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Abstract. Confocal detection in digital scanned laser light-sheet fluorescence microscopy (DSLM) has been
established as a gold standard method to improve image quality. The selective line detection of a complementary
metal–oxide–semiconductor camera (CMOS) working in rolling shutter mode allows the rejection of out-of-focus
and scattered light, thus reducing background signal during image formation. Most modern CMOS have two
rolling shutters, but usually only a single illuminating beam is used, halving the maximum obtainable frame rate.
We report on the capability to recover the full image acquisition rate via dual confocal DSLM by using an acousto-
optic deflector. Such a simple solution enables us to independently generate, control and synchronize two
beams with the two rolling slits on the camera. We show that the doubling of the imaging speed does not affect
the confocal detection high contrast. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.24.10
.106504]
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1 Introduction
Fluorescence microscopy, due to its combination of molecular
specificity and high contrast, has broad application in a wide
range of research areas, from cell biology to neuroscience.1,2

In particular, light-sheet fluorescence microscopy (LSFM) has
become one of the fastest growing techniques for imaging of
three-dimensional (3-D) thick samples.3–5 By illuminating a sin-
gle plane of the sample, it provides intrinsic optical sectioning
and fast image recording, while minimizing out-of-focus fluo-
rescence background and reducing sample photodamage and
photobleaching. In such a microscope, the light-sheet is usually
created by means of a cylindrical lens3 or by rapidly scanning a
Gaussian (or a nondiffracting) beam, as in digital scanned laser
light-sheet microscopy (DSLM).6–8 The induced fluorescence is
imaged through a simple wide-field detection path. However,
when 3-D imaging is performed in turbid samples, the illumi-
nation light can suffer from scattering effects which lead to
spurious background signals that cannot be rejected by the
wide-field detection path, effectively degrading the signal-to-
background ratio. Several optimizations of LSFM have been
implemented to mitigate or to avoid this effect. In particular,
structured illumination (DSLM-SI)9 and confocal-like detection
(CLSFM)10 have been introduced into the DLSM configuration
to spatially filter the out-of-focus and scattered light. DSLM-SI
requires multiple images and postprocessing, while CLSFM

needs only to record line-by-line the fluorescence emitted at
each light beam position through a confocal slit placed in the
detection path. CLSFM can be implemented either by acquiring
an image for each illumination position and then fusing them,7

or in a single acquisition by descanning with two additional gal-
vanometric mirrors placed before and after a physical slit,11 or
by leveraging as a virtual slit the in-built rolling shutter readout
mode of scientific complementary metal–oxide–semiconductor
(sCMOS) cameras10 [Fig. 1(b)]. In the two latter cases, synchro-
nizing the rates and positions of the digital light-sheet and the
rolling shutter line-by-line sensor readout is enough to form the
confocal image, which is simple and cost-efficient to realize, to
the point of stimulating even camera manufacturers to imple-
ment a fine control of the rolling shutter parameters in their sen-
sor drivers.

sCMOS cameras typically have two rolling shutters, one for
each half of the sensor [Fig. 1(c)], but in most DLSM setups a
single beam is scanned by a galvanometric mirror. This requires
the use of a single rolling shutter moving from the top to the
bottom of the sensor (or vice versa) to obtain confocal detection
[Fig. 1(b)], leading to a halving of the maximum frame rate. This
limitation becomes important when investigating fast events such
as calcium transients12,13 or very large volumes,4,9,14–16 but can
be overcome by generating two independent parallel light-sheets
within the field of view (FOV) and by synchronizing them with
the two rolling shutters, at the cost of increased complexity. A
first such system has been realized using a DLSM17 where two
focused illuminating beams, coming from two identical but fac-
ing each other objectives, scan half the FOV each in opposite
directions. However, this can lead to inhomogeneous illumina-
tion and counter propagating striping artifacts over the full FOV,
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especially in a turbid sample. A different solution based on a
single-sided dual Bessel beam confocal illumination scheme has
been reported.18 Here, the interline distance between the two
beams is fixed and a digital micromirror device has been placed
in the detection path to enable the confocal detection on any
CMOS camera, with the drawback of additional system com-
plexity and of the camera integrating more dark noise.

Here, we show the advantages provided by acousto-optic
deflectors (AODs) for simultaneous dual-beam confocal detec-
tion in DLSM. AODs are fast laser beam deflectors that are
increasingly applied in the field of high-speed imaging.19,20

They are based on a periodically changing refractive index
inside a transparent crystal which is induced by propagating
sound waves, created by an oscillating piezo at MHz frequency.
The crystal behaves like an optical grating, which diffracts an
impinging laser beam. When the piezo of the AOD is driven
by a single frequency, it allows to control the deflection and the
intensity of a single beam. Interestingly, when the piezo is driven
by multiple frequencies, the crystal behaves like a linear combi-
nation of gratings, allowing to generate simultaneously different
beams from a single one. Each beam can be independently regu-
lated in terms of spatial direction and intensity. Recently, we
used this AOD capability to demonstrate the simultaneous gen-
eration and control of multiple beams to attenuate striping arti-
facts present in LSFM images.21 In this letter, we report on the
use of an AOD in the illumination path of a DLSM to independ-
ently generate two Gaussian beams and sweep them across the
FOV synchronously with any double rolling shutter readout direc-
tion of an sCMOS camera, resulting in a twofold peak frame-rate
speed-up in the confocal detection regime, without loss of con-
trast. We apply this high-speed CLSFM to explore the mouse
brain structure with subneuron resolution and to record zebrafish
larvae’s brain activity, which are typical LSFM applications.

2 Methods

2.1 sCMOS Camera Readout Modes

To understand the aforementioned performance gain, an overview
of the several image acquisition schemes enabled by different
sCMOS camera readout modes is beneficial. Figure 1(a) shows
the global shutter acquisition mechanism, where every pixel is
simultaneously activated to capture the image all at once.
Differently, as shown in Figs. 1(b)–1(c), in rolling shutter mode
one or few pixel rows are concurrently activated, sweeping across
the sensor’s matrix and providing a sequential scan of the image.
The readout of each pixel row follows the exposure, leading to a
line by line temporal shift, even if the exposure time is the same
for each line. There exist several sensor readout modes depending
on the number and type of rolling shutters implemented by the

camera manufacturer. If only one rolling shutter is available, then
it can be continuously swept from the top edge to the bottom one
or vice versa, as shown in Fig. 1(b). In most state-of-the-art
sCMOS cameras, the sensor is divided in two halves that are
jointly recorded via two rolling shutters moving from the middle
out to the top (or bottom) edges or in the same direction, as
depicted in Fig. 1(c), or even in a single sweep from one edge
to the other, as if a single shutter was present.

2.2 Experimental Setup and AOD Operation

To benefit from the confocal detection modality enabled by the
rolling shutter modes on sCMOS cameras, the illuminating
beams must be spatially overlapped and synchronized with the
moving virtual slit positions on the sensor, as shown in Fig. 2(a).
Figure 2(b) displays the schematic of the light-sheet microscope
implemented here for single- and dual-confocal detection. The
optical architecture is based on a DSLM where the galvo mirror
is replaced by an AOD. A visible light beam from a diode laser
(488 nm, Coherent Sapphire 300) is expanded and collimated by
a pair of achromatic lenses (Thorlabs AC254-30-A and AC254-
150-A). Then, the beam is guided into the AOD (AA Opto
Electronic DTSX-400, TeO2, aperture 7.5 × 7.5 mm2) that is
driven by a radio frequency (RF) system (four channel signal
generator Analog Devices AD9959PCBZ followed by a
Minicircuits power combiner ZMSC-2-1W+ and an amplifier
ZHL-1-2W-S+). A scanning lens (Thorlabs AC508-200-A,
fL ¼ 200 mm), placed after the AOD, converts the angular
deflection into a lateral displacement of the incident light.
The beam is then directed by the excitation tube lens (Thorlabs
AC508-100-A, fL ¼ 100 mm) to the pupil of an illumination
objective lens (Nikon N10X-PF 10X, 0.3 NA, 16 mm WD).
The sample, embedded in a cylinder of 1% agarose gel, was
immersed in a water-filled cuvette sized 10 × 12 mm2. The fluo-
rescence emitted from the sample is collected with an imaging
objective (Nikon N10X-PF 10X, 0.3 NA, 16 mm WD), and a
tube lens of focal length of 200 mm (Thorlabs TTL200-A) cre-
ates an image on an sCMOS camera (Hamamatsu Orca-Flash4.0
V3, 2048 × 2048 pixels of 6.5 × 6.5 μm2 size). The experimen-
tal lateral and axial resolutions are 1.5 and 9.0 μm, respectively,
while the light-sheet FWHM waist is 10 μm in order to be
within one Rayleigh range over the FOV of 1.33 × 1.33 mm2.
The xyz coordinate system is chosen as follows: the light-sheets
are created in the x − y plane with the x axis along the beam
propagation direction, and the z direction is along the imaging
optical axis. A trigger emitted by a National Instruments PXIe-
6738 card starts the single- or dual-confocal sample illumination
and image acquisition processes, by activating one or two RF
ramps on the signal generator that governs the AOD deflection
of the laser beams and by synchronously moving the virtual slits
across the camera sensor, as shown in the timing diagrams in
Fig. 3. In the dual diverging or converging rolling shutter modes,
if the sample presents a significant background level, cross talk
between the two light-sheets may be observable when they over-
lap in the center of the sensor. To minimize preventively this
effect, which does not affect the parallel modes, we tailored the
timing and the starting and ending frequencies of the RF ramps
to avoid physically overlapping the two light-sheets at any time
on the sensor. In Video 1, by imaging a sample of uniform fluo-
rescent 1% agarose gel immersed in water, we illustrate the
AOD capability to generate all the light patterns required to
match the available rolling shutter readout modes [shown in
Fig. 1(b)–1(c)].

Fig. 1 Image acquisition schemes: (a) in global shutter mode all pix-
els are exposed at once (orange color), while in (b) single- or (c) dual-
rolling shutter modes only one or two sets of neighboring pixel rows
are concurrently active, before sequentially enabling the next ones in
the direction indicated by the arrows. The red line in (c) demarcates
the sensor halves.
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2.3 Sample Preparation

2.3.1 Mouse

One C57Bl6 mouse was anesthetized with isofluorane and per-
fused transcardially with ice-cold 4% paraformaldehyde. The
brain was post-fixed overnight at 4°C and then cleared using
the passive CLARITY technique.24 The fixed mouse brain was
incubated in hydrogel solution [4% (wt/vol) acrylamide, 0.05%
(wt/vol) bis-acrylamide, 0.25% (wt/vol) VA044] in 0.01 M PBS
at 4°C for 3 days. The sample was then degassed and incubated
at 37°C for 3 h to allow the hydrogel polymerization. The brain
was then extracted from the polymerized gel and incubated in a
clearing solution [200 mM sodium borate buffer, 4% (wt/vol)
sodium dodecyl sulfate (pH 8.5)] at 37°C for 1 month while gen-
tly shaking. The sample was then washed with PBST (0.1%
Triton X-100 in 1× PBS) twice for 24 h each at room temper-
ature. The cell nuclei were stained by incubation in PBS at RT
for 24 h with Sytox-Green (Thermofisher). The next day, the
sample was washed with PBS and imaged. Mouse experiments
were carried in accordance with European and Italian law on
animal experimentation (D.L. 4 March 2014, no. 26), under
authorization no. 790/2016-PR from the Italian Ministry of
Health.

2.3.2 Zebrafish

Adult and larval zebrafish (Danio rerio) were maintained for
breeding at 28°C on a 14 h/10 h light/dark cycle according
to standard procedure. Embryos and larvae were raised up to
5 dpf (days postfertilization) in fish water [150 mg∕L instant
ocean, 6.9 mg∕L NaH2PO4, 12.5 mg∕L Na2HPO4 (pH 7.2)]

Fig. 3 System timing configuration diagrams for single- (a) and
dual-beam (b) confocal illumination. A common trigger starts the cam-
era acquisition and tailored RF ramps on the signal generator that
drives the AOD illumination sweep. The image insets are frames from
Video 1 (MPEG, 0.1 MB [URL: https://doi.org/10.1117/1.JBO.24.10
.106504.1]), at the times marked by the dotted lines, of a uniform fluo-
rescent 1% agarose gel in water, imaged with the corresponding roll-
ing shutter readout mode.

Fig. 2 Schematic of: (a) sCMOS camera operating in single- or dual-rolling shutter mode with the illu-
minating beam (or beams) matching the position and synchronized with the scan rate of the virtual slit
(or slits); (b) the excitation and imaging paths from side and top views.
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in a Petri dish kept at 28°C. We used 5 dpf transgenic Tg(elavl3:
H2B-GCaMP6s) zebrafish larvae22 in homozygous albino back-
ground to avoid the presence of skin pigments. Each sample was
transferred into a 2-mL tube containing 1.5% w/v low gelling
temperature agarose (A9414, Sigma) dissolved in fish water,
kept at 38°C, and then introduced into a glass capillary (O.D.
1.5 mm) with a pipette, as in Refs. 8 and 25. After gel polym-
erization, the head portion of larva was extruded from the capil-
lary. To minimize movement artifacts, larvae were preincubated
10 min in 2 mM d-tubocurarine (T2379, Sigma) dissolved in
fish water. The capillary containing the larva was then mounted
in a custom-made holder and immersed in the fish water-filled
cuvette. Fish rising and experiments were carried in accordance
with European and Italian law on animal experimentation (D.L.
4 March 2014, no. 26), under authorization no. 407/2015-PR
from the Italian Ministry of Health.

3 Results
To test the frame-rate speed-up of our CLSFM in the dual-con-
focal detection regime over the single one and to verify its
impact on the contrast, we imaged samples of mouse brain tissue
[Figs. 4(a) and 5] and resting state neural activity in live zebra-
fish larvae [Fig. 4(b)] in the different rolling shutter readout
modes. We chose these types of samples because they are typical
examples of structural4,11 and functional14,22,23 LSFM applica-
tions. No qualitative difference between the two detection
regimes is observable, moreover, we quantitatively compared
them by estimating the contrast in the mouse brain images as
in Ref. 9. Each image was normalized by its total intensity, then
the standard deviation of the image histogram was calculated
and normalized to the single confocal beam case, obtaining
an adimensional ratio that quantifies well differences in contrast.
The results reported in Table 1 show that the contrast does not

vary significantly between the two imaging schemes, as
expected, since the single row exposure time does not change,
while the concurrent readout of the two parts of the camera sen-
sor allows to halve the total exposure time, doubling the frame
rate. We verified that no cross talk is observable with the tested
highly transparent samples in the sensor center in the diverging
[Fig. 5(c)] or converging [Fig. 5(d)] rolling shutter modes. In
Video 2, we show an example of a dual CLSFM time-lapse
acquisition at 90 frames per second (fps) of zebrafish larvae rest-
ing state neural activity, slowed down to 30 fps for presentation
convenience. We note that horizontal striping artifacts, mainly
due to blood flow, are present in both Video 2 and Fig. 4(b).

4 Conclusion
In summary, we have implemented an AOD-based dual
Gaussian beam excitation system capable of single- and dual-
virtual slit confocal LSFM. AODs allow inertia-free MHz scan
rates and the generation of multiple sheets with independent spa-
tial and amplitude control,21 which can be easily synchronized
with any single- or dual-rolling shutter readout mode of an

Fig. 4 Representative single (right, top to bottom readout) and dual
(left, diverging rolling shutter readout) beamCLSFM full-frame images
of (a) cell nuclei in a mouse brain and (b) neuron nuclei in a zebrafish
larva brain, respectively, color-coded in yellow and purple. The inset
in (b) shows a four times magnified left habenula area within the
diencephalon where neural activity can be observed. An extended
dual CLSFM zebrafish brain time-lapse recording at 90 fps is shown
in Video 2 (MPEG, 2.8 MB [URL: https://doi.org/10.1117/1.JBO.24.10
.106504.2], slowed down to 30 fps). Scale bar size: 200 μm; 20 μm in
the inset.

Fig. 5 Representative (a) and (b) single and (c)–(f) dual beamCLSFM
full-frame images of cell nuclei within the same mouse brain cortex
area, acquired in the different rolling shutter readout direction modes
of the sCMOS camera. No qualitative nor quantitative difference in the
image quality is observable.

Table 1 Comparison between single- and dual-beam CLSFM
performance.

Modality Normalized contrast Frame texp (ms) fps

Single beam 1.000� 0.020 22 45

Dual beam 1.019� 0.015 11 90
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sCMOS camera. We have demonstrated that the dual-confocal
detection regime achieves a twofold improvement in imaging
speed, in respect to traditional confocal LSFM, without any neg-
ative impact on the contrast, at the very least in the case of sam-
ples with small background levels such as optically cleared
tissues or zebrafish larvae. Since the AOD behaves here like
a galvo mirror, but has smaller scan angles, our method would
work well with objectives that have higher magnification and
resolution, but an equal or smaller FOV than ours. It would oper-
ate even with higher FOVobjectives as long as the desired light-
sheet waist is obtainable by selecting suitable scan and tube
lenses and input beam size. A further improvement of the image
quality may be achieved by attenuating striping artifacts, which
would require adding a dual-sided illumination, a beam pivoting
system21 or switching to Bessel beam illumination8,18 by intro-
ducing after the AOD two suitable axicons or a spatial light
modulator. Our method may prove useful for high throughput
imaging of large tissue volumes4,9,14–16 and live biological stud-
ies with high temporal resolution.12,13,23
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