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Abstract. We developed machine learning methods to identify fibrolipidic and fibrocalcific A-lines in intravas-
cular optical coherence tomography (IVOCT) images using a comprehensive set of handcrafted features.
We incorporated features developed in previous studies (e.g., optical attenuation and A-line peaks). In addition,
we included vascular lumen morphology and three-dimensional (3-D) digital edge and texture features.
Classification methods were developed using expansive datasets (∼7000 images), consisting of both clinical
in-vivo images and an ex-vivo dataset, which was validated using 3-D cryo-imaging/histology. Conditional
random field was used to perform 3-D classification noise cleaning of classification results. We tested various
multiclass approaches, classifiers, and feature selection schemes and found that a three-class support vector
machine with minimal-redundancy-maximal-relevance feature selection gave the best performance. We found
that inclusion of our morphological and 3-D features improved overall classification accuracy. On a held-out
test set consisting of >1700 images, we obtained an overall accuracy of 81.58%, with the following (sensitivity/
specificity) for each class: other (81.43/89.59), fibrolipidic (94.48/87.32), and fibrocalcific (74.82/95.28). The
en-face views of classification results showed that automated classification easily captured the preponderance
of a disease segment (e.g., a calcified segment had large regions of fibrocalcific classifications). Finally,
we demonstrated proof-of-concept for streamlining A-line classification output with existing fibrolipidic and
fibrocalcific boundary segmentation methods, to enable fully automated plaque quantification. The results
suggest that our classification approach is a viable step toward fully automated IVOCT plaque classification
and segmentation for live-time treatment planning and for offline assessment of drug and biologic therapeutics.
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part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.24.10.106002]

Keywords: machine learning; intravascular optical coherence tomography; cryo-imaging.

Paper 190169RR received May 23, 2019; accepted for publication Aug. 20, 2019; published online Oct. 4, 2019.

1 Introduction
Intravascular optical coherence tomography (IVOCT) has sig-
nificant advantages for characterizing vascular lesions compared
with other imaging modalities used by interventional cardiolo-
gists. This is significant as ∼700;000 percutaneous coronary
interventions (PCIs) are performed in the United States every
year.1 Although clinicians routinely use angiography for
treatment planning to describe the vessel lumen, angiography
does not provide specific information regarding vascular wall
composition, except in the case of severely calcified lesions.2

Intravascular ultrasound (IVUS) can identify the location of
coronary calcium but cannot assess calcium thickness because
the signal reflects from the calcium/soft tissue interface, which
results in an acoustic shadow following the calcium front
surface.3 IVOCT, however, provides the location and often the
thickness of a calcification.4 In addition, IVOCT has a superior
resolution (axial: 15 to 20 μm; lateral: 20 to 40 μm) compared
with IVUS (axial: 150 to 200 μm; lateral: 200 to 300 μm).5,6

Thus, IVOCT is the only intravascular imaging modality with

the resolution and contrast sufficient for identifying thin-cap
fibroatheromas,7–9 which are significant prognosticators of
plaque rupture and subsequent myocardial infarction.10–13

Previous studies have suggested that IVOCT can successfully
identify coronary fibrous, lipid, calcium, macrophage deposi-
tion, and plaque erosion.14–17

We focus on the application of stent treatment planning with
IVOCT and determine the “fibrocalcific” and “fibrolipidic”
portions of a lesion. Hard, fibrocalcific coronary plaques can
restrict stent expansion, necessitating the use of prestent lesion
preparation (atherectomy, cutting balloon, ultrahigh balloon
pressures, etc.).18 Softer, fibrolipidic lesions may not preclude
stent expansion. However, when confronting such cases, appro-
priate determination of stent sizing and its geographic landing
site is necessary to ensure that the edge of a stent does not land
in a fibrolipidic region prone to vascular dissection or stent
rupture. A challenge for live-time stent treatment planning, how-
ever, is that IVOCT generates ∼500 image frames in a single
∼2.5-s pullback scan. Visual determination of fibrolipidic and
fibrocalcific portions of a lesion requires careful consideration
of image features by an expert, making detailed manual analysis
of every image frame time-consuming, labor-intensive, and
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certainly inappropriate for live-time use in the clinic.5 This
creates a need for automated analysis of IVOCT images.

Previous studies have achieved promising results for auto-
mated IVOCT plaque classification. Several groups, including
our own, have demonstrated that the “optical attenuation” coef-
ficient can help identify coronary plaque types.19–22 Others have
shown that A-line peaks can be used to discriminate normal
from diseased vessel regions.23,24 Automated “pixel-wise”
plaque classification was achieved by several groups. Ughi
et al.25 incorporated optical attenuation and texture features with
a random forest classifier to identify fibrous, calcified, and lipid
pixels within an IVOCT image. In addition, this group classified
mature and immature neointimal tissue-covering stents.26

Athanasiou et al.27 utilized intensity and texture features to iden-
tify calcium, lipid, fibrous, and mixed tissues using k-means
clustering and random forest classifier. Zhou et al.28 used edge
detection to identify adventitia and calcium tissue, and they
further refined the calcium boundary using a level-set approach.
In addition, they used wavelet and intensity features with
a random forest classifier to find lipid and mixed tissues. In addi-
tion to voxel-wise segmentation, some groups have performed
A-line plaque classification. Rico-Jimenez et al.24 used a linear
discriminant analysis algorithm to automatically identify A-lines
containing fibrotic and fibrolipid plaques. Our group compared
using a convolutional neural network (CNN) with a fully con-
nected artificial neural network to classify fibrolipidic, fibrocal-
cific, and other A-lines.29 Abdolmanafi et al.30 assessed using
deep learning methods to perform tissue classification23 and to
identify pathological formations in IVOCT images. Moreover,
Gessert et al.31 used CNNs to identify IVOCT frames that
contain plaque. Although all of the aforementioned studies were
promising, some limitations exist. (1) In pixel-wise, semantic
plaque classification, there is a conundrum in labeling and in
evaluation, as the back border is not seen in lipidous plaques
(Fig. 1). (2) It is unclear that all reports use a sufficiently large
base of support in the image to capture a priori knowledge
of vessel wall morphology (e.g., fibrous tissue followed by
a lipidous region). (3) Very few studies consider histological
verification. (4) Many studies have a limited number of images,
limiting the ability to generalize.

We contend that A-line classification approaches have
advantages compared with pixel-wise approaches. We consider
the A-line a more natural analysis element for IVOCT images, as
it can capture important plaque characteristics (e.g., the rapid
fall off of the signal in lipid or the sharp edges of a calcified
lesion). Moreover, when labeling pixels, analysts have no way
of knowing the extent of lipid from an IVOCT image (Fig. 1).
This is because the IVOCT signal quickly decays in areas con-
taining highly attenuating tissues, such that the detected IVOCT
signal is only visible within tens to a few hundreds of microns
beyond the plaque border. Hence, the depth of a lipidous plaque
and the pixels to label in a lipidous plaque are quite arbitrary. In
addition, for calcium and lipid plaques, pixel-wise segmentation
approaches can sometimes produce granular plaque boundaries,
which do not coincide with what is observed histologically for
such tissues. With A-line plaque classification, we can identify
plaque angular boundaries and feed results into previously
developed plaque boundaries segmentation algorithms.7,8,32,33

These algorithms implement border smoothness and connectiv-
ity constraints to better identify plaque boundaries.

This study includes several important contributions. First,
and most important, we evaluated an A-line classification

algorithm that uses the most comprehensive set of handcrafted
features (∼5000) to date. We included many features previously
used for IVOCT plaque analysis23,26–28 and introduced innova-
tive types, including vessel-lumen morphology, which evaluates
the irregular lumen shape often present in calcifications, and
three-dimensional (3-D) digital edge and texture, which can
encompass information from nearby IVOCT image frames.
Second, we created two large, labeled in-vivo and ex-vivo
datasets (∼60 pullbacks, ∼7000 image frames), which include
a very wide variety of lesions, giving an opportunity to better
test generalizability of algorithms. The unique ex-vivo dataset is
labeled with the aid of carefully registered, cryo-imaging data,34

reducing potential labeling bias introduced by human expert
labeling of in-vivo images. The in-vivo dataset ensures that
our work translates to real patient data. Third, we selectively
tested the impact of our intuitive feature groups (e.g., morpho-
logical and 3-D features) on performance, aiding intuitive
interpretation. Fourth, we evaluated classifiers having a
common or different set of features for each plaque type.
Fifth, we applied a conditional random field classification
noise cleaning method previously reported by us29 on en-face
views, creating visualizations for rapid evaluation of classifi-
cation quality. Finally, we demonstrate proof of concept to
use A-line classification to automatically initiate plaque seg-
mentations, which enables fully automated fibrolipidic and
fibrocalcific boundary assessments.

2 A-Line Plaque Classification Algorithm
Our A-line plaque classification approach involved several
steps. We preprocessed the input IVOCT images to reduce
speckle, to correct for catheter optics, and to determine an

Fig. 1 Large plaques relatively unseen by IVOCT due to high attenu-
ation of lipid. Examples of lipid/necrotic tissue (*) are shown in cryo-
images on panels (1a) and (2a) and in corresponding IVOCT images
on panels (1b) and (2b). In highly attenuating lipidous plaque, the
IVOCT signal is only visible for a few hundred micrometers beyond
the plaque border. This is one justification for using our A-line plaque
classification approach rather than the more common pixel-wise
classification methods.
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appropriate tissue region for processing (Supplementary
Material, A.1). Then, we extracted numerous handcrafted fea-
tures, including vascular lumen morphology, optical physics,
A-line peaks, and two-dimensional (2-D)/3-D digital edge and
texture. We classified A-lines as fibrolipidic (from the lumen,
fibrous tissue followed by lipid), fibrocalcific, or “other.” We
used feature selection to choose the best features among the
large number of proposed features. We compared two distinct
multiclass classification strategies: a three-class (3C) approach
and dual binary (DB) classifiers (fibrolipidic and fibrocalcific).
The 3C approach looked for fibrolipidic and fibrocalcific A-
lines simultaneously; the DB classifiers looked for A-lines from
the two groups separately and then merged the results. In both
cases, conditional random field postprocessing was used to
reduce classification noise.

2.1 Classification Feature Extraction

2.1.1 Lumen morphology

Lumen morphological features were implemented to describe
the size and shape of the lumen, which tends to correlate with
hemodynamic shear stress and potentially contributes to athero-
sclerotic plaque formation.35,36 Features were determined from
the ðx; yÞ anatomical view. We computed the “change in lumen
area” (ΔLAZ) along the longitudinal (z) direction, by comparing
the current slice lumen area with each of its adjacent �3 slices.
The absolute lumen area of the current frame was not included
because it depended more on the vessel under study than on
disease. “Lumen eccentricity” was used to assess deviations
from a circular shape, as often found in the presence of plaque,
compared with very circular normal regions (Fig. 2).

Fig. 2 Noncircular lumens with calcified and lipidous plaques. (a) Fairly normal, circular lumen. (b) Very
eccentric lumen in vessel containing two calcified lesions (*). (c) Eccentric lumen with a nearly concentric
lipid plaque.

Fig. 3 A-lines containing calcified/lipidic plaque tend to deviate from a circular lumen contour. A typical
vessel with calcified plaques in anatomical ðx; yÞ view (1a) and (2a) and the corresponding ðr ; θÞ view
(1b) and (2b), respectively, is shown. Within these representations, A-lines containing calcifications are
highlighted by a dashed yellow line placed behind the calcifications. The top row shows the nonannotated
lumen, and the bottom row shows the vessel with a superimposed circular lumen boundary. Both positive
and negative excursions from circularity are seen in (2b).
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We calculated the “frame lumen eccentricity” (FLE), which
is a single value describing lumen eccentricity in the current
frame. We also computed the “change in frame lumen eccentric-
ity” across adjacent slices (ΔFLEZ) by comparing the current
frame FLE with the FLE of each of its adjacent �3 slices.
Individual “A-line lumen eccentricity” (ALE) was determined
in an effort to localize A-lines containing plaque (Fig. 3). To
calculate ALE, we determined the center of mass and area of
the segmented lumen. We then created a perfectly concentric
circle having the same area as the lumen, centered at the center
of mass. We calculated the signed distance between each A-line
lumen boundary point and the corresponding circle boundary
along the radius from the center of mass, giving a vector of
ALE values.

Because we noticed that large eccentric calcifications often
resulted in a flat lumen in our dataset, we computed a best-fit
line for lumen boundary points and extracted corresponding
features (sum of squared residuals, goodness of fit, and line
magnitude) based on the residuals between the points and the
fitted line (Fig. 4). We also compared the values for the same
A-line position for each frame with the values obtained from its
adjacent �3 slices. These features are summarized in Table S1
in the Supplementary Material.

The last lumen morphological feature is “R − θ lumen
curvature” (Fig. 5). Although listed in the morphological group,
this feature could also be considered in the optical group.
A region from an IVOCT image can appear dim, not because
of the presence of plaque but because the IVOCT imaging

Fig. 4 A linear line segment fit to the lumen border has a smaller deviation in the calcified region than
in more normal tissue. Anatomical ðx; yÞ IVOCT image containing calcium plaque (*). Panels show
(a) original image, (b) best-fit line using 1/8 of the points around the lumen border entered on the
normal region, and (c) same line length fit to the calcified region.

Fig. 5 Oblique beam incidence due to an eccentric catheter can cause superficial attenuation (SA) of the
IVOCT signal. (a) Anatomical ðx; yÞ IVOCT image with the corresponding R − θ view shown in (b) vessel
containing calcified plaque (*). (c) Corresponding fluorescence and (d) color cryo-images are shown.
Yellow arrows show the trajectory of the IVOCT signal from the imaging catheter. We observe SA of
the IVOCT signal near the point of entry. This could potentially be misconstrued as attenuating plaque,
although no plaque is present. This SA region in the IVOCT image is near a high gradient of the lumen
boundary, as can be seen in panel (b).
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beam is obliquely incident on the tissue surface resulting in light
being reflected away from the transducer.37 As a surrogate, we
computed the lumen slope in ðr; θÞ images, where a slope of 0
corresponds to a vertical lumen boundary giving a perpendicular
incidence of the beam on the tissue. Large positive or negative
slopes corresponded to an oblique angle of incidence.

2.1.2 Optical

The optical features implemented were inspired by the physics
of IVOCT image acquisition and the tissue optical properties
characteristic of each plaque type.38 Optical attenuation was
included (Fig. 6) because this feature has been well established
in a number of previous studies.19,20,22,26 We used the method
developed by Vermeer et al.21 to determine the optical attenu-
ation. Using a discretized differential equation, they solved the
optical attenuation at each pixel as

EQ-TARGET;temp:intralink-;e001;63;270μðiÞ ≈ I½i�
2Δ

P∞
iþ1 I½i�

; (1)

where μðiÞ is the attenuation at a given pixel, I½i� is the intensity
at the given pixel, Δ is the pixel size, and the summation is
the sum of all intensities “deeper” than the current voxel.

Intensity features for each A-line were extracted from linear
data, as we expect tissues with heavily calcified or lipid tissues
to have low image intensities.14,16 For intensity and optical
attenuation features, we calculated the mean, median, standard
deviation (SD), minimum, maximum, skewness, and kurtosis
values over the following ranges of tissue, observed immediately
after the lumen boundary: 0.0 to 0.25 mm; 0.25 to 0.5 mm; 0.5 to
0.75 mm; 0.75 to 1.0 mm, as well as over the total 1.0 mm.

Additional optical features were included. For each A-line,
we obtained the distance between the catheter and the lumen
boundary because larger distances could contribute to dimin-
ished image intensity. The distance to background intensity

describes the depth at which the signal reached a value for back-
ground, as determined using Otsu’s method.39 We determined
this value by starting at the far depth of the image and searching
toward the lumen to find the first pixel above this threshold. This
feature should detect highly attenuating fibrolipidic regions,
which are consistent with a rapid decay of the IVOCT signal.
All optical features used are summarized in Table S2 in the
Supplementary Material.

2.1.3 A-line peaks

We analyzed prominent peaks in each IVOCT A-line (Fig. 7),
which tend to correlate with plaque type.23,24 Briefly, A-lines
corresponding to normal tissue have a prominent first and
second peak, and the signal tends to monotonically decrease.
Fibrocalcific A-lines have several prominent peaks, and the sig-
nal does not decay monotonically. Finally, fibrolipidic A-lines
tend to have only one prominent peak near the A-line boundary,
and then the signal rapidly decays to baseline intensity. We low-
pass filtered each A-line using a zero-phase shift finite impulse
response filter with order 50 and cut-off frequencies of 0.1 and
0.01 of units 1∕pixel (pixel size ∼5 μm). The cut-off frequency
affects smoothing of the signal. To identify local peaks, we used
the “findpeaks” function in Matlab with a minimum intensity
difference required of 10−4 between a peak and its neighbors.
Several features were determined, as described in Table S3 in
the Supplementary Material.

2.1.4 Digital edge and texture

We used 2-D digital edge and texture features because calcified
plaques tend to have visually pronounced edges and a more
prominently textured appearance than lipidous plaques.14,16

Texture features came from the Leung–Malik filter bank,40

which is a multiscale, multiorientation filter bank containing
48 filters, including multiorientation edge, Gaussian, and
Laplacian of Gaussian filters. We also used the Schmid filter
bank,41 which consists of 13 rotationally invariant filters.
Finally, edge gradients were added (i.e., Laplacian, horizontal
and vertical Sobel, and horizontal and vertical Prewitt). The
parameters for each kernel are presented in Table S4 in the
Supplementary Material. To process these 2-D features, all hel-
ically sampled A-lines over a large vessel segment were merged
to form a large 2-D (r; θ) array, for example, consisting of
about 50;000 × 1000 pixels for a 100-frame segment. The
array was pixel-shifted and only the first 1.0 mm of tissue in the
wall was filtered. We referred to this image as ConcatenatedRθ.
We then convolved this image with our various 2-D digital edge/
texture filters to derive our filter responses. We computed the
mean, median, SD, minimum, maximum, skewness, kurtosis,
and energy values over the following ranges of tissue: 0.0 to
0.25 mm; 0.25 to 0.5 mm; 0.5 to 0.75 mm; 0.75 to 1.0 mm,
as well as over the total 1.0 mm.

We implemented the 3-D digital edge and texture features
(i.e., Laplacian, Laplacian of Gaussian, Sobel, and Prewitt).
To do this, we reshaped our ConcatenatedRθ image to form
a 3-D ðr; θ; zÞ matrix and convolved this image with the various
3-D digital/edge filters from our filter bank. Following 3-D
convolution, the ðr; θ; zÞ matrix was reshaped back to the
ConcatenatedRθ image, and feature values were calculated in the
same manner as for the 2-D edge/texture features described
above. The descriptions are summarized in Table S5 in the
Supplementary Material.

Fig. 6 Optical attenuation map of coronary plaque. A representative
fibrolipidic (1) and fibrocalcific plaque (2) are shown in the ðr ; θÞ view.
(a) An intensity image and (b) the corresponding attenuation map, as
obtained using the Vermeer method. Lipid plaques (dashed yellow
line) tend to have high attenuation near the fibrolipid boundary.
Calcified plaque (yellow asterisk) tend to have lower attenuation
values compared with surrounding fibrous tissue.

Journal of Biomedical Optics 106002-5 October 2019 • Vol. 24(10)

Prabhu et al.: Automated A-line coronary plaque classification of intravascular. . .

https://doi.org/10.1117/1.JBO.24.10.106002.s01
https://doi.org/10.1117/1.JBO.24.10.106002.s01
https://doi.org/10.1117/1.JBO.24.10.106002.s01
https://doi.org/10.1117/1.JBO.24.10.106002.s01


2.2 Classification Model Development

We evaluated two multiclass classification approaches. First,
we created 3C classification approaches, in which A-lines were
categorized into one of three classes: fibrolipidic, fibrocalcific,
or other. We evaluated a random forest classifier (3C-RF) and a
one-versus-all support vector machine classifier (3C-SVM) with
a Gaussian radial basis function kernel. Hyperparameters for
the proposed approaches were empirically determined using one
fold of the training data. We examined sensitivity, specificity,
and overall accuracy metrics since these were ultimately what
we wanted to optimize and they could be used for both random
forest and SVM. For the 3C-RF approach, we used a maximum
number of 20 splits and 30 learners. For the 3C-SVM approach,
box constraint was set to 1.0, and a heuristic search approach in
Matlab was used to automatically determine the manual kernel
scale. For both approaches, feature selection was an important
step to reduce overfitting.

As an alternative multiclass classification approach, we used
DB classifiers, where one classifier was used to classify A-lines
as fibrolipidic versus other, and the other classifier was used to
categorize A-lines as fibrocalcific versus other. For the DB
approach, compared with the 3C approach, feature selection
was carried out independently for each of the two classifiers.
Moreover, for each DB classifier, the training data were skewed,

such that half of the training data belonged to the plaque type of
interest, whereas the remaining half of the data came from the
other two categories. With the DB approach, there is a chance
that both the fibrolipidic and fibrocalcific classifiers will claim
ownership of an A-line. This situation is addressed as described
below following classification noise cleaning. For each DB clas-
sifier, we tried using both random forest (DB-RF) and support
vector machine (DB-SVM), with the same parameters as for
the 3C approach and compared the classification results.

2.2.1 Feature selection

Feature selection was used to identify the best features. For
the 3C approaches, we used the minimal-redundancy-maximal-
relevance (mRMR)42 method. For the DB approach, we tried
both mRMR and the binary Wilcoxon method.43 In both cases,
feature selection was used to rank order the features (from best
to worst) in each group. Next, we performed forward feature
selection, starting with an empty subset and gradually adding
features (starting with the highest ranked features) to train the
classifiers. We plotted overall classification accuracy and indi-
vidual sensitivities for each class. Our “stopping rule” for adding
features was when the values of these classification performance
metrics started to plateau. Finally, we combined the best features

Fig. 7 A-line peak features can facilitate discrimination between fibrocalcific, fibrolipidic, and other
A-lines. Yellow A-lines are plotted from left to right in ðx; yÞ corresponding ðr ; θÞ images, displayed graphi-
cally on the right. Peaks are denoted by asterisks (*). Normal vessels have two characteristic peaks
corresponding to the initial intimal and back adventitial borders (top right). Further the signal appears
to be monotonically decreasing. Lipid lesions tend to have one characteristic peak followed by a fast
decay of the signal (middle right). Fibrocalcific A-lines tend to have a variety of peaks, and a signal with-
out a monotonic decrease (bottom right).
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from each group to form the total feature subset. Note that each
classifier we developed had its own unique set of features.

2.2.2 Feature normalization

Classification features were normalized to ensure that each one
had an equal effect on the classifier performance. Features were
normalized by the mean and SD of the range of values of each
feature, as observed over the training set. This is also referred to
as the statistical z-score. We compared normalizing each feature
across the range of values observed within each individual
vessel with normalizing across the range of values observed over
all vessels. When normalizing across the ranges observed in
all vessels, we normalized in-vivo features and ex-vivo features
separately.

2.2.3 Classification noise cleaning

We used a modified version of the conditional random fields
(CRF) approach, which was presented in Ref. 44, to perform
classification noise cleaning on an en-face view of our data. The
advantage of a fully connected CRF is that it establishes pair-
wise potentials on all pairs of pixels in an image. This means it
performs classification noise cleaning by considering how all
pairs of pixels in an image interact with one another. This is
logical in our case, as we expect plaque types to have volumetric
continuity. We implemented CRF on the en-face ðθ; zÞ view of
the classification results, as this representation shows the classi-
fication results for all A-lines within an IVOCT pullback segment
in a single 2-D view. In our implementation, we only made use of
the smoothness kernel, as we were not conveying the intensity
information to the CRF algorithm. Thus, our implementation of
CRF involved optimization of the following equation:

EQ-TARGET;temp:intralink-;e002;63;399kðfi; fjÞ ¼ ωð2Þ exp
�
−
jpi − pjj2

2σ2γ

�
; (2)

where pi and pj are the pixel positions, ωð2Þ is a weighting
parameter, and σγ controls the amount of nearness. A full
derivation of this equation can be found in the Supplementary
Material.

In this implementation, we only had to optimize two param-
eters corresponding to the smoothness kernel: ωð2Þ and σγ .
We did so using a grid search approach with empirically deter-
mined values for each parameter. We set the values for ωð2Þ as
0.25:0.25:1. Because σγ controlled the degree of smoothness in
both the θ and z directions of the en-face image, each direction
had to be optimized separately. In the θ direction, we set the
values for σγ as 0.5:0.5:1.5. Similarly, in the z direction, we set
the range of values for σγ as 0.5:0.5:1.5. These parameters were
optimized by applying the classifier to all data from one of the
folds in our training set. Because we used the efficient inference
in fully connected CRF implementation,44 the algorithm used
an iterative mean field approximation to the CRF distribution.
In our implementation, we simply set the number of iterations
to 100.

For the 3C results, we only had to use CRF processing once.
For the DB approaches, we applied CRF processing to the fibro-
lipidic classification results and the fibrocalcific classification
results separately. Finally, the cleaned fibrolipidic and fibrocal-
cific results were merged. In the event that an A-line was
classified as both fibrolipidic and fibrocalcific, we classified the
A-line based on the plaque type with the maximum probability
from the initial classification.

3 Experimental Methods

3.1 Creation of Training and Validation Database

We used both a clinical in-vivo and an ex-vivo dataset, validated
by 3-D cryo-imaging/histology. In-vivo IVOCT pullbacks were
obtained from the University Hospitals Cleveland Medical
Center imaging library.45 All pullbacks were imaged before the
interventional procedure. IVOCT images were collected using
a frequency domain OCT system (Ilumien Optis; St. Jude
Medical, St. Paul, Minnesota). A total of 6556 image frames
across 49 patient pullbacks were analyzed. Each polar ðr; θÞ
image consisted of either 448 or 496 A-lines, 968 pixels along
each A-line, and 16 bits of grayscale data per pixel. The ex-vivo
dataset consisted of 440 IVOCT images from 10 segments,
taken from 10 pullbacks. Acquisition of this dataset has
been described previously.34 IVOCT image acquisition for
the ex-vivo data was performed using a LightLab C7-XR
Fourier Domain IVOCT Intravascular Imaging System (C7-XR;
LightLab Imaging Inc., Massachusetts). In this dataset, each
polar ðr; θÞ image consisted of either 1008 or 504 A-lines,
984 pixels along each A-line, and 16 bits of grayscale data per
pixel. Each ex-vivo IVOCT image in our dataset had a corre-
sponding registered cryo-image. Registration between IVOCT
pullbacks and corresponding cryo-image volumes was per-
formed using the registration method developed by Prabhu
et al.34 Labeling of both in-vivo and ex-vivo images is described
in the Supplementary Material (A.4).

3.2 A-line Plaque Classification Experiments

3.2.1 Classification training using in-vivo and ex-vivo
datasets

Classification algorithms were developed using fivefold cross
validation across training data. A held-out test set was also used
to evaluate classification performances. Training data consisted
of 4819 in-vivo images across 41 patients and 440 ex-vivo
images across 10 cadaver coronary arteries. The held-out test
set consisted of 1737 in-vivo images across 22 segments from
eight patients. Each training fold was divided to ensure that all
data from a particular patient were entirely contained within one
fold. No patient data from the held-out test set were contained in
any of the training folds, and vice versa.

We performed a fivefold cross validation across the training
data. For each fold, 45,000 A-lines were used for training,
and 30,000 A-lines were used for testing. The training and
testing A-lines were balanced for each class (1/3 fibrolipidic,
1/3 fibrocalcific, and 1/3 other for the 3C approaches; 1/2 fibro-
lipidic/fibrocalcific and 1/2 equally sampled from the remaining
two classes for the DB approaches). We report confusion
matrices containing the mean� SD classification sensitivities
across all folds on the training data. In addition, we evaluated
results on a held-out dataset. In this case, we trained each clas-
sifier using 45,000 A-lines that were equally sampled across
all five training folds, and applied the classifier to all the data
in the held-out (imbalanced) test set and computed performance
metrics.

To assess the added value of our morphological and 3-D
edge/texture features, we evaluate overall classification accuracy
both with and without inclusion of these features. We assess per-
formance of the best 3C and binary classifier on the held-out test
set. In addition, because fibrocalcific angle assessment is critical
for PCI treatment planning, we perform Bland–Altman analysis

Journal of Biomedical Optics 106002-7 October 2019 • Vol. 24(10)

Prabhu et al.: Automated A-line coronary plaque classification of intravascular. . .

https://doi.org/10.1117/1.JBO.24.10.106002.s01
https://doi.org/10.1117/1.JBO.24.10.106002.s01
https://doi.org/10.1117/1.JBO.24.10.106002.s01


between the automated and the ground-truth methods for fibro-
calcific plaque angle using our best classifier.

3.2.2 Transition of classification output to segmentation
algorithms

We demonstrated proof of concept for streamlining A-line plaque
classification results into existing semiautomated algorithms for
fibrocalcific and fibrolipidic boundary segmentation.7,32,33 We
selected one fibrocalcific case and one fibrolipidic case from
our held-out in-vivo test set to assess implementation. For
each vessel, we only display one plaque type. We input lumen,
guidewire, back boundary segmentation, and angular plaque
boundaries that were automatically determined by our classifier.
The resulting plaque boundaries and volume renderings across
the images were assessed.

3.3 Classification Software Implementation

The computation software was developed on a Dell Precision
T7610 with an Intel® Xeon® CPU E5-2650 v2 with a 2.60-
GHz processor. The computer operated 64-bit Windows 7
Professional with 128 GB of RAM and an NVIDA
Quadro K4000 video card. Image analysis and classification
software was performed in Matlab® 2016B (Mathworks,
Natick, Massachusetts). The Matlab code for the CRF approach
described in Sec. 2.2 can be found in the following GitHub
repository: https://github.com/johannesu/meanfield-matlab/.

4 Results

4.1 A-Line Classification Results

We determined the optimal features and tested the performance
of each one of the 10 combinations of classifiers and feature
selection schemes that we developed. Feature selection was per-
formed to find the optimal number of features for each classifier.
The results are shown for the 3C-SVM classifier in Fig. S2 in the
Supplementary Material. After feature selection, we performed
fivefold cross validation and testing on our held-out dataset.
The best 3C approach was the 3C-SVM. Using fivefold cross
validation on the training data, the 3C-SVM classifier gave
an overall classification accuracy of 74.60%, with percentage
sensitivity/specificity for each class: other (76.90/88.77), fibro-
lipidic (88.33/83.78), and fibrocalcific (69.31/93.10). Moreover,
on the held-out dataset the 3C-SVM classifier gave an overall
classification accuracy of 76.52%, with percentage sensitivity/
specificity for each class: other (81.43/89.59), fibrolipidic
(94.48/87.32), and fibrocalcific (74.82/95.28). The confusion
matrices and the table containing these results are shown in
Fig. S3 and Table S1 in the Supplementary Material.

For the DB approaches, we found that the DB-SVM classi-
fier using mRMR feature selection worked best for fibrolipidic
classification and that the DB-SVM classifier using Wilcoxon
feature selection worked best for fibrocalcific classification.
When performing fivefold cross validation of the training data,
the DB-SVM classifier using mRMR feature selection for fibro-
lipidic classification gave an overall classification accuracy of
80.14%, with percentage sensitivity/specificity for each class:
other (80.59/79.68) and fibrolipidic (79.68/80.59). Moreover,
on the held-out dataset, the DB-SVM classifier had an overall
classification accuracy of 85.46%, with percentage sensitivity/
specificity for each class: other (80.31/90.60) and fibrolipidic

(90.60/80.31). Moreover, when performing fivefold cross
validation of the training data, the DB-SVM classifier using
Wilcoxon feature selection for fibrocalcific classification gave
an overall classification accuracy of 80.03%, with percentage
sensitivity/specificity for each class: other (87.90/72.03) and
fibrocalcific (72.09/87.90). Moreover, on the held-out dataset,
the DB-SVM classifier had an overall classification accuracy
of 81.99%, with percent sensitivity/specificity) for each class:
other (90.59/73.38) and fibrocalcific (73.88/90.59). The confu-
sion matrices and the tables containing these results are shown
in Figs. S4 and S5 and Tables S2 and S3 in the Supplementary
Material.

In addition, we assessed the utility of including morphologi-
cal and 3-D features for A-line plaque assessment (Fig. 8). We
used the best 3C, binary fibrocalcific, and fibrolipidic classifiers
and observed the effect of removing our 3-D and morphological
features on overall classification accuracy on our held-out test set.
For all classifiers, we found a reduction in overall classification
accuracy following the removal of both 3-D and morphological
features, suggesting the utility of incorporating both feature
groups for fibrolipidic and fibrocalcific plaque classification.

4.2 Classification Noise Cleaning

We integrated the output from the best-performing classifiers
from Secs. 4.1 and 4.2 into the CRF classification noise cleaning
approach described in Sec. 2.2 (Fig. 9). For the 3C-SVMmodel,
grid searching suggested the following optimal parameters: ωð2Þ
as 0.75, σγ in the θ direction as 1.5, and σγ in the z direction
as 1.5. For the fibrocalcific DB-SVM using Wilcoxon feature
selection, we set ωð2Þ, σγ in the θ direction, and σγ in the z direc-
tion as 0.5, 1.5, and 1.5, respectively. For the fibrolipidic
DB-SVM using mRMR feature selection, we set ωð2Þ, σγ in
the θ direction, and σγ in the z direction as 0.5, 1.5, and 1.5,
respectively.

For the 3C-SVM approach, CRF cleaning improved the over-
all classification accuracy to 81.58%, with percentage sensitiv-
ity/specificity for each class: other (81.43/89.59), fibrolipidic

Fig. 8 Added benefit of morphological and 3-D feature groups. For
our best 3C classifier (3C-SVM) and our best binary fibrocalcific
(DB-SVM-Wilcoxon) and fibrolipidic (DB-SVM-mRMR) classifiers, we
assessed the overall classifier accuracy with and without the use
of morphological and 3-D features. Performance was tested on our
held-out test set. In virtually all the cases, we saw a decrease in
classifier performance when 3-D and morphological features were
removed, compared with when they were present. This suggests the
value of usingmorphological and 3-D features for plaque assessment.
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(94.48/87.32), and fibrocalcific (74.82/95.28). Improvement in
classification performance after CRF cleaning was also
observed for the DB classifiers. For the fibrolipidic classifier,
CRF cleaning improved the overall classification accuracy to
85.52%, with percentage sensitivity/specificity for each class:
other (84.20/94.58) and fibrolipidic (94.48/84.20). For the
fibrocalcific classifier, CRF cleaning improved the overall
classification accuracy to 91.25%, with percentage sensitivity/
specificity for each class: other (95.71/76.26) and fibrocalcific
(76.26/95.71). These results are also displayed in Fig. S6 and
Table S9 in the Supplementary Material.

We finally merged the cleaned results for the fibrolipidic
and fibrocalcific classifiers to perform an apples-to-apples com-
parison of their performance with that from the 3C classifier
(Fig. 10). After merging, for the DB approaches, we achieved
an overall accuracy of 80.19%, with percentage sensitivity/
specificity for each class: other (79.90/89.31), fibrolipidic
(93.63/85.03), and fibrocalcific (73.52/96.19). Thus, the perfor-
mances of the two approaches were nearly identical, with a
slight edge given to the 3C-SVM classifier. The fact that the two
approaches obtained similar performances yields credence to the

same underlying feature set from which the two approaches
were developed.

4.3 Successful and Challenging Classification
Cases

Overall, our classification approach worked very well in the
majority of cases. We show results from the cleaned 3C-SVM
classification approach. Fibrocalcific cases with sharp borders, a
textured appearance, and very eccentric lumens were easily clas-
sified. Figure 11(a) shows a ∼150- deg fibrocalcific lesion with
a textured appearance and visually sharp luminal and abluminal
boundaries. Figure 11(b) shows a >180- deg fibrocalcific lesion
with a very eccentric lumen, textured appearance, but only lumi-
nal boundaries that were visibly sharp. In both cases, however,
our classifier gave near-perfect assessments of the lesion angular
boundaries. Fibrolipidic cases in which the signal initially peaks
and then decreases were also correctly classified. Figure 11(c)
shows a ∼270- deg fibrolipidic lesion with a sharp peak near
the luminal boundary followed by a rapid decay of the signal.
Figure 12(d) shows a near-360-deg fibrolipidic lesion with

Fig. 9 Classification noise cleaning using the en-face ðθ; zÞ view. CRF implementation smooths the clas-
sification results to eliminate isolated A-lines from being classified as plaque. This is evident for our best
classifiers: 3C-SVM), binary fibrocalcific (SVM-Wilcoxon), and binary fibrolipidic (SVM-mRMR). We show
a representative case for each classifier: (a) initial classification results, (b) CRF cleaned results, and
(c) ground-truth annotations by experts. We visually observed that CRF cleaning made classification
results more similar to those of ground-truth labels. The following CRF parameters were used for
3C, DB-fibrocalcific, and DB-fibrolipidic, respectively: [σΘ: 1.5; σz: 1.5; ω: 0.75], [σΘ: 1.5; σz: 1.5;
ω: 0.5], [σΘ: 1.5; σz: 1.5; ω: 0.75].
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a characteristic initial peak followed by a precipitous decay of
the signal. In both fibrolipidic lesions, a near-perfect agreement
of plaque angular boundaries between manual and automated
assessments was observed.

Because fibrocalcific angle assessment is critical for clinical
treatment planning, we assessed agreement across all frames in
our held-out test set between manual and automated analysis
(Fig. 12). Bland–Altman analysis of the fibrocalcific angle
demonstrated a very strong correlation between the expert and
automated assessments. On average, the difference between
the automated and manual assessments was only 7.7 deg�
39.0 deg. Only 141 of the 1737 images assessed in the held-out
test set were outside the 95% confidence interval. No apparent
bias was observed regarding plaque angle, which suggested that
we can accurately predict the angle of both small and large
calcified lesions.

Across all the 1737 images in our held-out test set, we only
confronted a few challenging cases (Fig. 13). However, we
believe that such cases would be difficult for an analyst as well.
Figure 14(a) shows an image that contains both fibrocalcific
and fibrolipidic A-lines. The classifier correctly identifies both
lesions. However, one part of the lesion referred to as fibrocal-
cific by the analysts is designated as other by the classifier. This
is because a clear back border is not visible in this region, and it
is possible that this region of the plaque is mixed. Figure 14(b)
shows a lesion that was judged to be fibrolipidic by the analysts.
However, the classifier designates one portion of the lesion as
fibrocalcific because this region does not decay clearly, and the
fibrocalcific portion does appear to have some textured appear-
ance and a slightly eccentric shape following the initial signal
peak. In both cases, it is possible that this case was either
misclassified by our experts or contained some combination of
both lipidic and calcific plaque.

4.4 Transition of Classification Output to
Segmentation Methods

We assessed the feasibility of streamlining the A-line classifica-
tion results into existing segmentation methods for one represen-
tative fibrolipidic case and one representative fibrocalcific case
from our held-out test set (Fig. 14). We used the cleaned results
from the 3C-SVM classifier. Fibrocalcific and fibrolipidic boun-
daries are shown in Figs. 14(1) and 14(2), respectively. The
results demonstrated the feasibility of combining classification
output with existing segmentation methods for fully automated
plaque classification and segmentation.

5 Discussion
In this study, we used numerous handcrafted features and expan-
sive clinical in-vivo and ex-vivo validation datasets (totaling
∼7000 images) to develop automated methods to identify fibro-
lipidic and fibrocalcific IVOCT A-lines. We incorporated fea-
tures developed in previous studies that assessed tissue optical
properties,21,22 A-line peaks,23,24 and 2-D texture features.25–27,46

In addition, we developed features based on vascular lumen
morphology and 2-D/3-D digital edge and texture. We investi-
gated two strategies for multiclass classification: a 3C approach
and DB classifiers. The 3C approaches tried to simultaneously
detect fibrolipidic and fibrocalcific A-lines. The DB approaches
tried to detect fibrolipidic and fibrocalcific A-lines independ-
ently and then merge results together. Our 3C approach using
a multiclass SVM classifier and mRMR feature selection with
a common set of features for fibrolipidic and fibrocalcific
A-lines had the best performance. Following classification
noise cleaning (Fig. 13), this approach had an overall classifi-
cation accuracy of 81.58% for all A-lines in a held-out test
set (∼1800 images), with percentage sensitivity/specificity for

Fig. 10 Comparison of 3C and combined binary fibrolipidic and fibrocalcific classifiers for multiclass
classification on the held-out test set. After classification noise cleaning, we merged the results of the
DB classifiers to enable an apples-to-apples comparison with the 3C approach for multiclass classifica-
tion. For the 3C-SVM approach, we achieved an overall accuracy of 81.58%, with percentage sensitivity/
specificity for each class: other (81.44/89.59), fibrolipidic (94.48/87.32), and fibrocalcific (74.82/95.28).
For the combined DB classifiers, we achieved an overall accuracy of 80.19%, with percentage sensitivity/
specificity for each class: other (79.90/89.31), fibrolipidic (93.63/85.03), and fibrocalcific (73.52/96.19).
Overall, we obtained very similar values for both our multiclass approaches, with the 3C-SVM giving
slightly better performance.
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each class: other (81.43/89.59), fibrolipidic (94.48/87.32),
and fibrocalcific (74.82/95.28). In addition, fibrocalcific angle
detection between manual and automated assessments over
our entire test set as assessed using Bland–Altman analysis
was 7.7 deg�39.0 deg (Fig. 12). Again, this indicates strong
performance of our automated approach. In addition, we dem-
onstrated proof of concept for streamlining classification output
with existing fibrolipidic and fibrocalcific boundary segmenta-
tion methods (Fig. 14). Fully automated IVOCT plaque charac-
terization could facilitate live-time stent treatment planning and
offline assessment of drug and biologic therapeutics. The auto-
mated results could be input into finite element models to pre-
dict the clinical outcomes of using stents in certain lesions.47,48

Thus, from A-line segmentation results, we have an opportunity
to give recommendations on proper stent sizing, location, and
potential plaque modifications. Moreover, the software provides
an opportunity for offline assessment of drug and biologic thera-
peutics. That is, the software developed could help facilitate
analysis of plaque progression/regression in offline assessments
of patient data.

We believe that our approach of combining A-line classifi-
cation with segmentation methods is advantageous compared
with pixel-wise classification. This is because IVOCT data are
acquired as a series of one-dimensional A-lines, which makes
A-line analysis a natural means of assessing IVOCT images.
Moreover, pixel-based classification is severely compromised
in areas containing highly attenuating tissue types (Fig. 1).
Furthermore, pixel-based classification can produce granular
borders, which do not reflect the plaque boundaries that are
histologically observed. Using A-line classification with 3-D
classification noise cleaning, we locate the general location of
plaque. Then, we apply plaque boundary segmentation to the
location to find the exact location and to quantify plaque burden.
Not only does this approach produce biologically observe
plaque boundaries, but it also mimics how IVOCT image assess-
ment was performed by our analysts.

Incorporation of morphological and 3-D features into our
classification approach improved the overall classification accu-
racy (Fig. 11). Morphological features were inspired by previous
studies, which suggest that vascular lumen morphology changes

Fig. 11 Successful classification results of our 3C-SVM classifier on our held-out test set.
(a)–(d) Agreement between expert annotated (outer ring) and automated (inner ring) assessments of
plaque angular boundaries. In (a) and (b), we see two frames successfully classified as fibrocalcific, with
the near-perfect agreement of boundaries between manual and automated assessments. In (c) and (d),
we see two representative frames successfully classified as fibrolipidic. Again, we observe a near-perfect
agreement of boundaries between manual and automated assessments.
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coincides with plaque incidence.35,36 Digital 2-D/3-D edge fea-
tures accounted for the difference in edge strength observed
between the fibrolipidic and fibrocalcific boundaries.14,16 The
3-D features accounted for the biologically observed, volumetric
continuity of blood vessels and associated plaques. The
improvement in overall classification accuracy by incorporating
these feature groups suggests that future studies would benefit
by considering such features for IVOCT plaque classification.

Several groups, including our own, are investigating deep
learning approaches for IVOCT image analysis and plaque
classification.23,29,30 Hybrid methods, which combine such deep
learning results with the handcrafted features used in our study,
could further improve classification performance.

We varied our multiclass classification strategy, choice of
classifier, and feature selection algorithms to optimize the
classification performance (Figs. S2–S6 in the Supplementary
Material). The decision to vary such parameters was based
on previous studies43 that suggested that optimizing these
parameters affects classification performance. In the end, we
merged our DB classifiers to obtain a multiclass result, which
we compared with the results of 3C classification (Fig. 10).
We found nearly identical performance using these approaches.
The fact that all approaches performed similarly is evidence of
the robustness of our feature set.

Classification noise cleaning, which combines CRF and mor-
phological image-processing operations, smoothed classifica-
tion results and improved classification true positive rates by
∼5% (Fig. S6 in the Supplementary Material). This processing
was performed on the en-face (θ − z) view of data, which is
an innovative way of viewing volumetric classification results
for a vessel in a single 2-D view. Thus, our method ensured that
classification results made sense from a biological standpoint,
considering that plaques demonstrate volumetric continuity.
We used a CRF model44 for classification noise cleaning.
This algorithm considers the classification probabilities but
also enables incorporation of intensity information into deter-
mining cleaned classification results. In our approach, we only
considered classification probabilities. Future studies can inves-
tigate whether incorporating en-face intensity data improves
classification performance. In previous work, we generated

Fig. 13 Challenging cases for classification. (a), (b) Agreement between expert annotated (outer ring)
and automated (inner ring) assessments of A-line classification. In (a), a case that contains both a fibro-
calcific and a fibrolipidic lesion is shown. The classifier successfully detects both lesions. However, a
small portion of what analysts deemed as calcium was classified by automated assessment as other
(denoted by *). However, this region of misclassification is missing a visible abluminal border for the
fibrocalcific lesion. Thus, it could potentially be a mixture of both fibrolipidic and fibrocalcific lesions.
On the right, we have a case deemed by experts as a concentric fibrolipidic lesion. However, automated
assessment deemed one portion as fibrocalcific. In this case, the plaque boundary does not appear to
have a bright peak followed by precipitous decay of the signal, potentially indicating that the lesion is also
a mixture of fibrolipidic and fibrocalcific plaque.

Fig. 12 Bland–Altman assessment demonstrates a strong agreement
between the manual and automated assessments of fibrocalcific
plaque boundaries across all frames in our held-out test set. The
mean value of agreement was 7.70 deg�38.97 deg. No apparent
bias was observed regarding plaque angle, which suggested that we
can accurately predict the angle of both small and large calcified
lesions. Only 141 of 1737 frames were outside the 95% confidence
interval of agreement.
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intensity-based IVOCT en-face views49 to facilitate stent seg-
mentation. Such views could be incorporated into the CRF
model.

Classification models were developed using both in-vivo and
ex-vivo training data. This is advantageous because it instills
confidence in our training data and annotation labels. Labels
in ex-vivo data were obtained from accurately registered,
cryo-imaging data, facilitating accurate labeling. The use of
in-vivo data ensures that our classification approach is appli-
cable to real patient data. Although our classification approach
performed well in the majority of cases, we noticed several
challenging cases in our held-out test set (Fig. 14). We believe
that these challenging cases were potentially mixed lesions.
Expansion of our ex-vivo training database could help with
classifying such cases.

A number of software implementation optimizations were
necessary while developing our classification approach. This
study involved machine learning using very expansive datasets.
In total, ∼2.3 million A-lines were analyzed, each as an individ-
ual sample. For each A-line, we extracted a total of ∼5000 fea-
tures before feature selection, most of which were of data type
double. Thus, although the computer we used had 128 GB of
memory, we needed to carry out frequent memory clearing when
performing computations on the entire data set. For feature
extraction, it was imperative to preallocate data matrices and
perform computation on portions of data at a time. Matrix
reshaping and concatenation to generate our ConcatenatedRθ
image and 3-D ðr; θ; zÞ matrix facilitated the computational

extraction of digital edge and texture features. When performing
classification model development and fivefold cross-validation
training, it was necessary to subsample data. These computa-
tional limitations could be circumvented in the future using
computers with vast amounts of memory. Finally, although the
classification time on precomputed features for the 3C-SVM
classifier was ∼3 s∕frame, classification feature extraction is
a rate-limiting step. We could expedite feature extraction by
experimenting with further feature reduction to see whether
we can use fewer features to generate comparable classification
results. Improving our hardware resources by increasing com-
puter memory and using more powerful graphics-processing
units can further reduce computation time.

6 Conclusion
IVOCT is a promising intravascular imaging modality for
assessing coronary plaque burden to perform stent treatment
planning. Our algorithm automatically classifies fibrocalcific
and fibrolipidic IVOCT A-lines, using a very large number of
handcrafted features and is developed using expansive in-vivo
and ex-vivo, cryo-image validated datasets. Use of our 3-D and
lumen morphology features improved classification accuracy,
suggesting the importance of these intuitive features. A-line
classification results were streamlined to initiate plaque segmen-
tation. The study results suggest that our classification approach
is a viable step toward fully automated IVOCT plaque classifi-
cation and quantification for both live-time treatment planning
and offline assessment of drug and biologic therapeutics.

Fig. 14 Transition of A-line classification results into semiautomated plaque segmentation approaches.
We demonstrate proof of concept to output our A-line classification results into previously developed
fibrocalcific and fibrolipidic boundary segmentation approaches. This enables fully automated plaque
classification and segmentation. (1) A representative fibrocalcific plaque example. (2) Representative
fibrolipidic plaque. In both examples, (a) contains a volume rendering with vessel wall shown in orange,
and (b) and (c) show a representative frame before and after plaque boundary segmentation, respec-
tively. In (1c), calcium plaque is shown in white. (2c) Lipid cap thickness in color heatmap. Lumen border
is outlined in blue in both cases.
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