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Abstract. In photoacoustic imaging, delay-and-sum (DAS) beamformer is a common beamforming algorithm
having a simple implementation. However, it results in a poor resolution and high sidelobes. To address these
challenges, a new algorithm namely delay-multiply-and-sum (DMAS) was introduced having lower sidelobes
compared to DAS. To improve the resolution of DMAS, a beamformer is introduced using minimum variance
(MV) adaptive beamforming combined with DMAS, so-called minimum variance-based DMAS (MVB-DMAS). It
is shown that expanding the DMAS equation results in multiple terms representing a DAS algebra. It is proposed
to use the MV adaptive beamformer instead of the existing DAS. MVB-DMAS is evaluated numerically and
experimentally. In particular, at the depth of 45 mm MVB-DMAS results in about 31, 18, and 8 dB sidelobes
reduction compared to DAS, MV, and DMAS, respectively. The quantitative results of the simulations show that
MVB-DMAS leads to improvement in full-width-half-maximum about 96%, 94%, and 45% and signal-to-noise
ratio about 89%, 15%, and 35% compared to DAS, DMAS, MV, respectively. In particular, at the depth of 33 mm
of the experimental images, MVB-DMAS results in about 20 dB sidelobes reduction in comparison with other
beamformers. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.2.026002]
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1 Introduction
Photoacoustic imaging (PAI) is a promising medical imaging
modality that uses a short electromagnetic pulse to generate
ultrasound (US) waves based on the thermoelastic effect.1

Having the merits of the US imaging spatial resolution and the
optical imaging contrast in one imaging modality is the main
motivation of using PAI.2 Unlike the x-ray that uses an ionizing
radiation, PAI uses nonionizing waves, i.e., short laser or radio
frequency pulses. In comparison with other imaging modalities,
PAI has multiple advantages leading to many investigations.3,4

PAI is a multiscale imaging modality that has been used in dif-
ferent cases of study such as tumor detection,5,6 cancer detection
and staging,7 ocular imaging,8 monitoring oxygenation in blood
vessels,9 and functional imaging.10,11 There are two techniques
of PAI: photoacoustic tomography (PAT) and photoacoustic
microscopy.12,13 In 2002, for the first time, PATwas successfully
used as in vivo functional and structural brain imaging modality
in small animals.14 In PAT, an array of elements may be formed
in linear, arc, or circular shape, and mathematical reconstruction
algorithms are used to obtain the optical absorption distribution
map of a tissue.15–17 Most of the reconstruction algorithms are
defined under an ideal imaging condition and full-view array of
elements. Also, the noise of the measurement system is not con-
sidered as a parameter in the reconstruction procedure. Thus,
photoacoustic (PA) reconstructed images contain inherent arti-
facts caused by imperfect reconstruction algorithms. Reducing

these artifacts has become a crucial challenge in PA image
reconstruction for different number of transducers and different
properties of imaging media.18,19

Since there is a high similarity between US and PA detected
signals, many of beamforming algorithms used in US imaging
can be used in PAI. Moreover, integrating these two imaging
modalities has been a challenge.20,21 Common US beamforming
algorithms such as delay-and-sum (DAS) and minimum vari-
ance (MV) can be used in PA beamforming with modifi-
cations.22 These modifications in algorithms have led to use dif-
ferent hardware to implement an integrated US-PA imaging
device. There are many studies focused on developing one
beamforming technique for US and PA image formation in
order to reduce the cost of imaging system.23,24 Although DAS
is the most common beamforming method in linear-array imag-
ing, it is a blind beamformer. Consequently, DAS causes a wide
mainlobe and high level of sidelobes.25 Adaptive beamformers
are commonly employed in radar and have the ability of weight-
ing the aperture based on the characteristics of detected signals.
Apart from that, these beamformers form a high quality image
with a wide range of off-axis signals rejection. MV can be con-
sidered as one of the commonly used adaptive methods in medi-
cal imaging.26–28 Over time, a vast variety of modifications have
been investigated on MV such as complexity reduction,29,30

shadowing suppression,31 using of the eigenstructure,32,33 and
combination of MV and multiline transmission technique.34

Matrone et al. proposed, in Ref. 35, a new beamforming algorithm
namely delay-multiply-and-sum (DMAS) as a beamforming
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technique, used in medical US imaging. This algorithm, intro-
duced by Lim et al., was initially used in confocal microwave
imaging for breast cancer detection.36 In addition, DMAS was
used in synthetic aperture imaging.37 Double stage DMAS (DS-
DMAS), in which two stages of DMAS is used in order to
achieve a higher contrast and resolution compared to DMAS,
was proposed for linear-array US and PAI.38–40 In addition, a
modified version of coherence factor and a high-resolution CF
were used to provide a higher contrast and resolution in linear-
array PAI, respectively, compared to conventional CF.41,42

In this paper, a beamforming algorithm, namely minimum
variance-based DMAS (MVB-DMAS), is introduced. The
expansion of the DMAS algorithm is used, and it is shown that
in each term of the expansion, there is a DAS algebra. Since the
DAS algorithm is a nonadaptive beamformer and leads to low-
resolution images, we proposed to use MV instead of the
existing DAS in DMAS algebra expansion. It is shown that
using MVB-DMAS results in resolution improvement and side-
lobe levels reduction at the expense of higher computational bur-
den. A preliminary version of this work and its eigenspace
version have been reported before.43–45 However, in this paper,
we are going to present a highly more complete description of
this approach and evaluate, numerically and experimentally, its
performance and the effects of its parameters.

The rest of the paper is organized as follows. In Sec. 2,
the DMAS and MV beamforming algorithms are presented.
In Sec. 3, the proposed method and the necessary modifications
are explained. The numerical and experimental results are pre-
sented in Secs. 4 and 5, respectively. The advantages and dis-
advantages of proposed method are discussed in Sec. 6, and the
conclusion is presented in Sec. 7.

2 Background

2.1 Beamforming

When PA signals are detected by a linear array of US transducer,
beamforming algorithms such as DAS can be used to reconstruct
the image using the

EQ-TARGET;temp:intralink-;e001;63;331yDASðkÞ ¼
XM
i¼1

xiðk − ΔiÞ; (1)

where yDASðkÞ is the output of the beamformer, k is the time
index, M is the number of elements of array, and xiðkÞ and
Δi are detected signals and corresponding time delay for detec-
tor i, respectively. DAS is a simple algorithm and can be used for
real-time PA and US imaging. However, in the linear-array
transducer only a few numbers of detection angles are available.
In other words, a low-quality image is formed due to the limited
available angles in linear-array transducers. DMAS was intro-
duced in Ref. 35 to improve the image quality. DMAS calculates
corresponding sample for each element of the array, the same as
DAS, but before summation, samples are combinatorially
coupled and multiplied. The DMAS formula is given as

EQ-TARGET;temp:intralink-;e002;63;149yDMASðkÞ ¼
XM−1

i¼1

XM
j¼iþ1

xiðk − ΔiÞxjðk − ΔjÞ: (2)

To overcome the dimensionally squared problem of Eq. (2), fol-
lowing equations are suggested:35

EQ-TARGET;temp:intralink-;e003;326;752x̂ijðkÞ ¼ sign½xiðk − ΔiÞxjðk
− ΔjÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxiðk − ΔiÞxjðk − ΔjÞj

q
: (3)

EQ-TARGET;temp:intralink-;e004;326;693yDMASðkÞ ¼
XM−1

i¼1

XM
j¼iþ1

x̂ijðkÞ: (4)

A product in time domain is equivalent to the convolution of the
spectra of the signals in the frequency domain. Consequently,
new components centered at the zero frequency and the har-
monic frequency appear in the spectrum due to the similar
ranges of frequency for xiðk − ΔiÞ and xjðk − ΔjÞ. A band-
pass filter is applied on the beamformed output signal to only
pass the necessary frequency components, generated after these
nonlinear operations while keeping the one centered on 2f0
almost unaltered. Finally, the filtered-DMAS (F-DMAS) is
obtained, extensively explained in Ref. 35. The procedure of
DMAS algorithm can be considered as a correlation process,
which uses the autocorrelation of aperture. In other words, the
output of this beamformer is based on the spatial coherence of
PA signals, and it is a nonlinear beamforming algorithm.

2.2 Minimum Variance

The output of MV adaptive beamformer is given as

EQ-TARGET;temp:intralink-;e005;326;464yðkÞ ¼ WHðkÞXdðkÞ ¼
XM
i¼1

wiðkÞxiðk − ΔiÞ; (5)

where XdðkÞ is time-delayed array detected signals XdðkÞ ¼
½x1ðkÞ; x2ðkÞ; : : : ; xMðkÞ�T , WðkÞ ¼ ½w1ðkÞ;w2ðkÞ; : : : ;wMðkÞ�T
is the beamformer weights, and ð:ÞT and ð:ÞH represent the trans-
pose and conjugate transpose, respectively. The detected array
signals can be written as

EQ-TARGET;temp:intralink-;e006;326;359XðkÞ ¼ sðkÞ þ iðkÞ þ nðkÞ ¼ sðkÞaþ iðkÞ þ nðkÞ; (6)

where sðkÞ, iðkÞ, and nðkÞ are the desired signal, interference,
and noise components received by the array transducer, respec-
tively. Parameters sðkÞ and a are the signal waveform and the
related steering vector, respectively. MV beamformer can be
used to adaptively weight the calculated samples, and the goal
of MV beamformer is to achieve optimal weights in order to
estimate the desired signal as accurately as possible. The supe-
riority of the MV algorithm has been evaluated in comparison
with static windows, such as Hamming window.28 To acquire the
optimal weights, signal-to-interference-plus-noise ratio (SINR)
needs to be maximized46

EQ-TARGET;temp:intralink-;e007;326;207SINR ¼ σ2s jWHaj2
WHRiþnW

; (7)

where Riþn is the M ×M interference-plus-noise covariance
matrix, and σ2s is the signal power. The maximization of
SINR can be gained by minimizing the output interference-plus-
noise power while maintaining a distortionless response to the
desired signal using

EQ-TARGET;temp:intralink-;e008;326;107min
W

WHRiþnW; s:t: vHa ¼ 1: (8)
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The solution of Eq. (8) is given as47

EQ-TARGET;temp:intralink-;e009;63;741Wopt ¼
R−1
iþna

aHR−1
iþna

: (9)

In practical application, the interference-plus-noise covari-
ance matrix is unavailable. Consequently, the sample covariance
matrix is used instead of unavailable covariance matrix using N
recently received samples and is given as

EQ-TARGET;temp:intralink-;e010;63;651R̂ ¼ 1

N

XN
n¼1

XdðnÞXdðnÞH: (10)

Using MV in medical US imaging encounters some prob-
lems that are addressed in Ref. 27, and we briefly review it
here. It should be noticed that by applying delays on each
element of the array, the steering vector a for each signal wave-
form becomes a vector of ones.26–28 The subarray-averaging or
spatial-smoothing method can be used to achieve a good esti-
mation of covariance matrix using decorrelation of the coherent
signals received by array elements. The covariance matrix esti-
mation using spatial-smoothing can be written as

EQ-TARGET;temp:intralink-;e011;63;502R̂ðkÞ ¼ 1

M − Lþ 1

XM−Lþ1

l¼1

Xl
dðkÞXl

dðkÞH; (11)

where L is the subarray length and Xl
dðkÞ ¼ ½xldðkÞ;

xlþ1
d ðkÞ; : : : ; xlþL−1

d ðkÞ� is the delayed input signal for the l’th
subarray. Due to limited statistical information, only a few tem-
poral samples are used to estimate covariance matrix. Therefore,
to obtain a stable covariance matrix, the diagonal loading (DL)
technique is used. This method leads to replacing R̂ by loaded
sample covariance matrix, R̂l ¼ R̂þ γI, where γ is the loading
factor given as

EQ-TARGET;temp:intralink-;e012;63;364γ ¼ Δ:tracefR̂ðkÞg; (12)

where Δ is a constant related to subarray length. Also, temporal
averaging method can be applied along with spatial averaging to
gain the resolution enhancement while the contrast is retained.
The estimation of covariance matrix using both temporal aver-
aging and spatial smoothing in given as

EQ-TARGET;temp:intralink-;e013;63;276R̂ðkÞ ¼ 1

ð2K þ 1ÞðM − Lþ 1Þ

×
XK
n¼−K

XM−Lþ1

l¼1

Xl
dðkþ nÞXl

dðkþ nÞH; (13)

where temporal averaging is used over ð2K þ 1Þ samples. After
estimation of covariance matrix, optimal weights are calculated
by Eqs. (9) and (13) and finally the output of MV beamformer is
given as

EQ-TARGET;temp:intralink-;e014;63;154ŷðkÞ ¼ 1

M − Lþ 1

XM−Lþ1

l¼1

WH� ðkÞXl
dðkÞ; (14)

where W�ðkÞ ¼ ½w1ðkÞ; w2ðkÞ; : : : ; wLðkÞ�T .

3 Proposed Method
In this paper, it is proposed to use the MVadaptive beamformer
instead of the existing DAS algebra inside DMAS mathematical
expansion. To illustrate this, consider the expansion of the
DMAS algorithm, which can be written as

EQ-TARGET;temp:intralink-;e015;326;693

yDMASðkÞ ¼
XM−1

i¼1

XM
j¼iþ1

xidðkÞxjdðkÞ

¼ ½x1dðkÞx2dðkÞ þ x1dðkÞx3dðkÞ þ : : : þ x1dðkÞxMdðkÞ�
þ ½x2dðkÞx3dðkÞ þ x2dðkÞx4dðkÞ þ : : : þ x2dðkÞxMdðkÞ�
þ : : : þ ½xðM−2ÞdðkÞxðM−1ÞdðkÞ þ xðM−2ÞdðkÞxMdðkÞ�
þ ½xðM−1ÞdðkÞxMdðkÞ�; (15)

where xidðkÞ and xjdðkÞ are the delayed detected signals for
element i and j, respectively, and we hold this notation all
over this section. As can be seen, there is a DAS in every
term of the expansion, and it can be used to modify the
DMAS beamformer. To illustrate this,

EQ-TARGET;temp:intralink-;e016;326;508

yDMASðkÞ ¼
XM−1

i¼1

XM
j¼iþ1

xidðkÞxjdðkÞ

¼ x1dðkÞ
½x2dðkÞ þ x3dðkÞ þ x4dðkÞ þ : : : þ xMdðkÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

first term

þ x2dðkÞ
½x3dðkÞ þ x4dðkÞ þ : : : þ xMdðkÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

second term

þ : : : þ xðM−2ÞdðkÞ
½xðM−1ÞdðkÞ þ xMdðkÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðM − 2Þ0th term

þ
½xðM−1ÞdðkÞ:xMdðkÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðM − 1Þ0th term : (16)

In Eq. (16), in every terms, there exists a summation procedure,
which is a type of DAS algorithm. It is proposed to use MV
adaptive beamformer for each term instead of DAS. In other
words, since DAS is a nonadaptive beamformer and considers
all calculated samples for each element of the array the same as
each other, consequently, the acquired image by each term is a
low quality image with high levels of sidelobes and broad main-
lobe. In order to use MV instead of every DAS in the expansion,
we need to carry out some modifications and prepare the expan-
sion in Eq. (16) for the proposed method. The following section
contains the essential modifications.

3.1 Modified DMAS

It should be noticed that the quality of covariance matrix esti-
mation in MV highly depends on the selected length of subarray.
The upper boundary is limited to M∕2 and the lower boundary
to 1. Choosing L ¼ M∕2 leads to resolution enhancement at the
cost of robustness, and L ¼ 1 leads to resolution reduction and
robustness increment. In Eq. (16), each term can be considered
as a DAS algorithm with different number of elements of array.
In other words, the number of samples of elements contributing
in the existing DAS is different in each term, which results from
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the nature of the DMAS algorithm. To illustrate this, consider
the length of array M and L ¼ M∕2. There will be M − 1 terms
in DMAS expansion, while first term contains M − 1 entries,
second term contains M − 2 entries, and finally the last term
contains only one entry. Limited number of entries in each term
causes problem for MV algorithm due to the limited length of
the subarray. This problem can be addressed by adding the
unavailable elements in each term in order to acquire large
enough number of available elements and consequently high
quality covariance matrix estimation. The extra terms, needed
to address the problem, are given as

EQ-TARGET;temp:intralink-;e017;63;631

yextraðkÞ ¼
X2

i¼M−2

X1
j¼i−1

xidðkÞxjdðkÞþ yextra�

¼ xðM−2ÞdðkÞ½xðM−3ÞdðkÞþxðM−4ÞdðkÞþ : : : þx2dðkÞ
þx1dðkÞ�þxðM−3ÞdðkÞ½xðM−4ÞdðkÞþxðM−5ÞdðkÞ
þ : : : þx2dðkÞþx1dðkÞ�þ : : : þx3dðkÞ
½x2dðkÞþx1dðkÞ�þx2dðkÞx1dðkÞþyextra� ðkÞ;

(17)

where
EQ-TARGET;temp:intralink-;e018;63;476

yextra� ðkÞ ¼ xMdðkÞ½xðM−1ÞdðkÞ þ xðM−2ÞdðkÞ þ : : : þ x3dðkÞ
þ x2dðkÞ þ x1dðkÞ�: (18)

Equation (17) is used to make the terms in Eq. (16) ready
to adopt an MV algorithm. Finally, by adding Eqs. (16)
and (17), a modified version of the DMAS algorithm namely
modified DMAS (MDMAS) is obtained and can be written
as

EQ-TARGET;temp:intralink-;e019;63;375

yMDMASðkÞ ¼ yDMASðkÞþ yextraðkÞ

¼
XM
i¼1

XM
j¼1;j≠i

xidðkÞxjdðkÞ ¼

¼ x1dðkÞ
½x2dðkÞþ x3dðkÞþ : : : þ xðM−1ÞdðkÞþ xMdðkÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

first term

þ x2dðkÞ
½x1dðkÞþ x3dðkÞþ : : : þ xðM−1ÞdðkÞþ xMdðkÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

second term
þ : : :

þ xðM−1ÞdðkÞ
½x1dðkÞþ x2dðkÞþ : : : þ xðM−2ÞdðkÞþ xMdðkÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðM− 1Þ0th

þ xMdðkÞ
½x1dðkÞþ x2dðkÞþ : : : þ xðM−2ÞdðkÞþ xðM−1ÞdðkÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M0th term
:

(19)

The introduced algorithm in Eq. (19) has been evaluated by sim-
ulations, and it is proved that this formula can be a modification
of DMAS algebra with the same results. To put it more simply,
Eq. (19) is the multiplication of DMAS output by 2, and since all
the cross-products are considered twice, simulations give the
same results. Now, the combination of MDMAS algorithm and
MV beamformer is mathematically satisfying and instead of
every term in Eq. (19), MV can be implemented using all entities

in each term. The expansion of MDMAS combined with MV
beamformer can be written as follows:

EQ-TARGET;temp:intralink-;e020;326;730

yMV-DMASðkÞ ¼
XM
i¼1

xidðkÞ½WH
i;M−1ðkÞXid;M−1ðkÞ�

¼
XM
i¼1

xidðkÞ
� XM
j¼1;j≠i

wjðkÞxjdðkÞ
�

¼
XM
i¼1

xidðkÞ½WHðkÞXdðkÞ − wiðkÞxidðkÞ�

¼
XM
i¼1

xidðkÞ
�XM
j¼1

wjðkÞxjdðkÞ − wiðkÞxidðkÞ
�

¼
XM
i¼1

xidðkÞ

�XM
j¼1

wjðkÞxjdðkÞ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
MV

−
XM
i¼1

xidðkÞ½wiðkÞxidðkÞ�;

(20)

where Wi;M−1 and Xid;M−1 are almost the same as WðkÞ
and XdðkÞ used in Eq. (5), respectively, but the i’th element
of the array is ignored in calculation and as a result, the length
of these vectors becomes M − 1 instead of M. Considering
Eq. (20), the expansion can be written based on a summation,
which is considered as a DAS algebra. To illustrate this,
consider

EQ-TARGET;temp:intralink-;e021;326;427

yMV-DMASðkÞ ¼
XM
i¼1

xidðkÞ

�XM
j¼1

wjðkÞxjdðkÞ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
MV

−
XM
i¼1

xidðkÞ½wiðkÞxidðkÞ�

¼
XM
i¼1

xidðkÞ

�XM
j¼1

wjðkÞxjdðkÞ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
MV

− wiðkÞx2idðkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
i0th term

:

(21)

It is proved that DAS leads to low-quality images and high
levels of sidelobe; obviously in Eq. (21), expansion leads to
a summation, and this summation can be considered as a
DAS. As a final step of MVB-DMAS development, it is pro-
posed to use another MV instead of DAS in order to reduce the
contribution of off-axis signals and noise of imaging system.
To put it more simply, considering Eq. (21), each term is con-
tributed in a summation process, which is regarded as a DAS,
represented in Eq. (1). Since Eq. (5) leads to image enhance-
ment compared to Eq. (1), it is expected to improve the image
quality in terms of resolution and levels of a sidelobe having
MV instead of outer summation in Eq. (21). MVB-DMAS for-
mula can be written as follows:
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EQ-TARGET;temp:intralink-;e022;63;752

yMVB-DMASðkÞ

¼
XM
i¼1

wi;new

�
xidðkÞ

�XM
j¼1

wjðkÞxjdðkÞ
�
− wiðkÞx2idðkÞ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

i0th term
;

(22)

where wi;new is the calculated weight for each term in Eq. (22)
using Eq. (9) while the steering vector is a vector of ones. It
should be noticed that when there is a multiplication, resulting
in squared dimension, the method mentioned in Eq. (4) is used
to prevent the squared dimension. Moreover, there are two MV
algorithms inside the proposed method, one on the delayed sig-
nals and one on the i’th term obtained with Eq. (21). Since we
face with the correlation procedure of DMAS, including prod-
uct function in time domain, in the proposed method, neces-
sary band-pass filter is applied in Eq. (21) for each term, before
outer summation. In other words, each term in the proposed
method in Eq. (22) is filtered to only pass the necessary com-
ponents, generated after the nonlinear operations, and then all
of them are contributed in the second MValgorithm. In Sec. 4,
it is shown that MVB-DMAS beamformer results in resolution
improvement and sidelobes level reduction.

4 Numerical Results and Performance
Assessment

In this section, numerical results are presented to illustrate the
performance of the proposed algorithm in comparison with
DAS, DMAS, and MV.

4.1 Simulated Point Target

4.1.1 Simulation setup

The K-wave MATLAB® toolbox was used to simulate the
numerical study.48 Eleven 0.1-mm radius spherical absorbers as

initial pressure were positioned along the vertical axis every
5 mm beginning 25 mm from the transducer surface. The im-
aging region was 20 mm in lateral axis and 80 mm in vertical
axis. A linear-array having M ¼ 128 elements operating at
5 MHz central frequency and 77% fractional bandwidth was
used to detect the PA signals generated from the defined initial
pressures. The speed of sound was assumed to be 1540 m∕s
during simulations. The sampling frequency was 50 MHz, sub-
array length L ¼ M∕2, K ¼ 5, and Δ ¼ 1∕100L for all the sim-
ulations. Also, a band-pass filter was applied by a Tukey
window (α ¼ 0.5) to the beamformed signal spectra, covering 6
to 16 MHz, to pass the necessary information.

4.1.2 Qualitative evaluation

Figures 1(a)–1(d) show the output of DAS, MV, DMAS, and
MVB-DMAS beamformers, respectively. It is clear that DAS
and DMAS result in low-resolution images, and at the high
depths of imaging, both algorithms lead to a wide mainlobe.
However, DMAS leads to lower level of sidelobes and a higher
resolution. In Fig. 1(b), it can be seen that MV results in high
resolution, but the high level of sidelobes affect the reconstructed
image. Formed image using MVB-DMAS is shown in Fig. 1(d)
where the resolution of MV beamformer is maintained and the
level of a sidelobe is highly degraded compared to MV.

To assess the different beamforming algorithms in detail, lat-
eral variations of the formed images are shown in Fig. 2. Lateral
variations at the depth of 50 mm are shown in Fig. 2(c) where
DAS, MV, DMAS, and MVB-DMAS result in about −40, −50,
−55, and −65 dB sidelobes, respectively. On the other hand, the
width of a mainlobe can be regarded as a parameter, indicating
the resolution metric. It can be seen that MV and MVB-DMAS
result in significant higher resolution in comparison with DAS
and DMAS.

4.1.3 Quantitative evaluation

To quantitatively compare the performance of the beamformers,
the full-width-half-maximum (FWHM) in −6 dB and signal-to-
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Fig. 1 Images of the simulated point targets phantom using the linear-array transducer. (a) DAS, (b) MV,
(c) DMAS, and (d) MVB-DMAS. All images are shown with a dynamic range of 60 dB. Noise was added to
the detected signals considering an SNR of 50 dB.
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noise ratio (SNR) are calculated in all imaging depths using
point targets in the reconstructed images. The results for
FWHM and SNR are shown in Tables 1 and 2, respectively.
As can be seen in Table 1, MVB-DMAS results in the narrowest
−6 dB width of a mainlobe in all imaging depths compared to
other beamformers. In particular, consider depth of 50 mm
where FWHM for DAS, DMAS, MV, and MVB-DMAS is
about 3565, 2355, 172, and 95 μm, respectively. More impor-
tantly, the FWHM differentiation of the first and last imaging
depth indicates that MVB-DMAS and MV techniques variate
158 and 378 μm, respectively, while DAS and DMAS variate
5425 and 3394 μm, respectively. As a result, FWHM is more
stabilized using MVB-DMAS and MV in comparison with
DAS and DMAS. The represented SNRs in Table 2 are calcu-
lated using

EQ-TARGET;temp:intralink-;e023;63;258SNR ¼ 20 log10Psignal∕Pnoise; (23)

where Psignal and Pnoise are difference of maximum and mini-
mum intensity of a rectangular region including a point target
[white dashed rectangle in Fig. 1(d)] and standard deviation of
the noisy part of the region [red rectangle in Fig. 1(d)],
respectively.39 As can be seen in Table 2, MVB-DMAS outper-
forms other beamformers in SNR. Consider, in particular, the
depth of 50 mm where SNR for DAS, DMAS, MV, and
MVB-DMAS is 21.7, 32.0, 33.2 and 45.0 dB, respectively.

4.2 Sensitivity to Sound Velocity Inhomogeneities

In this section, the proposed method is evaluated in the term
of robustness against the sound velocity errors resulting from
medium inhomogeneities, which are inevitable in practical
imaging. The simulation design for Fig. 1 is used in order to

investigate the robustness, except that the sound velocity is over-
estimated by 5%, which covers and may be more than the typical
estimation error.26,27 It should be noticed that in the simulation,
we have intentionally overestimated the sound velocity by 5% to
evaluate the proposed method. This is important since we usu-
ally face this phenomenon in the practical situations where the
medium is inhomogeneous, but the images are reconstructed

Fig. 2 Lateral variations of DAS, MV, DMAS, and MVB-DMAS at the depths of (a) 40, (b) 45, (c) 50, and
(d) 65 mm.

Table 1 FWHM (μm) values (in −6 dB) at the different depths.

Depth (mm)

Beamformer

DAS DMAS MV MVB-DMAS

25 1200 850 93 54

30 1476 1059 99 54

35 1842 1286 115 61

40 2277 1584 133 72

45 2710 1862 143 82

50 3565 2355 172 95

55 3800 2535 187 102

60 4400 2937 226 113

65 4967 3273 288 123

70 5512 3639 305 146

75 6625 4244 471 212
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assuming a sound velocity of 1540 m∕s. As can be seen in
Fig. 3(b), MV leads to higher resolution compared to DAS,
but the high levels of sidelobe and negative effects of overesti-
mated sound velocity still affect the reconstructed image. It
should be noticed that the appeared noise and artifacts in
Fig. 3(b) are due to the overestimated sound velocity and the
temporal averaging with K ¼ 5. DMAS, in Fig. 3(c), reduces
these negative effects, but the resolution is not well enough.
As can be seen in Fig. 3(d), MVB-DMAS results in the high
negative effects reduction of DMAS and the high resolution of
MV. However, the reconstructed image using MVB-DMAS

contains more artifacts compared to DMAS, which is mainly
as a result of the lower SNR of MVB-DMAS compared to
DMAS. Figure 4 shows the lateral variation of the reconstructed
images in Fig. 3. As can be seen, MVB-DMAS detects the peak
amplitude of point target as well as DAS. The resolution of the
formed image using MVB-DMAS is improved in comparison
with DAS and DMAS. Moreover, the levels of sidelobe
using MVB-DMAS is reduced in comparison with other men-
tioned beamformers.

4.3 Effects of Varying L

To evaluate the effects of varying L, the proposed method has
been implemented using L ¼ 64, L ¼ 45, L ¼ 32, and L ¼ 16.
The lateral variations of the formed images at the depth of
45 mm are presented in Fig. 5. Clearly, increasing L results in
a higher resolution and lower level of sidelobes. Moreover, the
SNR, in two imaging depths, is presented in Table 3. It is shown
that SNR does not significantly vary for different L. However,
L ¼ 45 results in higher SNR. In addition, Table 4 shows the
calculated FWHM for different amounts of L, and it proves
that FWHM is reduced with higher L.

4.4 Effects of Coherence Weighting

The proposed algorithm is also evaluated when it has been com-
bined with CF. To have a fair comparison, all the beamformers
are combined with CF weighting. The reconstructed images
along with the corresponding lateral variations are shown in
Figs. 6 and 7, respectively. As can be seen in Fig. 6, MVB-
DMAS + CF results in higher resolution and lower sidelobes
compared to other beamformers. The higher resolution of MVB-
DMAS + CF is visible compared to DMAS + CF, especially at
high depths of imaging. In addition, it is clear that MVB-DMAS +
CF reduces the sidelobes compared to MV + CF and improves
the target detectability. To have a better comparison, consider
Fig. 7 where MVB-DMAS + CF outperforms other beamform-
ers in the terms of the width of a mainlobe in −6 dB and

Table 2 SNR (dB) values at the different depths.

Depth (mm)

Beamformer

DAS DMAS MV MVB-DMAS

25 30.7 51.1 42.7 57.7

30 28.6 46.9 39.3 53.2

35 26.8 43.6 37.7 50.8

40 25.2 40.2 35.3 48.2

45 23.5 36.2 34.4 46.5

50 21.7 32.0 33.2 45.0

55 20.1 28.2 32.4 50.8

60 18.5 25.0 31.3 48.2

65 17.2 22.6 30.4 46.5

70 16.3 20.7 30.1 45.0

75 15.5 19.1 29.0 43.3
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Fig. 3 Images of the simulated point targets phantom using the linear-array transducer. (a) DAS, (b) MV,
(c) DMAS, and (d) MVB-DMAS. All images are shown with a dynamic range of 60 dB. The sound velocity
is overestimated about 5%. Noise was added to the detected signals considering an SNR of 50 dB.
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sidelobes. It is shown that sidelobes for DAS, DMAS, MV, and
MVB-DMAS, when all of them are combined with CF, are
about −120, −120, −111, and −160 dB, respectively, showing
the superiority of MVB-DMAS+CF.

5 Experimental Results
To evaluate the MVB-DMAS algorithm, in this section results of
designed experiments are presented.

5.1 Experimental Setup

A linear-array of PAI system was used to detect the PA waves
and the major components of system include an US data acquis-
ition system, Vantage 128 Verasonics (Verasonics, Inc., Redmond,
Washington), a Q-switched Nd:YAG laser (EverGreen Laser,
double-pulse Nd: YAG system) with a pulse repetition rate of
25 Hz, wavelength 532 nm, and a pulse width of 10 ns. A trans-
ducer array (L7-4, Philips Healthcare) with 128 elements and
5.2 MHz central frequency was used as a receiver. A function
generator is used to synchronize all operations (i.e., laser
firings and PA signal recording). The data sampling rate was
20.8320 MHz. The schematic of the designed system is pre-
sented in Fig. 8, and a gelatin-based phantom used as imaging
target is shown in Fig. 9, including two blood inclusions to pro-
vide optoacoustic properties. The experimental setup for PA lin-
ear-array imaging is shown in Fig. 10 where two parallels wire
are used as phantom for another experiment. It should be noticed
that in all the experiments, surface of the transducer is perpen-
dicular to the imaging targets. Thus, it is expected to see a cross
section of the targets. A band-pass filter was applied by a Tukey
window (α ¼ 0.5) to the beamformed signal spectra, covering 6
to 13 MHz, to pass the necessary information.

Fig. 4 Lateral variations of DAS,MV, DMAS, andMVB-DMAS at the depths of (a) 45 and (b) 70mmwhile
the sound velocity is 5% overestimated.
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Fig. 5 Lateral variations of MVB-DMAS at the depth of 45 mm for L ¼ 16, L ¼ 32, L ¼ 45, and L ¼ 64.

Table 3 SNR (dB) values of MVB-DMAS for the different amounts
of L.

Depth (mm)

Number of L

16 32 45 64

45 67.5 67.2 67.3 66.0

65 61.8 61.6 62.4 61.0

Table 4 FWHM (μm) values of MVB-DMAS (in −6 dB) for the differ-
ent amounts of L.

Depth (mm)

Number of L

16 32 45 64

45 480 199 95 59

65 735 259 161 97
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5.2 Qualitative Evaluation

The reconstructed images using the phantom shown in Fig. 9 are
presented in Fig. 11. Clearly, there are three structures seen in
the reconstructed images, Fig. 11, which two of them are blood
inclusions, and the first one is because of the small fracture on
the upper part of the phantom shown in Fig. 9. As is demon-
strated, DAS leads to a low-resolution image having a high
level of sidelobe, especially the target at the depth of 35 mm.
MV leads to a higher resolution in comparison with DAS,
but negative effects of the high level of sidelobes are obvious
Fig. 11(b), and the background of the reconstructed image are
affected by noise. DMAS enhances the image in the terms of
sidelobes and artifacts but still provides a low-resolution
image. MVB-DMAS leads to a higher resolution image having
lower sidelobes compared to DAS, DMAS, and MV. It is clear
that MVB-DMAS provides the high resolution of MV and low

Fig. 6 Images of the simulated point targets phantom using the linear-array transducer. (a) DAS + CF,
(b) MV + CF, (c) DMAS + CF, and (d) MVB-DMAS + CF. All images are shown with a dynamic range of
60 dB. Noise was added to the detected signals considering an SNR of 50 dB.

Fig. 7 Lateral variations of DAS + CF, MV + CF, DMAS + CF, and
MVB-DMAS + CF at the depths of 45 mm.

Fig. 8 Schematic of the experimental setup.
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sidelobes of DMAS. The line above the targets is due to the PA
signal generation at the surface of the phantom (due to the
top illumination) and is supposed to look like what is seen in
Fig. 11(d), considering the area of illumination, its location,
and laser beam profile. The phantom we used was a bit old, and
its surface was slightly dried. Hence, when we added the US gel
on the top of the sample, there was a rather large impedance
mismatch created at the interface between the surface of the
sample and the US gel. In our other similar tests (Fig. 12), we
observed the similar artifact but much weaker. In Figs. 11(a) and
11(c), the extended version of the line is seen, which is consid-
ered as an artifact. DAS and DMAS stretch imaging targets
[see the two imaging targets in Figs. 11(a) and 11(c)]. On the
other hand, the stretch in MVB-DMAS is much less due to the

correlation process and two stages of MV. The reconstructed
images for the designed experiment shown in Fig. 10 are shown
in Fig. 12. Since the surface of the transducer is perpendicular to
the wires, it is expected to see the targets such as points. As is
demonstrated in Fig. 12(a), DAS results in low-resolution
points, along with high levels of artifacts, especially at the depth
of about 30 mm. In Fig. 12(b), MV leads to resolution improve-
ment while the image is still suffers from high level of sidelobes.
The reconstructed image using DMAS, shown in Fig. 12(c),
contains low level of sidelobes, but the resolution is low.
Finally, MVB-DMAS provides an image with characteristics of
DMAS and MV, which are reduced sidelobes and high resolu-
tion, respectively. Figure 13 demonstrates the lateral variations
of the beamformers at the depth of 33 mm of Fig. 12. As shown

Fig. 9 Photographs of the phantom used in the first experiment.

L7-4 Transducer Probe

Surface of the Water

20 mm

Wire-1

Wire-2

Fig. 10 Experimental setup of PA linear-array imaging of two parallel wires.
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in the green circle, MVB-DMAS results in a narrower width of a
mainlobe and lower sidelobes (see the arrows).

5.3 Quantitative Evaluation

To compare the experimental results quantitatively, SNR and
contrast ratio (CR) metrics are used. Tables 5 and 6 show the
calculated SNR and CR for the two targets in the Fig. 11.

CR formula is explained in Ref. 35. As can be seen, the calcu-
lated metrics show that MVB-DMAS outperforms other beam-
formers. In other words, it leads to higher SNR and CR.

5.4 In Vivo Imaging

We imaged median antebrachial vein of a 30-year-old Middle
Eastern male in vivo (see Fig. 14). The illumination was
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Fig. 11 Images of the phantom shown in Fig. 9 using the linear-array transducer. (a) DAS, (b) MV,
(c) DMAS, and (d) MVB-DMAS. All images are shown with a dynamic range of 60 dB.
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Fig. 12 Images of the wires shown in Fig. 10 using the linear-array transducer. (a) DAS, (b) MV,
(c) DMAS, and (d) MVB-DMAS. All images are shown with a dynamic range of 60 dB.
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done from side using a single large diameter poly(methyl meth-
acrylate) (PMMA) fiber (10 mm). L22-14v transducer was used
to collect the PA signals while it was positioned perpendicular to
the vein. The institutional review board at Wayne State Univer-
sity (Independent Investigational Review Board, Detroit,
Michigan) approved the study protocol, and informed consent
was obtained from the individual before enrolment in the study.
In the reconstructed images, as shown in Fig. 15, the top and
bottom of the antebrachial vein showed up. It can be seen
that the reconstructed image using MVB-DMAS has lower side-
lobes, noise, and artifacts compared to other methods, and the
cross sections (top and bottom) of the vein are more detectable.

6 Discussion
The main improvement gained by the introduced method is that
the high resolution of the MV beamforming algorithm is
retained while the level of sidelobes is reduced. PA images
reconstructed by DAS beamformer have a low quality, along
with high effects of off-axis signals and high sidelobes. This
is mainly due to the blindness of DAS. In fact, the DAS
algorithm is a procedure in which all contributing samples
are treated identically. On the other hand, DMAS beamformer

is a nonlinear algorithm and leads to a high level of off-axis
signals rejection due to its correlation process. In DMAS beam-
former, all the calculated samples are weighted using a linear
combination of the received signals. This procedure makes
DMAS a nonblind beamforming algorithm, which results in
lower effects of off-axis signals and higher contrast recon-
structed images compared to DAS. However, the resolution
improvement by DMAS is not good enough in comparison with
the MV algorithm. In MV beamformer, samples are weighted
adaptively resulting significant resolution improvement. How-
ever, it leads to a high level of sidelobes. Therefore, we face
two types of beamformers, in which one of them (DMAS)
results in sidelobes improvement, and the other one (MV) leads
to significant resolution enhancement.

The expansion of DMAS algebra shows there are multiple
terms and each of them can be interpreted as a DAS with differ-
ent lengths of array. This could be the source of the low reso-
lution of the DMAS algorithm, and using MV instead of these
terms can be an appropriate choice to improve the resolution.
However, as shown in Eq. (16), the number of contributing sam-
ples in each term of the expansion is different. The length of the
subarray in the spatial smoothing highly affects the performance
of MV algorithm, and in Eq. (16) there are some terms repre-
senting a low length of array and subarray. To address this
problem, necessary terms are added to each term, and then MV
algorithm is applied on it. The superiority of MV has been
proved compared to DAS, and it is expected to have resolution
improvement using MV instead of the existing DAS inside the
expansion. This method has been used in the introduced algo-
rithm twice to suppress the artifacts and sidelobes of MV. In
other words, there are two MV algorithms inside the proposed
method, one on the delayed signals and one on the i’th term of
Eq. (21). The MV implemented on the delayed signals improves
the resolution, but since there is another summation procedure
interpreting as DAS, shown in Eq. (16), the level of sidelobes
and artifacts reduces the image quality. Second, MV is imple-
mented on the i’th term of Eq. (21) to use the properties of MV
algorithm in order to improve the image quality. It should be
noticed that since the expansion of DMAS is used to integrate the
MValgorithm for resolution improvement, there are multiplication
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Fig. 13 Lateral variations at the depth of 33 mm.

Table 5 SNR (dB) values at the different depths using the targets in
Fig. 11.

Depth (mm)

Beamformer

DAS DMAS MV MVB-DMAS

35 28.6 46.96 39.32 53.21

55 24.20 45.87 37.91 50.11

Table 6 CR (dB) values at the different depths using the targets in
Fig. 11.

Depth (mm)

Beamformer

DAS DMAS MV MVB-DMAS

35 30.4 33.8 27 36.3

55 26.3 30.1 26.2 32.5

Fig. 14 The photo of the median antebrachial vein of a 30-year-old
Middle Eastern male.
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operations in the introduced algorithm. The same as DMAS, a
band-pass filter is needed to only pass the necessary informa-
tion.35 The proposed algorithm adaptively calculates the weights
for each samples, which improves the resolution. Since the cor-
relation procedure of DMAS contributes in the proposed
method, the sidelobe level of MV is reduced while the resolution
is retained due to the existence of MV in the proposed method.
MVB-DMAS has been evaluated numerically and experimen-
tally. It should be noticed that the processing time of the pro-
posed method is higher than other mentioned beamformers.
Table 7 shows the order of beamformers computations and cor-
responding processing time. The correlation process of DMAS
needs more time compared to DAS, and MV needs time to adap-
tive calculation of the weights. MVB-DMAS uses two stages of
MV algorithm and a correlation procedure, so it is expected to
result in higher processing time compared to MV and DMAS.
The computational complexity for calculating the weighting
coefficients in MVB-DMAS is in the order of OðL3Þ. Consider-
ing the fact that L supposed to be a fraction of M, the computa-
tional complexity is a function ofM3. Given the weighting coef-
ficient, the computational complexity of the reconstruction
procedure is a function ofM, so the bottle neck of the computa-
tional burden is M3, which is the same as a regular MV algo-
rithm. Note that, the complexity of DMAS and DAS are OðM2Þ
and OðMÞ, respectively. Since the MV algorithm is used in the
proposed method, twice, the effects of length of L have been
investigated, and the results showed that it affects MVB-
DMAS the same as it affects MV. The proposed algorithm sig-
nificantly outperforms DMAS andMV in the terms of resolution
and level of sidelobes, respectively, mainly due to having the
specifications of DMAS and MV at the same time. In fact,
MVB-DMAS uses the correlation process of DMAS to suppress

the artifacts and noise, and adaptive weighting of MV to
improve the resolution.

7 Conclusion
In PAI, DAS beamformer is a common beamforming algorithm,
capable of real-time imaging due to its simple implementation.
However, it suffers from poor resolution and high level of side-
lobes. To overcome these limitations, a DMAS algorithm was
used. Expanding DMAS formula leads to multiple terms of
DAS. In this paper, we introduced a beamforming algorithm
based on the combination of MVand DMAS algorithms, called
MVB-DMAS. This algorithm was established based on the
existing DAS in the expansion of DMAS algebra, and it was
proposed to use MV beamforming instead of the existing DAS.
Introduced algorithm was evaluated numerically and experimen-
tally. It was shown that MVB-DMAS beamformer reduces the
level of sidelobes and improves the resolution in comparison
with DAS, DMAS, and MV, at the expense of higher computa-
tional burden. Qualitative results showed that MVB-DMAS has
the capabilities of DMAS and MV concurrently. Quantitative
comparisons of the experimental results demonstrated that
the MVB-DMAS algorithm improves CR about 20%, 9%,
and 33%, and enhances SNR 89%, 15%, and 35%, with respect
to DAS, DMAS, and MV.
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