual-
ity, such as structural-prior guided approaches are needed for
further progress here.139

4.3 Muscle, Peripheral Circulation, and Joint
Imaging

In the field of exercise physiology, electromyography is a prin-
cipal noninvasive assessment of skeletal muscle functions. Here
NIRS has also been employed to examine oxygenation in
muscles during the performance of exercises,140,141 but a quan-
titative evaluation and distinguishing between muscle and adi-
pose tissue are difficult.142 Although only some research groups
have reported DOT images of exercising muscles, the findings
have suggested the possibility that DOT may be a useful method
to examine the physiological functions of muscles.143–146

Peripheral artery disease (PAD) is a disease with narrowing
of arteries caused by buildup of plaque in the vascular wall. This
reduces the blood supply to the extremities and causes intermit-
tent claudication, and finally critical ischemia. The ankle bra-
chial index, the ratio of the maximum systolic blood pressure
at the ankle to the systolic blood pressure in the brachial artery
in the upper arm, is used for diagnosis and assessment of the
severity of PAD. Unlike this indirect method, DOT has been
employed to assess the peripheral circulation at the foot directly,
in visualization of the circulation.147

A unique DOT application is imaging of rheumatoid arthritis
(RA). Low-field (0.2T) MRI and ultrasound imaging can be
used to establish a diagnosis of RA, while MRI is expensive
and ultrasound imaging needs contact measurements, which
may cause pain. DOT is a potentially attractive alternative

diagnostic method. Since, however, the diffusion approximation
is not valid in fingers, where the source detector distance is
small, the RTE-based algorithm is required. Here frequency-
domain DOT (FD DOT) imaging has demonstrated clear
differences between healthy subjects and patients with RA.148,149

4.4 Thyroid Imaging

There are no reports of DOT imaging of the thyroid gland. This
is probably because ultrasound is the primary modality in
assessments of thyroid lesions. However, a differential diagnosis
distinguishing between thyroid follicular cancer and follicular
adenomas is extremely difficult even with fine needle aspiration,
and here it is expected that DOT will be able to get around this
problem. In addition, the human neck anatomy is optically inter-
esting and challenging, with the presence of void space (the tra-
chea).150 Here, the RTE will need to be used as the forward
model, and reflection and refraction at the trachea boundary
have to be considered. A recent numerical experiment by our
group will be presented next (unpublished data). In this experi-
ment, first, a realistic 3-D human neck model was developed
with MRI data [Fig. 7(a)], and 23 sources and 22 detectors
were placed alternately on the front surface of the neck with
the arrangement of light from each source to be detected by
seven detectors [Fig. 7(b)]. The model has two thyroid cancers
with different μa values from the μa of the thyroid. Our algorithm
is based on the time domain RTE and the Gauss–Newton
method, and MRI data are used as the priori anatomical infor-
mation. Figure 7(c) demonstrates reconstructed images of the
absorption coefficient of the human neck, and the thyroid is

Fig. 7 RTE-based image reconstruction of the thyroid model. (a) MR images of the human neck.
(b) Realistic human neck model based on the MR images. Red and blue spots denote source and detec-
tor positions, respectively. Red spots also detect light when they are not a source position.
(c) Reconstructed images of μa of the thyroid (white arrow). The yellow triangles denote cancers.
(Reported in ISEM 2015 by K. Hashimoto et al.)
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more clearly imaged than with MRI. Two cancers are also
reconstructed.

5 Future Prospects
Real-time image recovery, which is possible with conventional
NIRS, is the aim of the development of high-density DOT based
on linearization approaches.151 Very different from this, devel-
oping DOT-based nonlinear iterative approaches is far more
challenging and complex. There is still room for improvements;
however, several advantages in DOT over other imaging tech-
niques stress the need for DOTapplications in clinical medicine.
It is able to detect lesions without exogenous probes or contrast
agents, it can be employed to measure neonates, and it is useful
for planning of photodynamic therapy. Furthermore, DOT can
be extended to fluorescence tomography (FDOT).152–155 With
FDOT, molecular imaging in living human subjects is possible.
Thus, combining DOTand FDOTwill make dynamic multilevel,
from molecular to whole organism level, bio-optical imaging
possible.
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