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Abstract. As photoacoustic imaging (PAI) technology matures, computational modeling will increasingly re-
present a critical tool for facilitating clinical translation through predictive simulation of real-world performance
under a wide range of device and biological conditions. While modeling currently offers a rapid, inexpensive tool
for device development and prediction of fundamental image quality metrics (e.g., spatial resolution and contrast
ratio), rigorous verification and validation will be required of models used to provide regulatory-grade data that
effectively complements and/or replaces in vivo testing. To address methods for establishing model credibility,
we developed an integrated computational model of PAI by coupling a previously developed three-dimensional
Monte Carlo model of tissue light transport with a two-dimensional (2D) acoustic wave propagation model imple-
mented in the well-known k-Wave toolbox. We then evaluated ability of the model to predict basic image quality
metrics by applying standardized verification and validation principles for computational models. The model was
verified against published simulation data and validated against phantom experiments using a custom PAI sys-
tem. Furthermore, we used the model to conduct a parametric study of optical and acoustic design parameters.
Results suggest that computationally economical 2D acoustic models can adequately predict spatial resolution,
but metrics such as signal-to-noise ratio and penetration depth were difficult to replicate due to challenges in
modeling strong clutter observed in experimental images. Parametric studies provided quantitative insight into
complex relationships between transducer characteristics and image quality as well as optimal selection of opti-
cal beam geometry to ensure adequate image uniformity. Multidomain PAI simulation tools provide high-quality
tools to aid device development and prediction of real-world performance, but further work is needed to improve
model fidelity, especially in reproducing image noise and clutter. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its
DOI. [DOI: 10.1117/1.JBO.24.12.121910]
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1 Introduction

1.1 Photoacoustic Imaging

Breast cancer is the second leading cause of cancer-related
death for American women,1 and early detection and accurate
diagnosis are critical for reducing its mortality rate.2 The current
standard of care includes mammography screening as well as
adjunct supplemental ultrasound for diagnosing suspicious
lesions.3 However, mammography requires ionizing radiation
and has low sensitivity in dense breast tissue while ultrasound
has low specificity for breast cancer.1–4 Photoacoustic imaging
(PAI) is a rapidly emerging modality combining pulsed optical
excitation and acoustic detection for deep mapping of light-
absorbing chromophores to depths of several centimeters.5,6

Because optical absorption in tissue is dominated by oxy- and
deoxy-hemoglobin (HbO2, Hb), PAI is capable of visualizing
vasculature and, through multispectral measurements of tissue
absorption, mapping tissue blood oxygen saturation (SO2).

7,8

As some hallmarks of malignant cancer include tissue hypoxia
and abnormal vasculature,9 PAI may potentially improve cancer
detection by providing information on tissue function to

complement structural information provided by other breast
imaging modalities.10–13 A wide variety of PAI system designs
are described in the literature, and differences in system
design parameters such as illumination geometry, optical wave-
length(s), transducer array geometry, and transducer acoustic
frequency response are expected to produce systems with
different levels of performance.13–20 PAI device performance
assessment currently relies on combinations of bench testing
(including tissue-mimicking phantoms),21–25 preclinical animal
studies,26,27 and clinical trials,17,18 each of which possesses vary-
ing degrees of burden, cost, and ability to adequately represent
in vivo imaging scenarios in complex tissues. Therefore, there
is a need for additional nonclinical tools to more rapidly and
accurately predict real-world performance of PAI devices.

1.2 Multidomain Simulation of PAI

Computational modeling is an increasingly common approach
for PAI device evaluation and performance assessment, includ-
ing simulation of optical, acoustic, and thermal transport
phenomena.28,29 Models with sufficient accuracy and real-world
fidelity can be used to predict device performance and thus sup-
plement or eventually replace costlier phantom, animal, and/or
clinical testing. Fast, cheap prediction of fundamental photo-
acoustic image quality metrics often measured using phantom
tests (e.g., spatial resolution, penetration depth) is especially
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appealing as such metrics can inform iterative optimization of
device design. However, it is unclear how to evaluate photo-
acoustic computational model performance or establish model
credibility for a given intended application. Due to increased use
of computational models in medical device development and
evaluation,30 a standardized approach for assessing model cred-
ibility through verification and validation (V&V) procedures has
been developed through the American Society of Mechanical
Engineers (ASME).31–33 Within this framework, verification
involves determining that a computational model accurately
solves the underlying set of equations. Validation involves
determining how accurately a model represents a real-world
system through comparison to experimental data.

Various approaches for multidomain PAI simulations using
different optical and acoustic components have been proposed.
Here, we provide a brief review of proposed models used for
PAI and discuss observed limitations in their performance
assessment. Monte Carlo (MC) simulation is the gold standard
method for modeling light–tissue interactions in turbid media
and has been previously applied to PAI. MC has been used to
compare performances of different PAI device designs,20,34–41 to
evaluate target lesion visualization and detectability,39,42 and
to enable quantitative PAI.43,44 Common tools for modeling
acoustic wave propagation in tissue include Field II,45 which
has been used to simulate photoacoustic response and quantify
spatial resolution of a proposed PAI system,46,47 and k-Wave,48,49

a popular open-source photoacoustic simulation toolbox for
MATLAB used by several groups to study PAI systems.42,43

For PAI simulation, several groups have proposed multi-
domain finite element models based on commercial software
(e.g., COMSOL)50,51 or open-source packages (e.g., ONELAB)52

to simulate photoacoustic processes by explicitly modeling
heat transfer, solid mechanics, and acoustic wave propagation.
While these models show promising results, their greater
complexity due to a larger number of parameters and modeling
assumptions implies greater difficulty in model verification and
validation. These studies also relied on the diffusion approxima-
tion of light transport, rather than using gold-standard MC
simulations. Several studies have demonstrated combining MC
simulations with various acoustic propagation models,29,38,40 and
several groups have coupled MC with the k-space forward acous-
tic model implemented in k-Wave.42,43 Our literature review of
previously proposed integrated photoacoustic models showed that
a majority of studies did not validate model outputs against
experiments. Some studies compared simulated output images
to input images based on numerical phantoms, but such activities
fall under verification, as validation against experiments is an
explicit requirement of the ASME V&V framework and is essen-
tial for model accuracy evaluation. In addition, several studies
only performed qualitative verification of simulated images,
rather than providing quantitative assessment. Lastly, while each
individual modeling component (e.g., MC or k-Wave) may be
well validated in a general sense, within the ASME framework
this does not necessarily imply sufficient V&Vof the entire mod-
eling chain for a particular “context of use,” such as predicting
photoacoustic image quality metrics in silico. Therefore, despite
growing interest in PAI modeling, there is apparent lack of con-
sensus regarding model assessment methodology and the level of
rigor needed to establish usefulness of such models.

PAI models have been previously applied toward prediction
of PAI device performance.38–40,50,51 In addition to deficiencies
in verification and validation described above, studies that

performed quantitative image quality assessment often charac-
terized only one image quality metric (e.g., spatial resolution) or
only considered detectability of a single target, rather than
an array of targets throughout the field of view. Evaluation of
multiple targets is important as several image quality metrics
have been shown to vary within the image.25,36 Furthermore, the
impact of several key design parameters, including optical beam
geometry and transducer frequency response, on photoacoustic
image quality has not been adequately evaluated through para-
metric study using a well-validated model. Thus, it is unclear
whether proposed models are truly suitable for predicting fun-
damental image quality metrics of PAI devices.

1.3 Study Objectives

Our goals were to apply ASMEV&V principles toward rigorous
performance assessment of an integrated PAI model representa-
tive of approaches seen in the literature and to evaluate the mod-
el’s capability for predicting real-world device performance in
terms of fundamental image quality metrics. To this end, our
aims were to: (1) couple a previously developed three-dimen-
sional (3D) MC model with k-Wave, (2) verify the model by
comparing outputs against published simulation data, (3) vali-
date the model against experimental images acquired with a
custom PAI system, and (4) demonstrate model utility through
parametric study of how key system design parameters influence
image quality.

2 Materials and Methods

2.1 Computational Model of PAI

To develop a multidomain PAI model representative of common
approaches from the literature, we coupled our previously devel-
oped 3D voxel-based MCmodel28,53,54 with k-Wave48,49 (Fig. 1).
Tissue optical properties and inclusion geometry are defined in
the MCmodel, which enables computation of the spatial fluence
and energy deposition distributions. The initial acoustic pressure
distribution, P0, is then computed based on the well-known
relationship

EQ-TARGET;temp:intralink-;e001;326;316P0ð~rÞ ¼ Γð~rÞμað~rÞΦð~rÞ; (1)

where ~r is the position, Γð~rÞ is the Gruneisen parameter describ-
ing the conversion efficiency of light to sound, μað~rÞ is the
absorption coefficient, and Φð~rÞ is the optical fluence. Γð~rÞ
is known to vary with tissue type and temperature,42 while
fluence distribution changes with tissue type and wavelength-
dependent optical absorption and scattering coefficients. In this
study, Γð~rÞ was assumed to be homogeneous at a fixed value of
0.2.18 k-Wave was used to solve coupled first-order acoustic
equations using a k-space pseudospectral time-domain approach
to compute wave propagation in tissue. The simulated radio-
frequency (RF) signals then were used to reconstruct in silico
photoacoustic images using a delay-and-sum (DAS) beamform-
ing algorithm with dynamic aperture.

2.1.1 Monte Carlo simulation

Light transport was simulated using our previously developed
and validated 3D voxel-based MC model.28,53,54 Briefly, the
model is based on a 3D voxel grid capable of simulating hetero-
geneous geometries such as multi-layer structures containing
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cylindrical inclusions, with tissue optical properties (absorption
coefficient μa, scattering coefficient μs, anisotropy factor g, and
refractive index n) assigned to each voxel based on labeled
tissue type. Based on convergence analysis, for all simulations
except the verification study (grid size matched to the published
data) and the validation of spatial resolution (grid size of
0.1 mm), we used a voxel size of 0.15 mm, with 200 million
launched photons. All MC simulations were performed using
a supercomputing cluster comprising 94 computing nodes with
8 CPUs and 24 GB of RAM per node.55 A two-dimensional
(2D) x − z plane in the computed 3D energy deposition map
at ∼9 mm offset from the beam center in y direction was
extracted to calculate initial pressure within the image plane.
The offset plane was used to mimic the real-world experimental
setups, in which the ultrasound transducer is offset from the
optical source.17,20,56

2.1.2 Acoustic simulation

One-way acoustic wave propagation was simulated using
k-Wave,48,49 which uses a k-space pseudospectral time-domain
solution of the coupled first-order wave equations describing
conservation of momentum [Eq. (2)], conservation of mass
[Eq. (3)], and the pressure–density relation [Eq. (4)]:

EQ-TARGET;temp:intralink-;e002;63;302

∂~u
∂t

¼ −
1

ρ0
∇p; (2)

EQ-TARGET;temp:intralink-;e003;63;246

∂ρ
∂t

¼ −ρ0∇ · ~u; (3)

EQ-TARGET;temp:intralink-;e004;63;215p ¼ c20ρ; (4)

where ~u, p, ρ, ρ0, and c0 corresponding to acoustic particle
velocity, acoustic pressure, acoustic density, ambient density,
and isotropic sound speed, respectively. k-Wave offers broad
capabilities ideal for simulating acoustic physical processes
during PAI, including simulation of acoustically heterogeneous
media, arbitrary source geometry, and simulated acoustic signal
measurement by discrete transducers (or multiple-element trans-
ducer arrays) with specified geometry and frequency response.
k-Wave model inputs include: (1) discretized medium geometry,
(2) medium acoustic properties, (3) initial acoustic sources, and
(4) acoustic detector array geometry and frequency response.
In this study, the frequency response of the transducers was
implemented as a frequency domain Gaussian filter utilizing

center frequency and fractional bandwidth of the simulated
transducer using k-Wave features. Based on convergence
analysis, simulations were created using an axial grid size of
one-fourth of the transducer acoustic wavelength and a lateral
grid size one-third of the array element pitch. Tissue was
assumed to be homogeneous with speed of sound equal to
1480 m/s. Tissue acoustic attenuation was assumed to be
negligible for model verification and validation studies while
parametric studies assumed attenuation similar to breast tissue
(α ¼ 0.75 f1.5 dB∕cm∕MHz1.5 where f is the frequency).57 All
acoustic simulations were performed in 2D using a personal
computer with i7-5600 CPU processor at 2.6 GHz processing
frequency and 16 GB of RAM.

2.2 Model Verification and Validation

2.2.1 Verification against literature

To verify the accuracy of our model, results from a previous
modeling study using a similar modeling approach42 were repli-
cated and compared. This model was selected as the authors
provided sufficiently detailed descriptions of optical and acous-
tic model parameters as well as phantom geometries to enable
replication of reported model outputs. Heijblom et al. modeled
a 1064 nm, transmission-mode PAI system to investigate
visualization of a benign breast cyst within a breast mimicking
layer (with μa_breast ¼ 0.03 mm−1, μ 0

s ¼ 0.5 mm−1, g ¼ 0.9,
n ¼ 1.42). Three different cyst contrast scenarios were consid-
ered: cyst absorption lower than the background (0.0015 mm−1,
negative contrast), equal to the background (0.03 mm−1, zero
contrast), or higher than the background (0.09 mm−1, positive
contrast). For the purposes of verifying our model outputs
for these scenarios, all optical properties, acoustic properties,
laser beam characteristics, and phantom geometry [phantom 1,
Fig. 2(a)] were matched. While Heijblom et al. performed 3D
acoustic simulations and used a 3D backprojection algorithm
for reconstruction, we performed 2D acoustic simulations and
employed a DAS with dynamic aperture algorithm for recon-
struction. Furthermore, Heijblom et al. modeled the cyst as a
10-mm diameter at the depth of 13 mm (from surface to the
upper boundary of the cylinder) and reported that cylindrical and
spherical targets produced only minor differences in received
signals. We thus modeled the cyst as a 10-mm-diameter cylinder
at a depth of 13 mm instead of a 10-mm-diameter sphere as our
MC model already supports cylinders, and we are generally
interested in cylindrical target geometries. Our simulation

Fig. 1 PAI model flowchart. The small 2D images represent the output of each step.
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results were compared quantitatively with the results of
Heijblom et al. by computing the percent difference between
computed energy deposition profiles, decay rate of energy dep-
osition, and cyst thickness from reconstructed photoacoustic
images.

2.2.2 Experimental validation in phantoms

To validate our PAI model, model outputs were compared to
experimental image data acquired in physical phantoms (phan-
tom 2 and phantom 3) with well-characterized optical and
acoustic properties using a custom PAI system allowing for
switching of ultrasound transducers as described elsewhere.24,25

The system consisted of a tunable near-infrared optical parametric
oscillator (Phocus Mobile, Opotek, Inc., Carlsbad, California)
capable of emitting pulses with a 5-ns duration over 690 to
950 nm at a rate of 10 Hz and a research-grade ultrasound
acquisition system with 128 channels (Vantage 128, Verasonics,
Inc., Kirkland, Washington). An elliptical beam (∼4 × 40 mm)
was aligned directly adjacent to the transducer for in-plane illu-
mination with transducer in contact with the imaging medium.
Phantoms were imaged at 800 nm with a radiant exposure of
10 mJ∕cm2, which is 32% of the ANSI maximum permissible
exposure.58 Images were acquired with an 8 MHz, 128 element
linear array with 109% bandwidth and 0.3 mm pitch (L11-4v,
Verasonics).

The transducer was gel-coupled with a protective aluminum
foil layer to reduce unwanted photoacoustic signal generation at
the tissue surface. Thirty frames of experimental data were
collected for each validation study and then averaged for
postprocessing and analysis.

Experimental and simulated data were both used to recon-
struct photoacoustic images. To approximate the background
noise/clutter, 2D uniform random noise was generated and then
scaled by a depth-dependent exponential curve empirically
derived from fitted experimental background RF signals. The
generated background noise/clutter map was then added to each
simulated RF data channel to approximate 2D random noise in
resultant simulated images. A theoretical approach to simulating
speckle noise has also been proposed.59 The beamforming
processing was a DAS algorithm with dynamic aperture assum-
ing a homogeneous speed of sound of 1480 m/s. Image magni-
tude was computed using the Hilbert transform. Background

images were subtracted from both simulated and experimental
images pixel wise. Experimental images were background-sub-
tracted by subtracting the average of 30 image frames acquired
with no laser emission. Simulated background was generated
as the simulated image of a phantom containing no embedded
targets. Background-subtracted images were normalized to the
greatest target inclusion intensity and log compressed for display.

Two 7 × 7 × 5 cm phantoms comprised of diluted Intralipid
(I141, Sigma-Aldrich, Inc.) and India ink (3080-F, Chartpak,
Inc., Leeds, Massachusetts) were imaged to provide experimen-
tal data for model validation. First, a spatial resolution phantom
was constructed containing a seven-by-five grid of 50-μm-diam-
eter black nylon monofilament suture wires with 5-mm horizon-
tal spacing and 7.5-mm vertical spacing [phantom 2, Fig. 2(b)].
Phantom optical properties were measured using integrating
sphere spectrophotometry and the inverse adding-doubling
method60 (see Table 1). Filaments were assumed to have an
absorption coefficient of 4 cm−1 to produce high-contrast line
sources. Axial and lateral spatial resolution were computed
as the full-width at half-maximum of the linear (not log com-
pressed) profile of each target intensity. Second, a penetration
depth phantom was constructed containing a diagonal array
of 0.5-mm-inner diameter polytetrafluoroethylene (PTFE) tubes
at depths from 5 to 35 mm with 5-mm vertical and horizontal
spacing (STT-24, Component Supply Company, Fort Meade,
Florida). Tubes were filled with India ink solutions with an
optical absorption coefficient of 4 cm−1.

Penetration depth and target contrast were quantified by
computing tube contrast ratio (CR) and signal-to-noise ratio
(SNR) as

EQ-TARGET;temp:intralink-;e005;326;208CR ¼ 20 log10

�
I
B

�
; (5)

EQ-TARGET;temp:intralink-;e006;326;152SNR ¼ 20 log10

�
I
σ

�
; (6)

where I is the mean target ROI intensity, B is the mean back-
ground ROI intensity, and σ is the background ROI standard
deviation. Target ROIs (1.8 × 2.5 mm) were analyzed by remov-
ing pixels with intensity <50% of maximum intensity, and local
background ROIs of equal size were selected at the same depths
of each target ROI. Penetration depth was computed as the

Fig. 2 Phantom geometries used for simulations. (a) Tissue-mimicking phantom with embedded cyst
structure of diameter 10 mm (phantom 1). (b) Filament array of diameter 0.05 mm (phantom 2).
(c) Penetration depth phantom (phantom 3) with embedded targets of 0.5 mm. (d) 2D array phantom
with embedded targets of 0.5 mm (phantom 4).
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interpolated depth for which SNR reached 6 dB, a threshold
that was identified through qualitative image assessment and
is consistent with the threshold reported for this system in our
previous work.25 However, as detectability is a function of SNR
and target size, the 6-dB threshold may only be appropriate for
small size target evaluated in this study.

2.3 Parametric Study

We used the model to conduct a parametric study of how key
system optical design parameters (optical illumination geom-
etry) and acoustic design parameters (detector frequency and
bandwidth) impact PAI device performance. To investigate the
effect of different optical beam geometries, we used a numerical
phantom (phantom 4) containing a 2D grid of 0.5-mm diameter
cylindrical targets at depths from 5 to 35 mm with 10-mm ver-
tical and 7.5-mm horizontal spacing. We considered five circular
and elliptical beams of varying size, with each circle and
ellipse matched approximately in beam area (Table 2). Small
differences in beam area of <3% are due to limitations in MC
grid resolution. The total energy in each beam was adjusted to
ensure a constant radiant exposure of 10 mJ∕cm2 over all sim-
ulation cases. The MC grid/domain was set to 45 × 45 × 45 mm
to minimize computation time; we verified that extending the
bottom and vertical simulation boundaries to the dimensions
of validation phantoms did not significantly affect energy dep-
osition distributions. The lateral uniformity was investigated

for different cases by computing the ratio between the intensity
of the center targets to periphery. Further, the target lateral
detectability versus depth was characterized using the CR of
the targets.

To further evaluate the effect of ultrasound detector center
frequency and bandwidth on the system performance, we simu-
lated imaging of the numerical filaments phantom [phantom 2,
Fig. 2(b)] using the L11-4v transducer but varying center
frequency (2.5, 5.0, 7.5, and 10 MHz) and bandwidth (50%
and 100%). Tissue acoustic attenuation, α, was chosen to mimic
breast tissue with α ¼ 0.75 fN dB∕cm, where f is the frequency
and N ¼ 1.5.57 We then measured axial and lateral spatial
resolution in resulting images to determine how image quality
varies with transducer frequency response.

3 Results and Discussion

3.1 Model Verification

Outputs of our model, including depth profiles of energy dep-
osition and RF amplitude through the cyst center, were com-
pared to those reported by Heijblom et al. for negative, zero,
and positive cyst contrast conditions (Fig. 3). Energy deposition
profiles were normalized to area under the curve to facilitate
visualization, while RF amplitude profiles were normalized
to maximum amplitude in the negative cyst contrast case.
Qualitative inspection shows consistent energy deposition and
RF amplitude trends with depth between our model and data
reported by Heijblom et al., as well as visualization of cyst upper
and lower boundaries. There are small discrepancies in terms of
RF signal trace shape and precise cyst boundary location that
may be attributed to our use of 2D acoustic simulations as
opposed to 3D, as well as a different choice of photoacoustic
image reconstruction algorithm. Quantitatively, the difference
in signal amplitude between the models was within 9% to 22%
at different depth segments, which is sufficient considering
the level of noise apparent in the published data. Further, our
model predicted an energy distribution decay rate of 0.27/mm
averaged across all three different absorption conditions, com-
pared to the 0.20 to 0.22/mm range reported by Heijblom et al.
Discrepancies between quantitative metrics from each model
may be due to the higher number of photons used in our
simulation which led to smoother, more convergent energy
deposition profiles. Overall, verification results indicate that
our model adequately reproduces outputs consistent with a
published model despite some differences in model compo-
nents and implementation.

Table 1 Simulation tissue optical properties at 800 nm (a. low-absorbing background; b. medium-absorbing background).

Background Inclusions

μa (cm−1) μ 0
s (cm−1) g n μa (cm−1) μ 0

s (cm−1) g n

Validation (filament array phantom) (a) 0.02 10 0.9 1.33 4.0 0.001 0.63 1.47 61

(b) 0.1

Validation (penetration array phantom) (a) 0.02 10 0.9 1.33 4.0 0.001 0.63 1.4761

(b) 0.1

Parametric study (2D vessel array phantom)28 0.1 10 0.6 1.4 5.0 13 0.987 1.4

Table 2 Optical beam dimensions used for parametric study.

Circular beam

Circle 1 Circle 2 Circle 3 Circle 4 Circle 5

Radius (mm) 0.8 1.6 3.2 6.4 12.6

Area (mm2) 2.01 8.04 32.16 128.67 498.75

Elliptical beam

Ellipse 1 Ellipse 2 Ellipse 3 Ellipse 4 Ellipse 5

Minor and major
radii (mm ×mm)

0.25 × 2.5 0.5 × 5 1 × 10 2 × 20 4 × 40

Area (mm2) 1.96 7.85 31.41 125.66 502.65
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3.2 Model Validation

Figure 4 shows photoacoustic images reconstructed from simu-
lated and experimental RF data in the filament array phantom
(phantom 2), as well as computed axial and lateral resolution.

Target appearance is similar in simulated and experimental
images, and spatial resolution values computed from simulated
DAS images were consistent with those computed from exper-
imental images, including images processed using a proprietary
Verasonics reconstruction algorithm rather than our DAS

Fig. 3 Comparison of energy deposition (top row) and acoustic RF profiles (bottom row) with depth from
our model outputs (black solid lines) and those of Heijblom et al. (blue dashed lines) for negative, zero,
and positive cyst contrast. The black dashed lines denote upper and lower cyst boundaries.

Fig. 4 Reconstructed photoacoustic images of filament phantom (phantom 2) for (a) simulated and
(b) experimental RF data and (c) computed axial and (d) lateral resolution from simulated and exper-
imental data. The color bar is in dB.

Journal of Biomedical Optics 121910-6 December 2019 • Vol. 24(12)

Akhlaghi et al.: Multidomain computational modeling of photoacoustic imaging: verification, validation, and image quality prediction



algorithm (images not shown). These results are consistent
with our previous work, which used the same transducer but
employed only the Verasonics algorithm.25 Computed lateral
resolution values for simulated images are similar to those from
experimental images (DAS and Verasonics algorithms) as well
as our previous reports.23–25 Axial and lateral resolution were
found to slightly vary with depth in simulated images, possibly
due to the use of nonoptimized dynamic aperture focusing
in deeper tissue regions. Discrepancies in lateral resolution
between experimental DAS and Verasonics images may also
be due to unknown processing steps applied to the RF data by
the Verasonics acquisition system. These results indicate that
our model can predict image quality metrics such as spatial
resolution in sufficient agreement with experimental results to
suggest predictive capability.

Figure 5 shows simulated and experimental reconstructed
photoacoustic images of the penetration depth phantom (phan-
tom 3). Qualitative inspection of these images indicates general
agreement, but experimental images present clutter and reflec-
tion artifacts not present in simulated images. The differences
between simulated and experimental data can be observed from
line plots across the second target (Fig. 5, lower row). From this,
it is clear that experimental data include clutter and artifact
absent in the simulated data. These artifacts are caused by dif-
fusely reflected light from the phantom being absorbed at the
transducer surface, an effect we have observed with our system
previously.25 Simulation of this effect would require knowledge
of the optical properties and geometry of the aluminum foil
shielding, which has an irregular, irreproducible shape as a fresh
piece must be applied in each experiment.

Simulated and experimental images produced consistent
trends in CR and SNR as functions of depth (Fig. 6). An SNR
threshold of 6 dB was found to be correlated with detectability

limits based on qualitative inspection. Table 3 shows the com-
puted penetration depth using interpolated target SNR for sim-
ulation and experiment. Simulated images predicted a slightly
greater penetration depth for the case of low-absorption case
with penetration depth up to 33.2 mm compared to 27.7 mm
computed for experimental images. This may be due to the
absence of clutter and limited fidelity of background noise
injected into the simulation data, or due to discrepancies in mod-
eling transducer element sensitivity and directivity. However,
penetrations depths were very close for the medium-absorbing
background. Further model improvements are needed to
adequately reproduce image characteristics that influence con-
trast-based image quality metrics.

3.3 Parametric Study

3.3.1 Optical beam geometry

In addition to predicting experimental system performance, we
evaluated the utility of our model for investigating the effect of
optical beam geometry on system performance. As shown in
Fig. 7, energy deposition in targets strongly depends on spatial
location, beam geometry, and beam size, with greater deposited
energy for larger beam sizes. Since radiant exposure was held
constant, this trend is likely caused by enhanced fluence under
large beams due to multiple scattering in turbid media. We also
observed that small circular and elliptical beams result in poor
lateral intensity uniformity, with targets in the center of the field
of view appearing with much higher intensity than those on
the periphery. For small beam cases (0.8- to 6.4-mm diameter
circles, 0.25 mm × 2.5 mm ellipse), the range in intensity
between the center and peripheral targets in each row was up
to an order of magnitude (20 dB), while it was < ∼ 1.3 dB

Fig. 5 Upper row: Reconstructed photoacoustic images from penetration depth phantom (phantom 3) for
(a) and (b) low-absorbing and (c) and (d) medium-absorbing background, using (a) and (c) experimental
and (b)–(d) simulated data. Data are normalized to the intensity of the shallowest target intensity. The
color bar is in dB. Lower row: line plot across second target (white line in a) for depth of 5 to 20 mm.
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on average for the largest beam cases (12.6 mm circle, 2 mm ×
20 mm ellipse, and 4 mm × 40 mm ellipse). On the other hand,
lateral uniformity was less depth-dependent for the large circular
and elliptical beams, which is likely due to increased fluence as
a result to multiple scattering typical of large-area beams.
Furthermore, elliptical beams generally provide superior lateral
intensity uniformity to circular beams of equal area. However, as
all beam cases used the same radiant exposure of 10 mJ∕cm2,
a greater energy per pulse would be required to achieve the
improved performance observed with larger beams. This an
important consideration in selecting an optical source during
PAI device design. Since the beam areas studied varied from
∼0.2 to 5.0 cm2, the required energy varied from 2 to 50 mJ,
which would require high-energy sources such as second-
harmonic-pumped OPOs. As shown in Fig. 8(a), lateral intensity
uniformity was found to substantially improve with depth for all
but the largest circular and elliptical beams, which is expected
due to light diffusion in a turbid medium. For larger circular
(12.6 mm) and elliptical (2 mm × 20 mm and 4 mm × 40 mm)
beams, the lateral intensity uniformity becomes less depth-
dependent, with on average <4.35 dB variation down to
25 mm [Fig. 8(a)]. This is likely due to the increased similarity
of optical beam size with the transducer dimensions, providing
more uniform diffuse illumination above deep, peripheral targets
and thus increasing local energy deposition in those regions.
Figures 8(b) and 8(c) show the computed CR as a function
of depth for different beam size cases. It can be observed that
smaller beams (0.8 to 6.4 mm diameter circles and 0.25 mm ×
2.5 mm ellipses) result in large difference in CR values (about
15 dB) for center and peripheral targets as a function of depth,
which leads to poor peripheral target detectability. On the other
hand, using larger beam sizes, the CR values of center and

peripheral targets become closer (with maximum difference
of about 3 dB) resulting in better peripheral target visibility
as a function of depth. It is worth noting that a recently released
commercial-grade PAI system (LAZR-X, VisualSonics, Inc.)

Table 3 Maximum penetration depth for simulated and experimental
images based on SNR threshold of 6 dB.

Low-absorbing
background

Medium-absorbing
background

Simulation Experiment Simulation Experiment

SNR threshold-
based limit (mm)

33.2 27.7 26.9 26.9

Fig. 7 Energy deposition maps and corresponding simulated photo-
acoustic images for (a) and (b) 0.8- and 12.6-mm circular beams
and (c) and (d) elliptical beams of size 0.25 mm × 2.5 mm and
4 mm × 40 mm. The small lower-right figure in each energy deposi-
tion map is an en face view of beam fluence at the phantom surface,
which were self-normalized for visualization purposes. All beam
cases used a fixed uniform radiant exposure of 10 mJ∕cm2. Energy
deposition colorbars in mJ∕cm3, photoacoustic image colorbars
in dB.

Fig. 6 Comparison of (a) target CR and (b) SNR in simulated and experimental images. Here, low abs.
and med. abs refer to low absorption and medium absorption phantoms, respectively.
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allows users to swap in linear array fiberoptic bundles of
different lengths to optimize light delivery for specific imaging
applications.62 This indicates that design of optimal beam geom-
etry for a given imaging scenario is perhaps more complex than
anticipated, and our results highlight the critical importance
of beam geometry as a design parameter affecting PAI device
performance.

3.3.2 Acoustic detector parameters

Figure 9 shows the reconstructed photoacoustic images from
simulated data, using four different center frequencies (columns)
and two different bandwidths (rows) for the ultrasound trans-
ducer. Since medium acoustic attenuation generally increases
with frequency, penetration depth decreases with center fre-
quency. Lateral resolution improves as center frequency
increases while higher bandwidth (Fig. 9, bottom row) results
in worse lateral resolution as opposed to the lower bandwidth
(Fig. 9, top row). Figure 10 shows computed axial and lateral

resolution from simulated data as functions of depth for
detectors with different center frequency and bandwidth. Axial
resolution [Fig. 10(a)] varies approximately linearly with depth,
which supports our validation and previous results.25

Results demonstrate that axial resolution is improved when
using higher center frequencies, with diminishing returns for
higher frequencies (7.5 to 10 MHz), but fractional bandwidth
has a significant effect on both axial and lateral resolution
(Fig. 10). Lateral resolution was also found to improve with
increasing center frequency but decrease with increasing band-
width. This effect is caused by center frequency downshifting in
attenuating media, which is more pronounced with greater
signal bandwidth. Axial and lateral resolution results are both
consistent with those reported in a previous study of plane-wave
ultrasound imaging.63 These results demonstrate the effect of
ultrasound detector characteristics on system performance and
show the potential of the proposed model for improving under-
standing of PAI device design consequences for particular im-
aging applications.

Fig. 8 (a) Lateral intensity variation in dB. These values were computed as a ratio of the center target
intensity to the one on most lateral position. (b) CR of center (dashed line) and periphery targets using
circular and (c) elliptical beams. Due to overlap between the first and second beam size cases, the sec-
ond beam size for both circular and elliptical was eliminated for clarity. Circles 1, 3, 4, and 5 correspond to
circular beams with 0.8, 3.2, 6.4, and 12.6 mm diameter. Ellipses 1, 3, 4, and 5 refer to elliptical beams of
size 0.25 mm × 2.5 mm, 1 mm × 10 mm, 2 mm × 20 mm, and 4 mm × 40 mm.

Fig. 9 Reconstructed photoacoustic images of filament phantom (phantom 2) using ultrasound trans-
ducer arrays with varying center frequency (columns) as well as fractional bandwidth of 50% (top row)
and 100% (bottom row). Each image was normalized to its maximum target intensity.
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4 Conclusion
We have developed a multidomain model of PAI physical proc-
esses and conducted model verification and validation to ensure
modeling results are representative of real-world PAI system
performance. Further, we have investigated the impact of key
system design consideration on image quality using standard
metrics (e.g., spatial resolution, CR, and SNR) by conducting
parametric studies. Our optical parametric study results indi-
cated that for fixed radiant exposure, large, elliptical beams
offer better peripheral target detectability deeper in the tissue
to circular beams or short elliptical beams. Our acoustic para-
metric study demonstrated that both axial and lateral resolution
improve using higher center frequencies, while lateral resolution
was found to improve with smaller bandwidth. In spite of these
accomplishments, there is room to improve the realism of our
model in the future by incorporating 3-D acoustic propagation—
which will enable simulation of out-of-plane generated signals—
and more accurately representing the true transducer impulse
response. These steps and others will allow models to better
simulate image quality and reliably predict the impact of noise
and clutter. By improving our understanding of complex optical
and acoustic physical processes, modeling tools can facilitate
device design optimization and performance evaluation of PAI
systems.
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