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Abstract. Collagen forms an organized network in articular cartilage to give tensile stiffness to the tissue. Due to
its long half-life, collagen is susceptible to cross-links caused by advanced glycation end-products. The current
standard method for determination of cross-link concentrations in tissues is the destructive high-performance
liquid chromatography (HPLC). The aim of this study was to analyze the cross-link concentrations nondestruc-
tively from standard unstained histological articular cartilage sections by using Fourier transform infrared (FTIR)
microspectroscopy. Half of the bovine articular cartilage samples (n ¼ 27) were treated with threose to increase
the collagen cross-linking while the other half (n ¼ 27) served as a control group. Partial least squares (PLS)
regression with variable selection algorithms was used to predict the cross-link concentrations from the mea-
sured average FTIR spectra of the samples, and HPLC was used as the reference method for cross-link
concentrations. The correlation coefficients between the PLS regression models and the biochemical reference
values were r ¼ 0.84 (p < 0.001), r ¼ 0.87 (p < 0.001) and r ¼ 0.92 (p < 0.001) for hydroxylysyl pyridinoline
(HP), lysyl pyridinoline (LP), and pentosidine (Pent) cross-links, respectively. The study demonstrated that
FTIR microspectroscopy is a feasible method for investigating cross-link concentrations in articular cartilage.
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1 Introduction
Articular cartilage is a specialized avascular and aneural connec-
tive tissue that covers the ends of long bones. Articular cartilage
has an important role in reducing the contact stresses directed to
bone ends, and, together with synovial fluid, it provides a nearly
frictionless contact between the articulating bones. Articular car-
tilage is mainly composed of water, type II collagen, proteogly-
cans, and chondrocytes.1 Collagen forms a highly organized
fibrous network in articular cartilage to provide the tissue tensile
stiffness. Osteoarthritis, the most common joint disease, is char-
acterized by degradation of cartilage tissue. Age is one of the
most significant risk factors of osteoarthritis. Collagen has
an exceptionally long half-life2 and, therefore, it is susceptible
to cross-links caused by advanced glycation end-products
(AGEs).3 This type of cross-linking of collagen increases the
stiffness of articular cartilage making it more brittle and suscep-
tible to injuries. Therefore, accumulation of AGEs may be one
of the reasons why age increases the risk of osteoarthritis.3

Fourier transform infrared (FTIR) spectroscopy is a tech-
nique that provides information on the chemical composition
of the investigated sample. Infrared light is absorbed by a

molecule at characteristic frequencies, i.e., at frequencies that
correspond to one of the vibrational modes of the molecule.
Therefore, an infrared absorption spectrum is often called a
chemical fingerprint of the sample. FTIR microspectroscopy,
a combination of spectroscopy and microscopy, is an intriguing
method, as it enables determination of collagen and proteogly-
can distributions from unstained histological articular cartilage
sections. This is conducted either by calculating integrated areas
of absorption peaks4 or by calibrating multivariate models, e.g.,
principal component5 or partial least squares (PLS)6,7 regression
models, against reference information about the investigated
compound. The capability of FTIR microspectroscopy to deter-
mine collagen and proteoglycan contents has been demonstrated
and validated against multiple reference methods.5–9 Currently,
the standard method to determine the cross-link concentrations
in tissues is high-performance liquid chromatography (HPLC).
As it is a destructive method, dedicated sample blocks are
needed for the analysis. In principle, as chemical information
exhibits in FTIR spectra, FTIR microspectroscopy could be
used to determine the cross-link concentrations from standard
histological sections.

Glycation of type I collagen has been investigated by FTIR10

and Raman spectroscopy.11 The studies concluded that the
carbohydrate region of the spectrum can be used as a marker*Address all correspondence to: Lassi Rieppo, E-mail: lassi.rieppo@oulu.fi
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of the glycation level. In tissue level studies, the ratio of the
carbohydrate region to the amide I and amide II regions was
utilized for studying the glycation in cardiac tissue.12 Recently,
the same approach was used to study AGE components in artic-
ular cartilage.13 However, the same parameter has also been used
to assess the ratio of proteoglycan content to collagen content
in articular cartilage.14 As proteoglycans are a major compo-
nent in articular cartilage, it is likely that influence of AGEs to
the carbohydrate region is mostly masked by contribution of
proteoglycans.

L-threose, a 4-carbon sugar, is a degradation product of
ascorbic acid.15 Threose modifies lysine residues in proteins
and forms a number of characteristic AGEs.3 Therefore, threose
can be used to mimic age-related increase in cross-link con-
centration in articular cartilage. The first aim of this study
was to separate intact and threose-treated bovine articular car-
tilage samples from each other using FTIR microspectroscopy
and PLS regression-based discriminant analysis. The second
aim was to determine the concentrations of specific enzymatic
and nonenzymatic cross-links in articular cartilage using FTIR
microspectroscopy combined with PLS regression. In particu-
lar, we studied the use of different variable selection algo-
rithms in combination with PLS regression to find the most
suitable method for quantification of cross-links in articular
cartilage.

2 Methods

2.1 Sample Preparation

The samples of this study were originally collected and prepared
for two other studies.16,17 Intact bovine patellae (n ¼ 14) were
obtained from a local abattoir (Atria Oyj, Kuopio, Finland).
Ethical approval was not required, as the animals were not
slaughtered for the purposes of this study. The bovine knees
were stored at room temperature after slaughtering. The knee
joints were delivered within a few hours of slaughter and
were prepared immediately after delivery. Four osteochondral
samples (diameter ¼ 6 mm) were prepared from lateral upper
quadrants of each patella except for one, from which only
two samples were prepared. Taken together, a total of 54 sam-
ples were used in this study. Half of the samples of the patella

(altogether n ¼ 27) were treated with threose to increase the col-
lagen cross-linking while the other half (altogether n ¼ 27)
were used as control samples. Control samples were incubated
for 7 days at 37°C in cell culture medium (DMEM low
glucose 1 g∕l, Lonza Cologne AG, Belgium) with 100 unit∕
ml penicillin, 100 μg∕ml streptomycin, 10 mM HEPES buffer
solution (HEPES, EuroClone S.p.A., Italy), 1 mM L-glutamine
and 10 mM vitamin C. Cross-link formation was induced
by adding 100 mM of threose (Sigma Aldrich Co., St. Louis,
Missouri) into the incubation media of the threose group.
Finally, the samples were split in half, and one half was fixed
in 10% formalin for 48 h, decalcified with ethylene diamine
tetraacetic acid, dehydrated and immersed in liquid paraffin.
Subsequently, the paraffin was hardened by cooling. The other
half was used for biochemical reference analyses.

2.2 Infrared Microspectroscopic Measurements

For FTIR microspectroscopy, 5-μm-thick sections were cut with
a microtome. For dewaxing, the sections were immersed in
series of xylene baths (3 × 5 min) and subsequently washed
with ethanol. The sections were placed onto 2-mm-thick ZnSe
windows and were let dry in room air. The sections were mea-
sured using the Perkin Elmer Spotlight 300 FTIR imaging sys-
tem (Perkin Elmer, Shelton, Colorado) with spectral resolution
of 4 cm−1, pixel size of 25 μm, and using four scans per pixel.
A rectangular region of interest (ROI) extending from cartilage
surface to cartilage–bone junction was imaged from each sec-
tion (Fig. 1). The ROI width was set to 400 μm, whereas the
ROI height, which varied depending on the cartilage thickness,
was on average ð�SDÞ1693� 484 μm. On average, 1088 spec-
tra were collected per sample. A dry air purge (Parker Balston,
Haverhill, Massachusetts) was used to minimize the variation in
the measurement conditions. The spectra of each section were
first averaged to obtain one mean spectrum. Thereafter, resonant
Mie scattering correction (RMieSC) algorithm18,19 was used
to remove scattering-related effects from the spectra. After
RMieSC, the spectra were vector normalized. Second derivative
spectra were calculated using Savitzky–Golay algorithm with 11
smoothing points. In this paper, we use the following definitions
for spectral regions: the amide I (1590 to 1720 cm−1), the amide
II (1500 to 1590 cm−1), the mixed region (1200 to 1500 cm−1),

Fig. 1 A rectangular ROI extending from cartilage surface to cartilage–bone junction was imaged from
each section. The ROI width was set to 400 μm, whereas the ROI height, which varied according to the
cartilage thickness, was on average ð�SDÞ1693� 484 μm. Therefore, the average size of the ROI was
16 × 68 pixels, which results in ∼1088 spectra∕section. These spectra were averaged to obtain an aver-
age spectrum for the section.
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and the carbohydrate region (800 to 1200 cm−1).20 All data
analysis was done in MATLAB (R2015a, MathWorks, Inc.,
Natick, Massachusetts).

2.3 Univariate Analysis

To evaluate the overall changes in the spectra due to the increase
in cross-linking, the difference spectrum (mean spectrum of
threose-treated samples minus mean spectrum of control
samples) was calculated. In addition, Pearson’s correlation
coefficients between each variable (i.e., absorbance at each
wavenumber) in the FTIR spectra of the samples and the con-
centrations of HP, LP, and Pent were calculated to find the
relationship between the variables of the FTIR spectrum of
AC and the cross-link concentrations.

2.4 Partial Least Squares Regression

PLS regression, a method based on latent variables, was used to
predict cross-link concentrations from FTIR spectra. Spectral
region of 800 to 1800 cm−1 was used for PLS regression mod-
els. Root-mean-square error of cross validation (RMSECV) was
used as the term to be minimized in PLS regression. Leave-one-
out cross-validation was used when deciding the number of PLS
components for the full spectrum PLS regression model. All
models were validated using leave-one-out cross-validation.

2.5 Backward Iterative Partial Least Squares
Regression

Backward iterative partial least squares (biPLS) is a variable
selection algorithm that evaluates the importance of different
spectral regions in PLS regression problems.21 The spectra
were divided into 25 equal-sized spectral windows (20 cm−1

window size). The effect of each spectral window to the
model was tested by building the model without the window.
The window whose removal improved the model the most
was removed in each cycle. The biPLS procedure was continued
until there was only one window remaining. Finally, the combi-
nation of spectral windows that produced the lowest RMSECV
was selected as the best biPLS model. The whole procedure was
conducted for PLS components from 1 to 10. The optimal num-
ber of components for biPLS model was chosen based on the
minimum of RMSECV.

2.6 Backward Iterative Partial Least Squares
Discriminant Analysis

PLS is most often used for regression analysis. However, PLS
can also be used for classification tasks. For this purpose,
a dummy variable describing the categories is used as the
response variable. biPLS-DA algorithm was applied to second
derivative spectra to classify the samples into control and
threose-treated groups. The parameters of biPLS-DA were set
to be the same as for biPLS. A binary dummy variable with
a value of zero and one for control and threose-treated groups,
respectively, was used as the response variable. The samples
with predicted class values of under 0.5 were assigned to
group 0 (control group) and with values of over 0.5 to group
1 (threose-treated group). The optimal number of PLS compo-
nents was found experimentally. The model was validated using
leave-one-out cross-validation.

2.7 Genetic Algorithm for Wavenumber Selection

Genetic algorithms (GAs) are optimization methods that mimic
the process of natural selection. GA was used in two ways:
directly to FTIR spectra and in combination with biPLS
(biPLS-GA). In biPLS-GA, biPLS was first used to remove
18 out of 25 spectral windows to reduce the number of variables
before running GA. GA was then applied to the variables that
were left after biPLS.

In GA, a chromosome is a binary vector with a size that cor-
responds to the number of variables in the spectrum. Variables of
the chromosome, genes, indicate whether (1) or not (0) the cor-
responding variable in the spectrum is selected to the model. The
GA is run for a predefined number of generations. In the begin-
ning of GA, a population of randomly generated chromosomes
is created. A PLS regression model is built using each of the
chromosomes of the population, and RMSECV is used to evalu-
ate the performance of the variables selected by each chromo-
some. The best chromosome is included in the next population,
whereas the other chromosomes of the population are obtained
by recombining the chromosomes of the earlier population by
using cross-over of chromosomes and mutation of genes. Final
generation contains the best chromosome of a single GA run.
GA is run multiple times, and the importance of individual var-
iables is evaluated based on their selection frequency in the best
chromosome. In this study, GAwas run for 50 times. Finally, the
variables are added to the final model according to their selec-
tion frequency. The variable combination that results in the
smallest RMSECV is chosen as the final model. The maximum
number of PLS components was limited to 10. Other parameters
of GA are summarized in Table 1. A more complete description
of the algorithms can be found in earlier studies.22,23

2.8 Competitive Adaptive Reweighted Sampling
Partial Least Squares Regression

Competitive adaptive reweighted sampling (CARS)24 is a vari-
able selection that uses the absolute values of regression
coefficients as estimates for the importance of each variable.
An exponentially decreasing function is used to define how
many variables are retained in each of the sampling runs.
The parameters of the exponentially decreasing function are
selected so that all variables are retained in the first sampling
run, whereas only two variables are left in the final sampling
run. In every iteration, the least important variables are removed
(variables with the smallest absolute regression coefficient val-
ues). A new calibration model is then built using the remaining

Table 1 Parameters used in the GA for selecting spectral variables.

Population size 50

Gene initialization probability 5%

Mutation method One-point cross-over

Cross-over probability 80%

Mutation probability 1%

Number of generations 50

Response to be minimized RMSECV of the prediction
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variables, and the regression coefficients of the new model are
used as new indicators of their importance. Removal of variables
is continued for a predefined number of sampling runs. In this
study, the number of sampling runs was set to 100. Finally, the
best variable combination is searched and used for the final
model, which is validated by leave-one-out cross-validation.
A more detailed description of the algorithm can be found in
an earlier study.24 The RMSECV was first monitored as a func-
tion of the number of PLS components in CARS-PLS. However,
a clear minimum was not found, as the RMSECV steadily
decreased as the number of PLS components was increased.
Therefore, the maximum number of PLS components was lim-
ited to 10. CARS-PLS analyses were conducted in MATLAB
using libPLS toolbox.25

2.9 Biochemical Analysis

Amore detailed description of the biochemical analysis is found
in previous studies.16,17,26 Briefly, the amount of the collagen
specific amino acid, hydroxyproline, was measured spectropho-
tometrically to estimate the total amount of collagen.27 HPLC
was used to separate hydroxylysyl pyridinoline (HP), lysyl
pyridinoline (LP), and pentosidine (Pent).28 Pure compounds
of HP, LP, and Pent with known concentrations were used as
standards and for converting the measurement results into con-
centration values. The results are expressed as mol of cross-link
per mol of collagen. The HPLC system used consisted of
a Quaternary Gradient Pump unit, PU-2089 Plus, Intelligent
AutosamplerAS-2057 Plus, and Intelligent Fluorescence
Detector, FP-2020 by Jasco (Jasco Scandinavia AB, Mölndal,
Sweden). Data were analyzed using Jasco Chrompass software
(Jasco, Sweden). The LiChroCART® 125-4 column was from
Merck Hitachi (Merck KGaA, Darmstadt, Germany)

2.10 Statistical Analysis

The values predicted by the PLS models were compared to the
reference information by using the Pearson’s correlation analy-
sis. Furthermore, the Spearman’s correlation analysis was also
conducted as the Anderson–Darling test revealed that LP and
Pent values did not follow the normal distribution. The limit
for statistically significant correlation was set to p < 0.05. All
statistical analyses were conducted using MATLAB (R2015a,
MathWorks, Inc.).

3 Results

3.1 Difference Spectrum and Univariate Analysis

Mean absorbance spectra of control and threose-treated samples
are shown in Fig. 2(a). The difference spectrum, i.e., mean spec-
trum of threose-treated samples (n ¼ 27) minus mean spectrum
of control samples (n ¼ 27) shows a negative peak in the amide
I (1700 to 1590 cm−1) and a positive peak in the carbohydrate
region (1000 to 1100 cm−1). Pearson’s correlation coefficients
between the variables in the FTIR spectra of the samples and the
concentrations of HP, LP, and Pent were calculated to find the
best variables for univariate analysis. For HP, the highest abso-
lute correlation coefficient is found in the carbohydrate region
(∼1120 cm−1) (r ¼ −0.31, p < 0.05) [Fig. 2(b)]. Some samples
were excluded from the LP (n ¼ 14) and Pent (n ¼ 16) corre-
lation coefficient analysis as the biochemical analysis did not
detect any LP or Pent cross-links in some of the control samples
due to the limitations of the HPLCmethod. The correlation coef-
ficients of LP [Fig. 2(c)] and Pent [Fig. 2(d)] follow the shape of
the difference spectrum. The highest absolute correlation coef-
ficient values are r ¼ −0.45 (p < 0.001) in the amide II region

Fig. 2 (a) Mean absorbance spectra of control samples (solid black line) and threose-treated samples
(dashed black line). There is an added offset between the mean spectra for better clarity. The difference
spectrum (multiplied by a factor of five for better visualization) is shown as a solid gray line. Pearson’s
correlation coefficients between the variables in the FTIR spectra of the samples and the cross-link
concentrations are shown for (b) HP, (c) LP, and (d) Pent.
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and r ¼ 0.50 (p < 0.001) in the amide I and the carbohydrate
regions for LP and Pent, respectively.

3.2 Backward Iterative Partial Least Squares
Discriminant Analysis

BiPLS-DAwas applied to second derivative spectra for separat-
ing the threose-treated samples from intact ones. Two PLS
components were used for classification. The sensitivity (true
positive rate) and specificity (true negative rate) for threose-
treated samples were 92.5% and 88.9%, respectively. The accu-
racy (percentage of correctly classified samples) was 90.7%.
The class predictions are shown in Fig. 3.

3.3 Partial Least Squares Regression

The biochemical analysis did not detect any LP or Pent cross-
links in some of the control samples. These samples were
excluded from the PLS regression models when predicting
LP or Pent concentrations. The results of raw spectrum
[Fig. 4(a)] models are summarized in Table 2 and Fig. 4. In gen-
eral, equal or better results were obtained when using second
derivative spectra [Fig. 5(a)] instead of raw spectra. There-
fore, we focus on the results obtained using second derivative
spectra.

Four PLS components produced the best model (r ¼ 0.41,
p < 0.01) when the full spectrum (800 to 1800 cm−1, 500
variables) was used for prediction of the HP concentration,
whereas the other models used 9 or 10 PLS components.
Variable selection using biPLS improved the correlation coeffi-
cient to r ¼ 0.70 (p < 0.001). The model utilized portions of the
amide II region, the mixed region, and the carbohydrate region
[Fig. 5(b)]. The correlation coefficient between the HP concen-
tration and the concentration predicted by the PLS-GA regres-
sion model was r ¼ 0.62 (p < 0.001). PLS-GA selected
variables quite evenly throughout the spectral region of 800 to
1700 cm−1 [Fig. 5(b)]. BiPLS-GA utilized mainly the carbohy-
drate region and, to a smaller extent, the amide II and the mixed
regions [Fig. 5(b)]. The correlation coefficient between the
HP concentration and the concentration predicted by the biPLS-
GA regression model was r ¼ 0.83 (p < 0.001). CARS-PLS

selected variables throughout the spectral region of 800 to
1600 cm−1 [Fig. 5(b)] and resulted in a correlation coefficient
of r ¼ 0.83 (p < 0.001) [Figs. 6(a) and 6(d)].

When predicting the LP concentration, two PLS components
produced the best model (r ¼ 0.20, p > 0.05) in the full
spectrum (800 to 1800 cm−1, 500 variables) model. Also
BiPLS, PLS-GA and biPLS-GA used only two PLS compo-
nents. BiPLS improved the correlation coefficient to r ¼ 0.47

(p < 0.01). The model relied on the carbohydrate and mixed
regions [Fig. 5(c)]. The correlation coefficient between the LP
concentration and the concentration predicted by the PLS-GA
regression model was r ¼ 0.52 (p < 0.001). PLS-GA selected
variables from all regions [Fig. 5(c)]. In addition to the regions
used in biPLS, BiPLS-GA used the additional spectral window
of 800 to 840 cm−1 [Fig. 5(c)]. The correlation coefficient
between the LP concentration and the concentration predicted
by the biPLS-GA regression model was r ¼ 0.51 (p < 0.001).
CARS-PLS used nine PLS components for prediction of the
LP concentration. CARS-PLS used variables mainly from the
amide I, the amide II, and the carbohydrate regions [Fig. 5(c)].
The correlation coefficient between the LP concentration and

Fig. 4 (a) The mean raw spectrum of the dataset, and the variables
selected from the spectra by the studied variable selection algorithms
for the prediction of (b) HP, (c) LP, and (d) Pent concentrations,
respectively.

Fig. 3 The predicted class memberships obtained from biPLS-DA.
The control and the threose-treated samples are marked with circles
and squares, respectively. Correctly and incorrectly classified sam-
ples are displayed with solid and open markers, respectively. Two
PLS components were used in the final biPLS-DA model to separate
the control and threose-treated groups from each other. The samples
were classified with an accuracy of 90.7%.
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the CARS-PLS model was r ¼ 0.87 (p < 0.001) [Figs. 6(b)
and 6(e)].

Nine PLS components produced the best model (r ¼ 0.66,
p < 0.001) in the full spectrum (800 to 1800 cm−1, 500 varia-
bles) model when predicting the Pent concentration. In cases of
biPLS and biPLS-GA, the selected spectral regions were very
similar [Fig. 5(d)]. PLS-GA selected a relatively high number
of variables throughout the whole spectrum [Fig. 5(d)]. The
correlation coefficients between the Pent concentration and
biPLS, PLS-GA and biPLS-GA were r ¼ 0.84 (p < 0.001),
r ¼ 0.90 (p < 0.001) and r ¼ 0.93 (p < 0.001), respectively.
CARS-PLS selected variables from all regions of the spectrum
[Fig. 5(d)] and resulted in a correlation coefficient of r ¼ 0.92
(p < 0.001) [Figs. 6(c) and 6(f)]. The results of all second
derivative spectrum-based PLS regression models are summa-
rized in Table 3.

4 Discussion
In the present study, the capabilities of FTIR microspectroscopy
to determine cross-links in articular cartilage were investigated.
The first aim of this study was to separate intact and threose-
treated samples from each other based on their FTIR spectra.
Mean spectra of control and threose groups displayed only
minor differences [Fig. 2(a)]. However, the difference spectrum
revealed negative peaks in the amide I (1700 to 1590 cm−1) and
the amide II (1590 to 1450 cm−1) regions and a positive peak in
the carbohydrate region (1000 to 1100 cm−1). Even though the
absolute differences between the groups were small, biPLS-DA
separated the threose-treated and the control samples from each
other with a reasonable accuracy, as the sensitivity and specific-
ity were 92.6% and 88.9%, respectively, i.e., five samples were
incorrectly classified. These few misjudged samples further
indicate that the spectroscopic features caused by cross-linking
are minute, which makes the FTIR spectroscopic cross-link
analysis challenging.

The second aim was to quantify the cross-link concentrations
in articular cartilage using FTIR microspectroscopy. For this
purpose, PLS regression combined with different variable selec-
tion methods (biPLS, PLS-GA, biPLS-GA, and CARS-PLS)
were used. The best results were obtained with CARS-PLS,
which gave accurate results for all studied cross-links. Further-
more, as expected, the use of the second derivative spectra

Table 2 The results in predicting cross-link (HP, LP, and Pent) concentrations using PLS regression with different variable selection techniques
from the raw spectrum. The number of PLS components (Comp), the number of used variables (Var), the Pearson’s correlation coefficient (r ), and
the Spearman’s correlation coefficient (r s) between the predicted values and the reference values, and RMSECV are shown for each PLS method.

HP LP Pent

Comp Var R r s RMSECV Comp Var r r s RMSECV Comp Var r r s RMSECV

PLS 5 500 0.30* 0.36** 0.3672 1 500 0.02 0.02 0.0410 6 500 0.51*** 0.45** 0.0072

biPLS 8 160 0.57*** 0.58*** 0.3114 2 160 0.40** 0.32* 0.0359 8 220 0.75*** 0.71*** 0.0053

GA 10 48 0.63*** 0.64*** 0.2905 2 2 0.46** 0.42** 0.0344 7 42 0.82*** 0.79*** 0.0045

biPLS-GA 8 26 0.68*** 0.69*** 0.2695 2 88 0.50*** 0.44** 0.0335 7 43 0.84*** 0.81*** 0.0042

CARS-PLS 9 23 0.72*** 0.73*** 0.2563 7 18 0.72*** 0.73*** 0.0273 7 19 0.87*** 0.83*** 0.0038

*p < 0.05 (Pearson’s or Spearman’s correlation analysis)
**p < 0.01 (Pearson’s or Spearman’s correlation analysis)
***p < 0.001 (Pearson’s or Spearman’s correlation analysis)

Fig. 5 (a) The mean second derivative spectrum of the dataset, and
the variables selected from the second derivative spectra by the stud-
ied variable selection algorithms for the prediction of (b) HP, (c) LP,
and (d) Pent concentrations, respectively.
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improved the results. The scatter plots (Fig. 6) showed a
significant amount of deviation around the regression line.
This is somewhat expected, since these cross-links form only
a small fraction of the mass of articular cartilage dry matrix.
As the FTIR spectrum of articular cartilage is a sum spectrum
of its all constituents, it is dominated by the collagen and the
proteoglycan spectra. Nevertheless, the Bland–Altman plots
did not display any obvious bias in the prediction of cross-
link concentrations, as the absolute error remained similar
throughout the whole range of reference values in case of all
cross-links.

All variable selection methods improved the predictions
compared to the full spectrum models. This result indicates that
it is essential to use variable selection algorithms with PLS
regression models to obtain the best results. CARS-PLS and
biPLS-GA performed equally in prediction of HP and Pent

concentrations. Surprisingly, CARS-PLS clearly outperformed
the other studied methods in prediction of LP concentration.
In general, the variables selected by PLS-GA and CARS-PLS
were more deviated throughout the whole spectrum than the var-
iables selected by biPLS and biPLS-GA. The obvious reason for
this is that instead of individual variables, the biPLS estimates
the effect of spectral windows for the prediction. PLS-GA and
CARS-PLS, which do not use the windowed approach, selected
variables mostly from the same regions for the prediction of HP
concentration, but bigger differences are seen in prediction of
LP and Pent concentrations. The windowed approach of biPLS
may miss some important variables from narrow regions. On the
other hand, CARS-PLS, which produced the best results in this
study, is able to select important individual variables without
being limited to certain spectral windows. The probability of
missing important variables could be reduced by studying the

Table 3 The results in predicting cross-link (HP, LP, and Pent) concentrations using PLS regression with different variable selection techniques
from the second derivative spectrum. The number of PLS components (Comp), the number of used variables (Var), the Pearson’s correlation
coefficient (r ), and the Spearman’s correlation coefficient (r s) between the predicted values and the reference values, and RMSECV are
shown for each PLS method.

HP LP Pent

Comp Var r r s RMSECV Comp Var r r s RMSECV Comp Var r r s RMSECV

PLS 4 500 0.41** 0.44*** 0.3474 2 500 0.20 0.17 0.0399 9 500 0.66*** 0.59*** 0.0062

biPLS 10 100 0.70*** 0.68*** 0.2654 2 120 0.47** 0.27 0.0343 7 160 0.84*** 0.79*** 0.0042

GA 9 32 0.62*** 0.62*** 0.2923 2 41 0.52*** 0.40* 0.0332 5 81 0.90*** 0.79*** 0.0033

biPLS-GA 10 50 0.83*** 0.79*** 0.2050 2 44 0.51*** 0.42** 0.0333 9 50 0.93*** 0.83*** 0.0028

CARS-PLS 10 26 0.84*** 0.81*** 0.2002 9 21 0.87*** 0.87*** 0.0191 7 31 0.92** 0.81*** 0.0031

*p < 0.05 (Pearson’s or Spearman’s correlation analysis)
**p < 0.01 (Pearson’s or Spearman’s correlation analysis)
***p < 0.001 (Pearson’s or Spearman’s correlation analysis)

Fig. 6 Scatter plots between the biochemically determined concentrations and the concentrations
predicted by CARS-PLS for (a) LP, (b) HP, and (c) Pent cross-links. (d–f) Corresponding Bland–Altman
plots are shown below each correlation plot.
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results of multiple biPLS algorithm runs with variable sizes of
windows.21 This could improve the performance of biPLS
and biPLS-GA compared to the fixed spectral window width
approach used in this study.

Glycation of type I collagen has been shown to result in a
strong increase in the carbohydrate region absorbance.10 In a
recent study, the ratio of the integrated absorbance of the
carbohydrate region to the amide I absorbance was used to
study the differences in AGEs between control and ribose-
treated articular cartilage samples.13 In the present study, the
maximum correlation coefficient between the Pent concentra-
tion and the variables in the carbohydrate region was r ¼ 0.50.
The samples in both groups of this study were similar in terms
of the collagen and the proteoglycan contents, as the increased
cross-linking was achieved by a threose treatment. Since the
glycosaminoglycans of proteoglycans display strong absorp-
tion in the carbohydrate region, it is likely that changes in
the proteoglycan content of articular cartilage introduce larger
spectroscopic changes than the differences in AGE compo-
nents. Therefore, it is not encouraged to use the absorbance
of the carbohydrate region as a marker of AGE components
if significant differences exist in the proteoglycan content
between the studied samples.

Ideally, the training dataset for multivariate models should
contain a relatively even distribution of reference values over
the investigated range. However, this was not fulfilled in the
cases of LP and Pent cross-links, as there were very little LP
or Pent cross-links in the control samples. In reality, it is likely
that these samples also contain LP and Pent cross-links, but the
HPLC method was not sensitive enough to detect the small
amounts. For this reason, these particular samples were
excluded from LP and Pent analyses. Nevertheless, two distinct
groups in Pent scatter plot are still seen after exclusion of these
samples. The results in the prediction of Pent cross-links would
likely be improved if a sample set with a more even range of
cross-link concentrations was used.

The samples of this study were formalin-fixed, which
preserves the samples by creating cross-links in the tissue.
Formalin fixation of tissues alters the amide I band position
compared to fresh tissue.29 Another consequence of the sample
processing is that lipids are removed from the samples.29

Therefore, the built models may not work well with fresh tissue
that still contains lipids. However, as standard sample process-
ing protocols were used for all samples of the study, the effect of
sample processing to spectra can be regarded as equivalent for
all samples. Earlier studies have also shown that formalin
fixation does not change the HP, LP, or Pent concentrations in
articular cartilage.30,31 Thus, it is feasible to study the cross-link
concentrations of formalin-fixed tissues.

In conclusion, cross-linked articular cartilage samples were
successfully separated from the control samples using FTIR
microspectroscopy. Furthermore, the concentrations of enzy-
matic and nonenzymatic cross-links were successfully predicted
from articular cartilage FTIR spectra. Unlike traditional HPLC
analysis, FTIR microspectroscopy can be conducted nondes-
tructively on standard histological tissue sections. In principle,
FTIR microspectroscopy also enables determination of distribu-
tion of cross-links within histological sections. However, vali-
dation of cross-link distributions would require conducting
the reference analyses separately for different layers of cartilage.
Furthermore, the methodology should be validated using pref-
erably human articular samples from patients of different ages to

guarantee that changes in all compositional parameters are
within normal physiological variation.
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