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Abstract. The mesh-based Monte Carlo (MMC) method
is an efficient algorithm to model light propagation inside
tissues with complex boundaries, but choosing appro-
priate mesh density can be challenging. A fine mesh
improves the spatial resolution of the output but requires
more computation. We propose an improved MMC—
dual-grid mesh-based Monte Carlo (DMMC)—to acceler-
ate photon simulations using a coarsely tessellated
tetrahedral mesh for ray-tracing computation and an inde-
pendent voxelated grid for output data storage. The decou-
pling between ray-tracing and data storage grids allows us
to simultaneously achieve faster simulations and improved
output spatial accuracy. Furthermore, we developed an
optimized ray-tracing technique to eliminate unnecessary
ray–tetrahedron intersection tests in optically thick mesh
elements. We validate the proposed algorithms using
a complex heterogeneous domain and compare the solu-
tions with those from MMC and voxel-based Monte Carlo.
We found that DMMC with an unrefined constrained
Delaunay tessellation of the boundary nodes yielded the
highest speedup, ranging from 1.3× to 2.9× for various
scattering settings, with nearly no loss in accuracy. In addi-
tion, the optimized ray-tracing technique offers excellent
acceleration in high-scattering media, reducing the ray–
tetrahedron test count by over 100-fold. Our DMMC soft-
ware can be downloaded at http://mcx.space/mmc. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI:
10.1117/1.JBO.24.2.020503]
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1 Introduction
With the rapidly evolving computational capabilities of modern
central processing units (CPUs) and graphics processing units
(GPUs), theMonte Carlo (MC)method1 has taken an increasingly

important role in understanding complex photon–tissue inter-
actions in biomedical optics applications. The increasing popular-
ity of MC is largely due to its superior generality and high
scalability in computation.2 As a stochastic solver to the radiative
transfer equation, MC is capable of dealing with general complex
media, such as low-scattering tissues, e.g., synovial fluids in the
joint, air pockets in the lung, and cerebrospinal fluid (CSF) in the
brain, or highly absorbing organs, such as livers, without compro-
mising accuracy due to the use of approximations. The intuitive
simulation strategies also allow easy adaptation for a wide-range
of applications.2

Despite the advantages of the MC method, its wide adoption
was limited by slow computation. However, the rise of general-
purpose GPU has enabled massively parallel simulations and
resulted in hundred- to thousand-fold acceleration. Notable
GPU MC algorithms include MCX,3 CUDAMCML,4 GPU-
MOSE,5 MCX-CL,6 and O3MC.7 Extensive cross validations
between these algorithms have been performed.8–10

On the other hand, the proposals of the mesh-based Monte
Carlo (MMC) approach11,12 reflect the desires of higher flexi-
bility and accuracy when modeling complex heterogeneous
domains, such as human anatomy. The use of a tetrahedral mesh
model overcomes the staircase pattern that often characterizes
voxel-based tissue representations, while also allowing notable
improvement in memory efficiency.12 Compared to the surface-
based MC methods,5,13 the use of tetrahedral elements drasti-
cally reduces ray–triangle intersection tests.10

In nearly all published MMC implementations, a single tetra-
hedral mesh is used for three main purposes: (1) representing
complex three-dimensional (3-D) tissue boundaries, (2) ray-
tracing acceleration by restricting the intersection testing to a
single tetrahedron, and (3) storing the output quantities at the
nodes12 or elements.11,14 To capture accurate spatial distributions
of fluence, a dense tetrahedral mesh is often desirable,12 but
results in longer simulation time. In most cases, refined mesh
elements do not improve tissue boundary accuracy as they fall
under the same tissue type. Because a photon’s trajectory is only
dependent on boundaries delineating different tissues, a coarsely
tessellated mesh containing only boundary nodes is more com-
putationally advantageous. The conflict on the desirable mesh
densities between accuracy and speed inspires us to propose
a “dual-grid” mesh-based Monte Carlo (DMMC) featuring a
coarsely tessellated mesh for ray-tracing calculations, referred
to as the “forward mesh,” and an independent voxelated space
for output storage, referred to as the “output grid.” Although
coarsely tessellated meshes have been found previously in
MMC studies,15,16 the use of a dual-mesh for output data storage
has not been reported.

As we coarsen the mesh to only preserve the boundary nodes,
the dimensions of each tetrahedron may grow and become sig-
nificantly larger compared to photon’s mean-free-path (MFP).
In such case, a photon may experience a large number of scat-
tering events before migrating into the adjacent element, making
the per-step ray–tetrahedron intersection tests increasingly
redundant. To further optimize MMC speeds on coarse meshes,
a method to effectively eliminate such redundant intersection
tests may yield a significant performance improvement.

In the rest of this paper, we first describe the method to create
a coarse tetrahedral mesh that accurately preserves complex
boundaries without unnecessary mesh refinement and then
discuss the procedure to deposit fluence into the output grid
in Sec. 2. Furthermore, we describe our optimized MMC*Address all correspondence to Qianqian Fang, E-mail: q.fang@neu.edu
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ray-tracing technique to avoid unnecessary ray–tetrahedron
intersection tests. In Sec. 3, we test both the accuracy of the
DMMC approach using a heterogeneous domain, as well as the
speed improvement compared to conventional single-mesh
MMC. The acceleration is evaluated at various scattering coef-
ficient and mesh density settings. Finally, we summarize our
findings and discuss the next steps of this research in Sec. 4.

2 Materials and Methods
As we demonstrated previously,16 MMC simulation accuracy,
unlike that of the finite-element method, is insensitive to the
presence of poorly shaped tetrahedral elements or “slivers.17”
The mesh that can preserve the tissue boundaries with minimum
number of total nodes is simply a 3-D tessellation of the boun-
dary nodes. A tessellation algorithm usually outputs either a
Delaunay or non-Delaunay mesh.17 When one requires a set of
predefined nodes and triangles to present in the output mesh,
such as the pregenerated tissue boundaries, the output mesh is
referred to as a constrained Delaunay triangulation (CDT) of
the input nodes. A CDT mesh is typically not a Delaunay mesh
but can be converted into a Delaunay-conforming mesh follow-
ing a series of triangle-flipping and refinement steps.17

Creating CDTs from a set of predefined tissue surfaces is
supported by numerous 3-D mesh generators. Here, we use an
open-source 3-D mesh generator, TetGen17 in combination with
Iso2Mesh,18 to obtain a coarse tessellation of the boundary
nodes and triangles. To minimize the output mesh size, the
TetGen flag “-Y” is used to suppress the insertion of Steiner
points as part of the Delaunay refinement.17 In some rare cases,
a CDT may not exist for a given set of input boundaries. In such
cases, Delaunay refinement must be permitted using the “-Yq”
flag with TetGen, but excessive refinement is prevented.

Once a photon starts to propagate inside the above generated
coarse forward mesh, the next step is to store the photon energy
deposition in an independent “dual-mesh.” For simplicity and
minimization of memory demands, a voxelated grid coincident
to the bounding box of the tetrahedral mesh space is dynami-
cally created, similar to the grid used to store outputs in the
voxel-based MC (MCX).3 The voxel size of the output grid
is user-defined and is independent to the tetrahedral mesh.
In our implementation, the default size of each output grid
voxel is 1 × 1 × 1 mm3, although anisotropic voxels can also
be supported.

Similar to MMC, every scattering path in DMMC is divided
into path segments by tetrahedron/tissue boundaries. Unlike
MMC, the energy loss in each path segment is not accumulated
to the enclosing element, but within an independent voxelated
grid. Each path segment, such as Pk − Pkþ1

������!
in Fig. 1(b), is

further divided into equal-length subsegments, indicated by the
black division marks in Fig. 1(b), with a step size smaller than
half of the output grid’s voxel edge length lE. The energy loss of
the photon packet along each path subdivision is then calculated
using the Beer–Lambert law and accumulated to the voxel that
encloses the midpoint of the segment. In our current implemen-
tation, a single-instruction multiple-data algorithm is used for
both the ray-tracing calculations—using a “branchless Badouel”
algorithm14—and the energy depositions to the output grid.

To further reduce the redundant ray–tetrahedron intersection
tests in a coarse mesh, here, we introduce a ray-tracing tech-
nique specifically optimized for MMC simulations on meshes
with optically thick elements. In this technique, we calculate
and maintain the signed perpendicular distances of the current

photon position to the four triangles of the tetrahedron using a
lightweight update strategy, and only perform the ray–tetrahe-
dron intersection computation when one or more distance values
change the sign. Illustrations explaining the algorithm can be
found in Figs. 1(a) and 1(b).

Specifically, the signed distances between the photon and the
four facets of the enclosing element can be calculated using the
inner products between the precomputed outward-pointing sur-
face normal vectors (n̂i) and the displacement vectors (~p03 and
~p04) of the current position, as depicted in Fig. 1(a). When
a photon packet moves from one scattering site to the next, the
four signed distances can be incrementally adjusted by adding
the inner products between the displacement vector and the
surface normal vectors (Pk − Pkþ1

������!
· n̂i) [see Fig. 1(b)]. When

a photon attempts to escape from the current element, at least
one of the signed distances should become negative. One can
then perform the ray–tetrahedron intersection testing to deter-
mine the exact exit position. Otherwise, photons traverse to
the next scattering site without extraneous computations. As the
dimensions of the element become much larger than the MFP,
such saving in computation can become significant.

3 Results and Discussions
We validate the proposed DMMC algorithm, including the opti-
mized algorithm for optically thick meshes, by comparing its
solutions with single-mesh MMC and MCX3 in a complex
heterogeneous domain. We are particularly interested in meas-
uring the overall performance improvement, in terms of simu-
lation speed in photon/ms, over a range of mesh refinement
levels and scattering coefficients, as well as reduction of ray–
tetrahedron intersection test counts. Finally, we perform a profil-
ing analysis to identify the changes in the runtimes in both
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Fig. 1 Illustrations explaining (a) the calculations, (b) updates of dis-
tance-based ray-tracing algorithm, and (c)–(e) validations of DMMC.
Particularly, we show the cross-cut views (y ¼ 30.5 mm) of (c) the
coarse forward mesh for DMMC, (d) fine mesh for MMC, and (e) con-
tour plots of the fluence, in log-scale, for DMMC (white dashed lines),
MMC (black solid lines), and MCX (orange dashed lines).
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ray-tracing and data storage operations in the optimized ray-
tracing technique. All tests are performed on a desktop running
Ubuntu Linux 18.04 with an Intel i7-8700K CPU. A Henyey–
Greenstein phase function1 is assumed in all simulations.

In Figs. 1(c)–1(e), we show a comparison between DMMC,
MMC and the MCX simulations using a heterogeneous numeri-
cal phantom. The numerical phantom contains a 60 × 60 ×
60 mm3 cubic domain filled with a tissue-like medium with
absorption coefficient μa ¼ 0.02 mm−1, scattering coefficient
μs ¼ 7.0 mm−1, anisotropy g ¼ 0.89, and refractive index n ¼
1.37. A 10-mm radius nonscattering spherical inclusion with
μa ¼ 0.05 mm−1, μs ¼ 0.0 mm−1, g ¼ 1.0, and n ¼ 1.37 is
centered in the domain and is further enclosed by two concentric
spherical shells (inner shell has a radius between 10 and 23 mm
with μa ¼ 0.02 mm−1, μs ¼ 9.0 mm−1, g ¼ 0.89, and n ¼ 1.37;
outer shell has a radius between 23 and 25 mm with μa ¼
0.004 mm−1, μs ¼ 0.009 mm−1, g ¼ 0.89, and n ¼ 1.37 to
mimic CSF). This structure is selected to highlight the advan-
tages of a mesh-based MC over MCX when modeling complex
shapes. For DMMC, a coarse mesh containing only 3733 nodes
and 21,256 elements is created using the “-Yq” flag with
TetGen, shown in Fig. 1(c). This mesh is a coarse CDT gener-
ated from 4 triangular surfaces, including 793, 1029, and 1217
nodes from the 3 spherical surfaces at r ¼ 10, 23, and 25 mm,
respectively, and 8 nodes from the bounding box surface. As
shown in Fig. 1(d), the mesh used for MMC, containing
604,297 nodes and 3,733,387 elements, is a Delaunay refine-
ment derived from the same input surfaces. For MCX, a 60 ×
60 × 60 grid with 1 mm3 isotropic voxels is used to discretize
the domain and store the output. A pencil beam source is posi-
tioned at (30.5, 30.5, 0) mm pointing at the +z axis; a total of
108 photons are simulated in all cases. The DMMC simulation
uses a 60 × 60 × 60 output grid, coincident to that of MCX.
Contour plots of the fluence along the source plane (y ¼
30.5 mm) for DMMC, MMC, and MCX are compared in
Fig. 1(e).

Despite the fractional numbers of nodes and elements used,
the DMMC simulation produced a solution that matches excel-
lently with that of MMC in most areas in Fig. 1(e). As we
showed previously19 but not here, the DMMC and MCX solu-
tions match excellently near the source while the single-mesh
MMC shows a degradation in accuracy due to limited mesh
resolution. If we compare the MCX fluence with those from

DMMC and MMC in the regions distal to the source, a large
discrepancy can be observed within the two spherical shells.
We believe this is a result of the staircase approximation of the
spherical boundaries in MCX. Overall, the use of a coarse for-
ward mesh allows DMMC to achieve a 2.4-fold speed improve-
ment over MMC (74.64 versus 31.43 photon/ms using
12 threads on the Intel CPU). The MCX simulation reported
a speed of 13,760 photon/ms using an NVIDIA Titan V GPU.

Next, we perform a systematic study to characterize the
impacts of varying mesh densities and scattering coefficients
on DMMC’s speed and accuracy. A uniform cubic domain, with
μa ¼ 0.005 mm−1 and n ¼ 1, is set to 3 scattering settings: (S1)
μs ¼ 0.5 mm−1, g ¼ 0.01; (S2) μs ¼ 1 mm−1, g ¼ 0.01; (S3)
μs ¼ 10 mm−1, g ¼ 0.9. A pencil beam similar to the above test
is used. A total of 19 tetrahedral meshes are created using
TetGen, by incrementally reducing the maximum element vol-
ume size by a factor of 2. The finest mesh contains 433,020
nodes and 2,673,099 elements and the coarsest one has only
8 nodes and 6 tetrahedra. DMMC simulations with and without
the distance-based ray-tracing optimization are performed. All
simulations output fluence in a 60 × 60 × 60 grid with 1 mm3

voxels. In Fig. 2(a), we plot the node and element counts (blue)
of the 19 tested meshes on the left axis, and the DMMC sim-
ulation speed (in photon/ms, red) at two scattering settings (S1
and S2) on the right axis. For the speed plot, we report both the
simulations with (solid) and without (dotted) the distance-based
ray-tracing optimization. In addition, we run the simulations
with the S3 configuration and plot in Fig. 2(b), the counts of
ray–tetrahedron tests in the left axis and speed in the right
axis. The runtimes of the simulation steps before and after the
optimization are profiled and reported as a stacked-bar plot
in Fig. 2(c). Furthermore, the dB root-mean-square (RMS)
errors between DMMC and MCX on a matching output grid
(60 × 60 × 60 voxels) are calculated at various mesh densities
and plotted in Fig. 2(d).

A nearly monotonic increase in speed is observed from
Fig. 2(a) as one coarsens the mesh. Using the mesh with an
average element volume Va ¼ 1 mm3 (size of a voxel in the
output grid) as reference, the speedup ratios for DMMC with
the coarsest mesh (Va ¼ 36;000 mm3) for S1, S2, and S3 are
2.68×, 1.88×, and 1.14×, respectively, without the ray-tracing
optimization, and 2.94×, 2.19×, and 1.33×, respectively, with
the optimization. Applying the optimized ray-tracing results
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Fig. 2 Speed benchmark and error assessment for DMMC. We show the simulation speeds (red, right
axes) at 19 different mesh sizes with (a) low-μs (S1∶μs ¼ 0.5∕mm, g ¼ 0.01; S2∶μs ¼ 1∕mm, g ¼ 0.01)
and (b) high-μs (S3∶μs ¼ 10∕mm, g ¼ 0.9) settings. The mesh node/element and ray–tetrahedron testing
counts are shown in the left axes of (a)/(b), respectively. In (c), we show the relative runtimes of the
simulation for a selected case; in (d), we plot the fluence RMS error in dB, i.e., j20 log10ðDMMCÞ −
20 log10ðMCXÞj, at different mesh densities.
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in 1.10×, 1.16×, and 1.16× speedups for S1, S2, and S3, respec-
tively, when using the coarsest mesh.

The significantly improved simulation speed obtained at the
coarsest mesh is a result of reduced ray–tetrahedron intersection
tests. It is apparent that such speedup is dependent upon the scat-
tering coefficient settings—the lower the scattering coefficient,
the higher the acceleration—as expected. When the medium’s
scattering coefficient is low, the ray–tetrahedron intersection
tests dominate the runtime. Thus, reducing mesh density can
lead to a significant reduction in the overall runtime. However,
as shown in Fig. 2(b), when the scattering coefficient is rela-
tively high, the scattering-related calculations become domi-
nant; coarsened meshes affected lesser speed enhancement than
in the low-μs cases.

On the other hand, the distance-tracking-based ray-tracing
optimization achieves the highest acceleration at the highest
μs setting (S3), cutting the ray–tetrahedron intersection testing
counts by an impressive 100-fold while reporting a 16% overall
speed improvement over the standard MMC algorithm at the
coarsest mesh. This is again expected as the optimized ray-
tracing algorithm skips unnecessary ray–tetrahedron intersec-
tion tests, which occur most frequently at the coarsest mesh and
the highest scattering. The moderate overall speed improvement
results from scattering and data storage costs dominating run-
times in high-μs cases, as indicated by the stacked-bar chart in
Fig. 2(c).

The error plot in Fig. 2(d) further assures us that the large
reduction in internal elements within uniform tissue regions
shows no sign of accuracy loss as long as the output data are
stored on a fine grid. This is because the photon packet’s
trajectory is only dependent upon the boundaries between
heterogeneities. Mesh refinements without altering the tissue
boundaries would not change the photon paths (within the limit
of numerical precision); thus, the output of DMMC stays the
same. This result suggests that the coarsest CDTof the boundary
nodes is the most desirable forward mesh for DMMC, as it
provides the highest computational speed with little loss in
accuracy.

4 Conclusion
In summary, we reported a DMMC algorithm to significantly
improve 3-D mesh-based photon transport simulations.
Compared to conventional MMC, DMMC achieved a 1.3× to
2.9× speed improvement over a range of scattering coefficient
settings while simultaneously improving the spatial accuracy of
the output fluence. We want to particularly highlight our finding
that photon trajectories in an MC simulation are insensitive to
interior element boundaries within a given tissue region. This
allows us to decouple the storage grid from the ray-tracing grid
and utilize the most suited discretization in respective steps. In
addition, we developed a distance-based ray-tracing technique
to reduce unnecessary ray–tetrahedron intersection tests by over
100-fold in high-μs media, resulting in an overall 16% speed
increase in a benchmark. The next steps of this research include
anisotropic output grid support and GPU-accelerated DMMC.
The DMMC algorithm has been incorporated into our MMC
software and can be freely downloaded from http://mcx
.space/mmc.
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