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Abstract. The objective of this work was to compare the accuracy of analyte concentration estimation when
using transmission versus diffuse reflectance spectroscopy of a scattering medium. Monte Carlo ray tracing of
light through the medium was used in conjunction with pure component absorption spectra and Beer–Lambert
absorption along each ray’s pathlength to generate matched sets of pseudoabsorbance spectra, containing
water and six analytes present in skin. PLS regression models revealed an improvement in accuracy when
using transmission compared to reflectance for a range of medium thicknesses and instrument noise levels.
An analytical expression revealed the source of the accuracy degradation with reflectance was due both to
the reduced collection efficiency for a fixed instrument etendue and to the broad pathlength distribution that
detected light travels in the medium before exiting from the incident side. © The Authors. Published by SPIE under a
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1 Introduction
For some biomedical optical spectroscopy applications, it is pos-
sible to measure the tissue of interest in either transmission
mode or diffuse reflectance mode. For example, pulse oximetry
is most commonly performed in transmission mode on the fin-
ger or earlobe, but devices have also been developed to use
reflectance mode on the forehead.1 Schmitt has shown that
pulse oximetry transmission and reflectance modes should
yield similar accuracy and sensitivity to potential interferences
when the diffusion approximation to light propagation in a tur-
bid medium is applicable.2 Indeed, the accuracy of pulse oxime-
try in both modes has been experimentally shown to be
equivalent, with a root-mean-squared error (RMSE) of about
2% compared to a blood reference.3,4 One of the key factors
in enabling pulse oximetry to become a standard clinical
measurement5 is the pulsatile nature of the signal of interest,
which allows much of the interfering background tissue signals
to be easily minimized.6,7

Other quantitative applications of biomedical optical spec-
troscopy cannot take advantage of a pulsatile signal. For exam-
ple, regional tissue oximetry of both the brain and muscle uses
reflectance mode sampling of the total remitted intensity. The
RMSE of these measurements is about 4%,8,9 twice that of
pulse oximetry. Regional oximetry cannot be made in transmis-
sion mode, due to the extreme attenuation of the optical signal
along the long transmission path through the head or arm.
Another application, noninvasive glucose monitoring using
near-infrared (NIR) spectroscopy, has been attempted by
many researchers at a variety of sites using either mode, includ-
ing the finger in transmission,10 inner lip in reflectance,11 finger
in reflectance,12 forearm in reflectance,13,14 and tongue in

transmission.15 However, no direct comparison between trans-
mission and reflectance modes has been made using the
same instrumentation and subject population.

Intuitively, it makes sense that a transmission measurement
through a tissue that is relatively thin compared to its inverse
scattering coefficient would yield better accuracy than a meas-
urement made in diffuse reflectance mode from a thick tissue.
This paper quantifies the improvement using realistic simula-
tions of tissue absorption spectroscopy. Monte Carlo ray
trace simulations were performed for two measurement geom-
etries: diffuse reflectance from a semi-infinite medium and
transmission through a slab medium of several different thick-
nesses. Then, sets of synthetic spectra with identical analyte
concentrations were generated for the two geometries. Partial
least-squares regression of spectral changes to analyte concen-
tration changes were made to compare the quantitative accuracy
of reflectance and transmission.

2 Theory
The absorbance measured from a homogeneous, scattering
medium at a single wavelength is
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The absorption coefficient, μa (mm−1), is due to the sum of all
absorbers in the medium, present at variable concentration. This
coefficient can further be expressed as a sum of each analyte’s
molar absorptivity times its concentration, μa ¼ lnð10ÞP εici.
The pathlengths, l (mm), traveled by light follow a probability
distribution, pðlÞ (mm−1). And, f is a factor accounting for both
specular reflection off the medium surface and the collection
efficiency of the measurement system.
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For a nonscattering medium measured in transmission
through a constant pathlength, the pathlength distribution is a
delta function, and Eq. (1) reduces to the familiar Beer–
Lambert law. For a scattering medium, the pathlength distribu-
tion results in a nonlinear relationship between absorbance and
analyte concentration. This can be shown by taking the partial
derivative of Eq. (1) with respect to one analyte’s concentration,
with the restriction that a change in the analyte’s concentration
does not change pðlÞ16

EQ-TARGET;temp:intralink-;e002;63;653
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The effective pathlength, leff (mm), is the weighted-average
pathlength traveled through the sample by detected light; the
weighting function is simply the transmission along a pathlength
l. Although Eq. (2) has the form of the Beer–Lambert law, and is
sometimes referred to as the modified Beer–Lambert law,17 note
that the effective pathlength depends on the total absorption
coefficient of the medium. Therefore, as concentration of any
analyte changes, the effective pathlength changes, and the rela-
tionship between absorbance and concentration is nonlinear.

Noting that Eq. (2) defines the mean effective pathlength as
the first central moment of pathlength of the probability density
function pðlÞe−μal, I introduce here a new term using the second
central moment

EQ-TARGET;temp:intralink-;e003;63;464σ2leff ¼
R∞
0 ðl − leffÞ2pðlÞe−μaldlR

∞
0 pðlÞe−μaldl : (3)

The square root of this variance term is the standard deviation of
effective pathlength, and is a measure of how broad the weighted
pathlength distribution is about its mean. In the nonscattering
transmission case, this term is zero. As the standard deviation
in effective pathlength gets larger compared to the mean, one
would expect the relationship between absorbance and concen-
tration to become more nonlinear, and more difficult to model.

Spectroscopy is used to compensate for unwanted signal
variation caused by interfering analyte changes, by using mea-
surements of multiple wavelengths. If, for example, there are 10
independent analytes varying in the sample, then at least 10
wavelengths are needed to form an accurate calibration model
relating absorbance changes to concentration changes of a single
analyte. In a nonscattering medium, the pathlength is constant
for all wavelengths. However, in a scattering medium, the effec-
tive pathlength depends on the total absorption, which varies as
a function of wavelength. This effective pathlength spectrum
distorts the pure component spectrum of the analyte of interest.
And, when any analyte in the sample changes concentration, the
entire effective pathlength spectrum will change by a different
amount at each wavelength. This second nonlinearity across
wavelengths makes it more difficult for spectroscopy to provide
accurate quantitative information about an analyte in a scattering
medium.

3 Methods

3.1 Monte Carlo Simulation

The Monte Carlo method of light propagation in a homo-
geneous, scattering medium was used. Code by Prahl18 was
modified to include a slab geometry, angled ray launch and
detection, and spatially offset ray launch. The modified

algorithm was implemented in MATLAB® Release 2016a
(The MathWorks, Inc., Natick, Massachusetts). For each
spectrum, the medium had a randomly generated scattering
coefficient of 9 to 11 mm−1, a Henyey–Greenstein scattering
anisotropy factor19 of 0.8 to 0.9, a refractive index of 1.4,
and zero absorption. The scattering and refractive index proper-
ties are representative of human tissue in the 2100- to 2400-nm
spectral region,20 but were each approximated to be independent
of wavelength in order to decrease the total simulation time.
Rays that traveled a pathlength longer than 30 mm were
approximated to be completely absorbed by the medium, as
this distance translates to over 20 orders of magnitude attenu-
ation for water-based tissue in the spectral region of interest.
Six ray traces were carried out: one for a planar, semi-infinitely
thick medium, and the other five for a slab with 0.5, 1, 1.5, 2,
and 2.5 mm thicknesses (Fig. 1). For all cases, light was
launched uniformly in position and angle within a 1-mm diam-
eter circle and 0.37 numerical aperture (NA) cone on the
medium surface. For the slab cases, light was transmitted
through the slab into a 2-mm-diameter circle with 0.37 NA,
resulting in a collection etendue of 0.43 mm2 sr−1. For the
reflectance case, light was collected by seven 0.6-mm core
diameter 0.37 NA fibers. When packed into a bundle, these
seven fibers also result in a 0.43-mm2 sr−1 collection etendue.
Depending on the geometry, 0.1 to 2.8 million rays were
injected normal to the planar surface and traced, such that
about 20,000 rays were detected for each geometry. The path-
lengths of rays diffusely reflected and (in the slab cases) trans-
mitted were stored. Repeat traces with a different starting
random number seed and different number of total rays traced
were used to verify that the simulations yielded stable results in
terms of the quantitative accuracy discussed below.

3.2 Synthetic Spectra

After ray-tracing, six sets of synthetic absorbance spectra were
generated using the pathlength distributions and Eq. (1). The
absorptivity spectra εðλÞ of water, collagen, elastin, triolein,
decorin, ethanol, and glucose in the 2100- to 2400-nm region
(Fig. 2) were estimated from nonscattering transmission
measurements of each component in water using an FT-NIR
spectrometer. This region is important spectroscopically as it
contains combinations of the fundamental vibrational modes
of important functional groups such as C─H, O─H, and
N─H.21 As such, even minor analytes, such as ethanol22 and
glucose,23 can be quantitated using this spectroscopic region.

Fig. 1 (a) Measurement geometry for reflectance. A 1-mm diameter
launch is surrounded by seven 0.6-mm core diameter receive fibers
(claddings not shown). The gap between launch and receive is
0.08 mm. (b) Measurement geometry for transmission. A 1-mm diam-
eter launch is opposed by a 2-mm diameter receive. All launch and
receive NAs are 0.37.
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Water concentrations in the range 66.5% to 73.5%, typical of
skin water content,24 were chosen at random, and combined
with random concentrations of other analytes, plus water
temperature variation of �0.5°C, to form the total absorption
coefficient spectrum, μa ¼ lnð10ÞP εici. See Table 2 for the
uniform concentration ranges of each analyte. In total, 200
absorption coefficient spectra were generated, resulting in
matched sets of diffuse reflectance spectra for the semi-infinite
medium and transmission spectra for the slab media.

After generating the synthetic spectra, noise was randomly
added to the reflectance and transmission spectra, assuming
the source power was constant across the spectrum. The
noise was modeled as detector noise, which is normally distrib-
uted and independent of wavelength in intensity space. The level
of intensity noise added was such that average signal-to-noise
ratio for the reflectance mode spectra was ln(10) times 103,
104, 105, or 106. These values in intensity space translate to
noise levels in absorbance (-log of reflectance) space of 10−3,
10−4, 10−5, and 10−6, respectively. These same noise levels
were then randomly added to the transmission mode data sets.

After adding noise, the absorbance spectra were either used
as is for regression or first preprocessed. The preprocessing was
the standard multiplicative scatter correction method,25 which
for each spectrum finds a scalar additive value and scalar multi-
plicative value such that the least-squares difference between the
scaled spectrum and the average spectrum is minimized.

3.3 Partial Least-Squares Regression

The PLS method was used to regress analyte concentrations
onto spectra. This algorithm is the most common quantitative
method used in NIR spectroscopy, as it is suited for cases
where there are many predictor variables (wavelengths) com-
pared to training samples, and for which at least some of the
predictor variables are correlated. It overcomes these traditional
limitations by regressing concentrations onto latent variables
(also referred to as loadings or factors) instead of onto individual
wavelength channels in a spectrum. As with other regression
methods, the result of this algorithm is a vector of regression
coefficients, β, which when multiplied by an absorbance spec-
trum, A, and summed across wavelengths (dot product), give an
estimate of the analyte concentration:

EQ-TARGET;temp:intralink-;e004;326;591ĉ ¼ β · A: (4)

For each of the seven analytes, PLS models were built and
accuracy was assessed using 100 bootstrap iterations of holding
out 10% random samples at a time. The accuracy metric used
was RMSE between PLS model predictions and known analyte
concentrations. The minimum RMSE when using from 1 to 40
latent variables was stored for each analytical model.

4 Results
Typical pathlength distributions are shown in Fig. 3. For clarity
in the figure, only the 0.5, 1, and 2 mm thickness transmission
distributions are shown. For a medium with no absorption, there
are extreme differences in the pathlength distributions for differ-
ent modes, with a large percentage of rays traveling more than
5 mm for the reflectance and 2 mm transmission slab cases.
When weighted by an absorption coefficient of 2 mm−1, typical
of tissue around 2200 nm,20 the reflectance pathlength distribu-
tion becomes more like the 0.5- and 1-mm transmission slab
cases, but is still much broader. The distribution of the 2-mm
transmission slab is most like that of the reflectance distribution,
but shifted to longer pathlengths due to the 2-mm minimum
allowable path.

Figure 4 shows the mean absorbance and effective pathlength
spectra for the reflectance and transmission modes. The absorb-
ance in reflectance mode is most like that of the 2-mm trans-
mission slab. However, the effective pathlength in reflectance
mode is most like that of the 1-mm transmission slab. The
shape of the effective pathlength spectrum for reflectance is
less flat than the pathlength spectra for transmission, with
smaller pathlength at either end of the spectrum where water
absorption is higher (Fig. 2).

Table 1 summarizes the synthetic spectra for each mode in
terms of the mean (across spectra and wavelengths) detected
light intensity, effective pathlength, standard deviation of effec-
tive pathlength, and effective pathlength coefficient of variation.
The intensities vary by four orders of magnitude across the
modes, with the reflectance mode having an intensity between
the 1- and 1.5-thick transmission modes. The coefficient of
variation for the reflectance mode is 45%, and is 9% or less
for the transmission modes, with a slight decrease as the slab
thickness increases.

Figure 5 plots the results of a single quantitative model, for
ethanol concentration estimation. Using 12 latent variables to
relate spectra to concentrations, the RMSE for the reflectance
case is 5.9 mg∕dL. For the 1-mm slab transmission case
using the same number of latent variables, the accuracy is

Fig. 2 Pure absorption spectra, offset for clarity. 1: water; 2: collagen;
3: elastin; 4: triolein; 5: decorin; 6: ethanol; 7: glucose; 8: water
temperature.
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improved to 1.1 mg∕dL, a factor of 5.4 improvement. When the
optimal number of latent variables is chosen independently for
both geometries, the improvement factor increases slightly
to 5.6.

Table 2 displays a summary of the quantitative accuracy
results when using the reflectance mode. Looking down the

columns, the accuracy improves (RMSE decreases) dramatically
as the concentration range of the analyte decreases. Looking
across the rows, the accuracy remains constant for low levels
of noise, and then degrades for increasing noise above 10−3.
The relative amount of degradation is more evident for the
minor analytes (ethanol and glucose).

The accuracy differences between modes is summarized
using an accuracy improvement factor, defined as the ratio of
minimum RMSE for reflectance to transmission. An improve-
ment factor of 10 means that the transmission mode is 10 times
more accurate (less error) than reflectance. Across all cases
simulated, the improvement factor has a mean of 10.3, a median
of 7.3, and ranges from 0.1 to 54. Of the total 175 model com-
parisons, 149 (85%) favor the transmission mode. All transmis-
sion measurements through thicknesses of 1.5 mm or less
resulted in an accuracy improvement over reflectance, regard-
less of analyte spectral shape, analyte concentration level, or
spectroscopic noise level.

Tables 3 and 4 display the improvement factors when
quantifying water and ethanol, respectively, for the different
levels of noise. For most cases, the improvement factor is
larger for water, the main absorber in the simulation, than
for ethanol, a minor analyte. The improvement factor is less
than 1 for one water quantification case: the thickest tissue
slab and highest noise level. For ethanol, the improvement

Fig. 3 Pathlength distributions for reflectance (R) from a semi-infinite sample, and transmission through
0.5, 1, and 2 mm slabs. (a) μa ¼ 0. (b) μa ¼ 2 mm−1.

Fig. 4 Mean spectra for reflectance (R) and transmission through 0.5, 1, and 2 mm slabs.
(a) Absorbance. (b) Effective pathlength.

Table 1 Average properties of the synthetic spectra for the simulated
measurement modes.

Geometry Intensity

Effective pathlength

Mean
(mm)

SD
(mm)

SD/mean
(%)

Reflectance 1.2 × 10−4 0.92 0.41 45

Transmission 0.5 mm 4.5 × 10−2 0.52 0.05 9.0

Transmission 1.0 mm 4.5 × 10−3 1.06 0.09 8.5

Transmission 1.5 mm 5.4 × 10−4 1.62 0.13 7.9

Transmission 2.0 mm 6.8 × 10−5 2.18 0.16 7.5

Transmission 2.5 mm 8.9 × 10−6 2.75 0.20 7.4
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factor is less than 1 for the two highest noise levels in the
2-mm slab, and for the four highest noise levels in the 2.5 mm
slab.

When the multiplicative scatter correction preprocessing was
first applied to the reflectance spectra, the spectral variance

between the 200 simulated spectra decreased by over a factor
of 1000, but the quantitative accuracy on average degraded.
The improvement factor for preprocessed reflectance data com-
pared to the values in Table 1 has a mean of 0.8, a median of 0.7,
and ranges from 0.6 to 1.5.

Fig. 5 PLSmodel results for ethanol when using reflectance (R) with 10−4 units of absorbance noise, and
1-mm slab transmission (1.0) with the level of noise in intensity space. (a) RMSE versus number of latent
variables, with optimum noted (open circles). (b) and (c) PLS prediction errors versus reference using the
optimum number of latent variables, for (b) reflectance and (c) transmission.

Table 2 RMSE for PLS models of each analyte when using reflectance mode, and for varying amounts of absorbance noise (σ).

Analyte Concentration range (mg/dL)

RMSE (mg/dL)

σ ¼ 0 σ ¼ 10−6 σ ¼ 10−5 σ ¼ 10−4 σ ¼ 10−3

Water 66,500 to 73,500 544 553 561 648 915

Collagen 14,250 to 15,750 113 113 115 139 258

Elastin 4750 to 5250 38.5 39.5 41.4 46.8 76.4

Triolein 2850 to 3150 23.5 23.5 23.5 29.7 47.1

Decorin 950 to 1050 7.7 7.7 7.9 10.9 29.0

Ethanol 0 to200 2.0 2.3 2.3 5.9 29.9

Glucose 50 to 450 4.3 5.4 5.9 9.9 44.1

Table 3 PLS model accuracy improvement factor when quantifying
water in transmission mode, for different slab thicknesses and reflec-
tance-mode absorbance noise levels (σ).

Transmission
slab thickness
(mm)

Improvement factor over reflectance

σ ¼ 0 σ ¼ 10−6 σ ¼ 10−5 σ ¼ 10−4 σ ¼ 10−3

0.5 28.2 28.7 28.6 32.8 43.2

1.0 17.9 17.3 17.4 17.8 20.2

1.5 12.5 12.4 12.4 12.6 6.8

2.0 11.4 11.4 8.8 3.6 2.0

2.5 9.7 6.3 1.6 1.2 0.5

Table 4 PLS model accuracy improvement factor when quantifying
ethanol in transmission mode, for different slab thicknesses and
reflectance-mode absorbance noise levels (σ).

Transmission slab
thickness (mm)

Improvement factor over reflectance

σ ¼ 0 σ ¼ 10−6 σ ¼ 10−5 σ ¼ 10−4 σ ¼ 10−3

0.5 6.0 6.6 7.0 15.0 49.7

1.0 7.9 7.5 4.6 5.6 16.8

1.5 4.7 3.5 1.9 3.4 3.3

2.0 3.3 1.6 1.0 0.7 0.7

2.5 2.2 0.9 0.2 0.1 0.5
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5 Discussion
The results of this simulation show that the effect of a broad
distribution of pathlengths encountered when measuring the dif-
fuse reflectance from a scattering medium results in a significant
reduction in quantitative accuracy in measuring the medium’s
analyte concentrations. This is true for a variety of analyte con-
ditions and instrument noise levels. Even when no noise is
added to the synthetic spectra, and with equivalent numbers
of detected rays, the transmission mode outperforms reflectance
mode for a variety of medium thicknesses.

This can be understood by combining Eqs. (2) and (4).
A change in the absorbance spectrum, ∂A, due to a change
in the analyte of interest, ∂c1, plus changes in all p − 1 other
analytes, results in an estimated change in the analyte of inter-
est’s concentration using the PLS regression vector
EQ-TARGET;temp:intralink-;e005;63;583
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Equation (4) has two error terms. The first term, eA, is the
spectral error in measuring the true absorbance spectrum
and contains the detector noise simulated above, as well as
other error terms such as shot noise, relative intensity
noise, instrument drift, stray light, and detector nonlinearity.
The second term, e1, is the scalar reference error in analyte
concentration, which is common in spectroscopic measurements
of tissue that use a reference measurement from a blood
sample.

The amount of spectral error in absorbance space usually
decreases with increasing amount of detected light. The
decrease is linear with intensity for an instrument that is detector
noise limited, depends on the square root of intensity for a shot
noise limited instrument, and is independent of intensity only
when relative intensity noise dominates. Since this absorbance
noise is random, any regression model can model spectral
changes only down to the noise floor. In this work that assumes
a detector noise limited instrument, modes that detect a higher
level of light, such as transmission through thin slabs (Table 1)
will allow for more accurate quantitation than other modes,
based solely on the size of eA relative to the other terms in
Eq. (5). The same would be true of a shot noise limited instru-
ment, although the differences between modes will be smaller in
magnitude.

The most important aspect of Eq. (5) is the effective path-
length term. For any new sample, leff can be separated into
the average effective pathlength spectrum for the calibration
samples used to build the regression model, l, and an additive
part specific to this new sample, Δl;. This additive pathlength
term varies with wavelength and is a function of the scattering
and absorption (and therefore analyte concentration) properties
of the medium. It is this term that makes modeling of concen-
tration changes with absorbance spectral changes so complex, as
it will change for each sample. Even two samples that have the
same concentration of the analyte of interest, can have different,
unmodeled absorbance differences if their unique combination
of scattering and absorption properties are not well-represented
in the calibration set. As discussed above, the errors due to Δl;

can be modeled only down to the level of random noise present
in the spectra, so increasing amounts of spectroscopic noise (eA)
limit the ability of regression methods to account for variable
pathlengths. But even two modes that produce the same level
of absorbance noise will still produce different accuracies, favor-
ing the mode that has the smaller variation in effective path-
length relative to the mean.

To some extent, the terms having Δl can be thought of as
additional error terms that can never be fully modeled. On
the other hand, if Δl was zero for all samples, then Eq. (5)
would reduce to a simple linear relationship between concentra-
tion and absorbance, and the multivariate calibration problem
would return to the classical problem of quantification in the
presence of a linear-additive combination of interferences.26

The transmission mode for the 0.5 and 1 mm slabs accomplishes
this well, as is seen in Fig. 3(b). When using the effective path-
length coefficient of variation as a metric to judge the applicabil-
ity of linear modeling techniques (Table 1), all transmission
modes studied should produce similar results if the absorbance
noise can be reduced to a low level, for example, by increasing
the source light power. Therefore, finding measurement sites on
the body that are optically thin enough to permit transmission
spectroscopy would be useful. Measurements of skin thickness
have been performed by other researchers, and there are several
promising sites already identified.27,28

Other methods exist to narrow the pathlength distributions
that detected light takes through a scattering medium, such
as time-resolved diffuse reflectance,29 spatially resolved diffuse
reflectance,30 patterned illumination,31 confocal reflectance,32

and spectroscopic optical coherence tomography.33 Compared
to simple transmission, these techniques should have much
lower signal-to-noise for a given acquisition time, because
much of the remitted light is not used.

That the multiplicative scatter correction preprocessing
method had no effect on accuracy can be understood using
Eq. (5). The scatter correction estimates a scalar value for
Δl; (and one for eA as well), which in truth varies as a function
of wavelength. More complicated empirical preprocessing
methods would need to properly estimate the wavelength-
dependence of the pathlength variation across samples. Or, radi-
ative transport theory should be used to develop algorithms that
recover the absorption coefficient from at least two unique
reflectance measurements. For the 2100- to 2400-nm region
simulated here, the diffusion approximation cannot be used,
because the absorption is on par with the reduced scattering.
But an inverse solution to radiative transfer could be employed
to separate the effects of scattering from absorption in a homo-
geneous medium.

The PLS regression method used here is a linear regression
method. Because the reflectance mode results in a nonlinear
relationship between changes in absorbance and changes in
concentration, nonlinear regression methods may offer an
improvement.34

One limitation of this work is that the Monte Carlo method
simulated unpolarized light, but did not simulate enpolarization
(increasing degree of polarization) due to the highly scattering
bulk medium. It has been shown both numerically and experi-
mentally that the average degree of polarization can increase
from 0 to 0.75 when the light source is highly coherent, and
the medium has little absorption compared to scattering.35–38

It is possible that enpolarization effects could influence the com-
parison of reflectance and transmission, especially when the two
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modes have very different pathlength distributions, and this
potential should be investigated in future experimental work.

Another limitation of this work is that a single-layer homo-
geneous medium was studied. However, the favorability of
transmission mode over reflectance mode should become
even more evident in the presence of a multilayer medium,
as is commonly found in tissue. Now, each layer has different
bulk scattering and absorption levels, and may have different
concentrations of the analyte of interest. In reflectance, wave-
lengths that have deeper penetration due to less absorption
and scattering will have longer pathlengths through a deeper
layer than other wavelengths. This is especially true in the
NIR region modeled in this work, as the water absorption coef-
ficient is similar in magnitude to the reduced scattering coeffi-
cient, and varies by a factor of two over the spectral region of
interest. But for transmission, light at all wavelengths are forced
to travel through each layer, and the effective pathlength spec-
trum in each layer is more uniform than in the reflectance case.

In future work, other spectral regions should be explored to
determine how thick a medium can be successfully interrogated
using transmission mode under realistic instrument signal and
noise conditions. In addition, these simulations assumed a con-
stant slab thickness across spectra; future work should study the
more realistic case where the thickness is variable but measur-
able to within a small degree of uncertainty.

6 Conclusion
Diffuse reflectance spectroscopy from a scattering medium
can lead to severely degraded quantitative accuracy compared
to transmission spectroscopy through a thin slab of the same
medium, over a broad range of analyte signal size and instru-
ment noise conditions. This is due to the creation of a broad
pathlength distribution for diffusely reflected light, which cre-
ates complex, nonlinear changes in absorbance due to any
change in analyte concentration or medium scattering that are
difficult to model. As applied to medical device development,
a transmission mode measurement through a thin slab of tissue
should be evaluated, when possible, and compared to optimized
reflectance spectroscopy if the quantitative accuracy needs to be
improved before successful clinical application.
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