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Abstract. Melanin is known to provide strong third-harmonic generation (THG) contrast in
human skin. With a high concentration in basal cell cytoplasm, THG contrast provided by mela-
nin overshadows other THG sources in human skin studies. For better understanding of the THG
signals in keratinocytes without the influence of melanin, an in vivo THG microscopy (THGM)
study was first conducted on vitiliginous skin. As a result, the THG-brightness ratio between the
melanin-lacking cytoplasm of basal cells and collagen fibers is about 1.106 at the dermal–epi-
dermal junctions of vitiliginous skin, indicating high sensitivity of THGM for the presence of
melanin. We further applied the in vivo THGM to assist evaluating the therapeutic outcome from
the histopathological point of view for those showed no improvement under narrowband ultra-
violet B therapy based on the seven-point Physician Global Assessment score. Our clinical study
indicates the high potential of THGM to assist the histopathological assessment of the thera-
peutic efficacy of vitiligo treatments. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.25.1.014504]
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1 Introduction

Vitiligo is an acquired chronic depigmentation disorder resulting from progressive loss of epi-
dermal melanocytes and is clinically characterized by well-defined, white macules and confluent
patches.1 The prevalence rate of vitiligo is around 1.0% worldwide,1 and the disfigurement leads
to a negative impact on patients in terms of quality of life.2 The depigmentation in vitiligo is
caused by the selective destruction of L-3,4-dihydroxyphenylalanine (DOPA)-positive melano-
cytes in the epidermis and sometimes those in the bulb and infundibulum of the hair follicles,
sparing the DOPA-negative, nondendritic melanocytes in the middle/lower portions of the outer
root sheath (ORS).3 The precise reason for melanocyte destruction remains unknown, but auto-
immune, cytotoxic, neurohumoral factors, oxidative stress, and melanocytorrhagy have been
proposed to explain the pathogenesis of vitiligo.1 The two major melanocyte reservoirs for repig-
mentation of vitiligo skin are the ORS or bulge area of the hair follicle and the perilesional
epidermis.4 Ultraviolet (UV) radiation, including UVB or photochemotherapy (psoralen plus
UVA), and excimer laser/light3,5,6 can stimulate the activation, proliferation, and migration of
melanocytes from hair follicles and perilesional skin into the vitiliginous epidermis, followed
by functional maturation to melanin-producing melanocytes, which result in perifollicular and
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marginal repigmentation in vitiligo, respectively.4 Vitiligo usually requires a long course treat-
ment to observe skin repigmentation clinically. It is thus highly desired to find a noninvasive tool
to provide early histopathological assessment for efficacy of various therapies used in vitiligo.
It will be helpful to guide physicians through disease management.

Melanin is known to provide strong third-harmonic generation (THG) contrast in human
skin.7–9 A recent study10 has further indicated the capability of noninvasive label-free THGM
to differentiate melanocytes from Langerhans cells, which is not feasible in other in vivo label-
free clinical-imaging modalities. This characteristic makes THGM ideal for the assessment of the
vitiligo therapy and, with its high three-dimensional (3-D) resolution, to facilitate the under-
standing of the biologic mechanisms of repigmentation in vitiligo. In this study, to better under-
stand the signal intensity of THG in vitiliginous keratinocytes with the minimal influence of
melanin, an in vivo THGM study was conducted on vitiliginous skin, with a focus on the com-
parison of THG intensity between the cytoplasm of basal cells and collagen fibers. Stacks of
images were acquired at vitiliginous skin. As a result of the analysis, the THG-brightness ratio
between the melanin-lacking cytoplasm of basal cells to collagen fibers in vitiliginous lesions
was measured to be 1.106 at the dermal–epidermal junction of vitiliginous skin. With this low
ratio, indicating the high THG sensitivity of melanin, we further applied the in vivo THGM to
assist evaluating the therapeutic outcome from the histopathological point of view for those
showed no improvement under narrowband (NB)-UVB therapy based on the seven-point
Physician Global Assessment (PGA) score. Among the patients without clinical improvement
of their target vitiliginous lesions, nearly half of them showed significant THG features on the
reappearance of melanocytes or increased melanin-containing basal cell distribution, which was
not assessable by the traditional scoring based on the outlook of the lesions. Our study indicates
the high potential of THG microscopy for the early and sensitive assessment of vitiligo therapy.

2 Clinical Study on the Basal Cell Cytoplasm to Collagen Fiber
THG-Brightness Ratio

To diagnose skin conditions and diseases, the histopathological examination of excised tissues is
the gold standard. However, together with a lengthy procedure, the painful biopsy process is
associated with possible side effects like bleeding, infections, and scar formation. A least-inva-
sive imaging tool, which can perform high-resolution virtual biopsy examination, is thus highly
desired. Recently, optical imaging techniques, such as reflection confocal microscopy,11 optical
coherent tomography,12 two-photon fluorescence microscopy,13 and THGM,14 have been widely
applied for high-resolution in vivo skin imaging. With the excitation wavelength located at the
1300-nm high penetration window and a cubic nonlinearity for superior signal-to-background
ratio imaging at deep tissues, THGM provides slide-free and label-free clinical imaging in
human skin with a high 3-D resolution.7,8 We first intended to know the THG-brightness ratio
of basal cell cytoplasm to collagen fiber in human skin without melanin influences. Image stacks
consisting of multiple subimages representing different depths in human skin with vitiligo were
thus acquired and analyzed. For a single patient, different stacks record images from different
locations in the vitiligo lesion.

2.1 Harmonic Generation Microscope and Cr:Forsterite Laser

Considering the in-vivo clinical experiment on skin, we designed a vertical harmonic generation
microscope (HGM) with a Cr:forsterite (Cr:F) laser for second-harmonic generation (SHG) and
THG signals. The center wavelength of the Cr:F laser was around 1260 nm, and the average
output power after objective was about 100 mW with a repetition rate of 105 MHz. The band-
width of the Cr:F laser was improved to 75 nm and the pulse width was shortened to 51 fs for
improved nonlinear excitation efficiency. As shown in Fig. 1(a), the Cr:F laser beam was colli-
mated by a telescope that reduced the beam size at the same time. The beam, after passing
through a neutral density wheel to attenuate the power to a safe level for clinical studies, was
then guided into a galvoresonant scanning head (Thorlabs Laser Scanning Essentials Kit) to
perform high-speed 2-D scanning. The scanning pattern was focused onto human skin by a water

Liao et al.: In vivo third-harmonic generation microscopy study on vitiligo patients

Journal of Biomedical Optics 014504-2 January 2020 • Vol. 25(1)



immersion objective with a numerical aperture (NA) of 1.15 (Olympus, UApoN340). Epi-SHG
and epi-THG signals were collected by the same objective and reflected by a dichroic beam
splitter (DBS). THG (around 420 nm) and SHG (630 nm) signals were divided by another
DBS and sent to two individual photomultiplier tubes (PMTs; Hamamatsu R928P) with band-
pass filters inserted (FF02-617/73 for SHG and FF01-417/60 for THG, both from Semrock). The
objective was attached to a 3-D step motor so the position of the objective can be adjusted by
both manual tuning and remote electrical control. The imaging plane (or the plane of observa-
tion) can be moved to different depths by tuning the 3-D stage along the optical axis. The remote
electrical control was assisted by LabVIEW programs. We installed a motor-driven bed for con-
veniently adjusting the height of patients to reach the objective and to rapidly adjust the position
of observation region. Figure 1(b) shows a realistic design of the system.

Fig. 1 (a) A schematic diagram showing the system setup of the HGM used in the clinical trial.
(b) The 3-D model of the HGM system. The optical path and important devices are shown. DBS,
dichroic beam splitter; BPF, band-pass filter; PMT, phtotomultiplier tube; SHG, second-harmonic
generation; THG, third-harmonic generation.
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Figure 2 shows the design of the home-built Cr:F laser oscillator. The pump source was a
linear-polarized single-mode continuous-wave Ytterbium fiber laser (YLR-15-1064-LP IPG),
whose central wavelength was 1064 nm with 1-nm linewidth. The polarization was set to be
horizontal for minimal reflection at the Brewster’s angle of the crystal. The pump beam was
focused on the Cr:F crystal via a lens of 175-mm focal length, contributing a beam waist about
60 μm at the center of the crystal. The typical pump power was around 14.20 W for stable
mode-locking and would be slightly adjusted according to the room temperature and humidity.
The dimension of the Brewster-cut Cr:forsterite crystal was 3 × 3 × 15 mm3. The laser beam
traveled along the a axis (15 mm) of the crystal and its polarization relied on the b axis of the
crystal. The refractive index of the crystal is about 1.63, corresponding to the Brewster’s angle
of 58.5 deg. The surface temperature of the crystal was kept at 5.0°C by a thermoelectric cooler
with a temperature feedback loop. The hot side of the thermoelectric cooler was contacted
with circulating water, which was kept at 15.0°C by an immersion circulator (Thermo
Scientific SC150-A25). Pure nitrogen was purged on the surface of crystal, preventing mois-
ture condensation.

This laser oscillator is with a standard z-fold confocal cavity. There were two concave mirrors
with radius of curvature R ¼ 150 mm, located beside the crystal. One end of the cavity was a
wedge output coupler with 10% transmission. The other end of the cavity was a semiconductor
saturable absorber mirror (SESAM). SESAMwas mainly composed of two Ga0.47In0.53As quan-
tum wells and a 25× GaAs/AlAs Bragg reflector mirror. The absorption of the quantum wells
could be saturated by high-intensity pulses with a recovery time of 1.5 ps. Therefore, femto-
second pulses would be almost lossless while the continuous wave components are attenuated by
absorption. As a result, with SESAM as a slow absorber, the laser mode-locking was self-starting
and stabilized. There were two Brewster-cut SF6 prisms in the cavity providing negative group
delay dispersion to compensate the material dispersion and the self-phase modulation inside the
crystal. SF6 prisms were chosen for less total third-order dispersion.

2.2 Image Acquisition Conditions

In vivo HGM images were acquired at lesional normal skin located over anterior chest wall,
forehead, back, abdomen, shoulder, and neck. In vivo epi-SHG and epi-THG signals were
collected with acquisition time 0.357 s∕image. Signals from two channels were then mapped
into 14-bit grayscale images with the size of 512 × 512 pixels, corresponding to a field of
view of 295 × 295 μm2. Images of different depths from the skin surface were acquired
every 1.8 μm along the optical axis with the help of the step motor to which the objective
was attached. Afterward, the images can then be stacked into a single tiff file with multiple
subimages while each subimage is an image for a certain depth in skin. Fourteen stacks of
images from nine patients (six men and three women) with vitiligo were obtained and
analyzed.

The study protocol was approved by the Ethics Committee of National Taiwan University
Hospital (No. 201403043DINC) and Taiwan Food and Drug Administration (No. 2014-07-18).

Fig. 2 Schematic illustration of the Cr:F laser oscillator.
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2.3 Protocol on Obtaining Brightness Ratio

We established the following protocol with five phases in order to obtain the melanin-lacking
basal cell cytoplasm to collagen fiber THG-brightness ratio.

2.3.1 Previewing phase

We avoided analyzing stacks with the following characteristics at the depth of dermal–epider-
mal junction: (1) Images were so blurred (because of lateral movement of the subject) that the
outlines of basal cells cannot be recognized and that having three qualified subimages to ana-
lyze is impossible; (2) similar to normal skin, THG-bright pieces indicating accumulation of
melanin can be seen among basal cells; and (3) THG brightness of basal cells was over 1.6
times that of collagen fibers, which is the case in normal phototype I skin8 and therefore is
reasonable to doubt that there is melanin in basal cells. Phototype I skin is the lightest skin type
with melanin.

2.3.2 Region of interest selecting phase

Due to the optical scanning mechanism, images deep in biotissues become dim around the edge
of the scanning pattern. Electronic noise from PMTs results in random grayscale values at those
dim and uniformly dark regions. We analyzed only pixels with sufficient SNR and thus defined
a rectangular region of interest (ROI) on the basis of a simple threshold. For each stack, we
applied the threshold of 1600 in the grayscale value on THG images at the depth of basal layers,
because an SNR greater than 10 was desired and the mean of THG grayscale values at uniformly
dark regions was ∼150. A rectangular ROI can then be depicted based on the result of thresh-
olding. It is also advisable to use algorithms, such as the Otsu method to obtain a more exact
threshold. Pixels in ROI are further analyzed.

2.3.3 Screening phase

The images at the depth of dermal–epidermal junction with the following characteristics were
qualified to be processed: (1) SHG signals of collagen fibers with intensity greater than 1600
occupied more than 25% of the area in ROI. (2) The collagen fibers were clear enough to see
their orientation. (3) There were at least 10 distinguishable basal cells in the ROI. For a stack to
be counted into final results, it must have three qualified subimages to calculate the stack’s aver-
aged THG-brightness ratio.

2.3.4 Processing phase

THG brightness extraction for collagen fibers and basal cell cytoplasm was included in this
phase. The programs used in the phase and algorithmic frameworks of them were developed
and detailed in previous studies.15,16

For the part of collagen fibers, at least three qualified subimages were put into the program to
segment collagen fibers on the basis of SHG information (Fig. 3). The initial ROI suggested by
the program was then partly removed if the region lied outside the rectangular ROI or covered
THG signals obviously not induced by collagen fiber, but by basal cells, fibroblasts, red blood
cells, capillary walls, or accumulating lipid pieces around the wall. The mean THG brightness of
segmented collagen fiber in the modified ROI of each qualified subimage was recorded
(THGCollagen). For the part of basal cell cytoplasm, at least three qualified subimages were put
into the program to segment basal cell cytoplasm based on THG information (Fig. 4). To deal
with higher incidence of false segmentation due to low contrast of cells lacking melanin, manual
removal of apparent noncell segmentation was applied. If after the removal there were fewer than
10 cells segmented, then pure manual selection of cytoplasm was applied for the subimage.
The mean THG brightness of segmented cytoplasm of each qualified subimage was recorded
(THGCytoplasm).
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Finally, the intrinsic basal cell cytoplasm to collagen fiber THG-brightness ratio can be
defined as follows:

EQ-TARGET;temp:intralink-;sec2.3.4;116;296

THGCytoplasm − Noise

THGCollagen − Noise
;

where noise is the mean THG brightness out of the rectangular ROI at the bottom 80th subimage
in the stack. The ratio was calculated for each qualified subimage in a stack, and the final ratio
obtained from the stack was the average of every subimage.

2.3.5 Inspecting phase

According to the previous study on in vivo human THG microscopy, the cytoplasm of basal cells
to collagen fiber THG-brightness ratio is about 1.6 at the dermal–epidermal junctions of the
lightest phototype I skin.8 Although mostly such stacks were already ruled out during the pre-
viewing phase, stacks with the ratio higher than 1.6 were considered as melanin-containing and
therefore unqualified for our intrinsic ratio study without melanin.

Following the above-mentioned phases, an intrinsic THG brightness ratio of 1.106� 0.055

was obtained, with mean and standard error of the mean provided. This mean value was averaged
from 14 stacks of nine patients with vitiligo, among them, there are six men and three women.
Images were acquired at locations, such as right anterior chest wall, forehead, back, abdomen,
shoulder, and junction of the shoulder and neck.

Fig. 3 (a) In vivo THG and SHG microscopy images of vitiligo lesion with an en face view. Image
was acquired at the depth of the dermal–epidermal junction. THG and SHG are shown in magenta
and green pseudocolors. (b) Segmented collagen fiber is masked with red. (c) Initial ROI sug-
gested by the program. (d) ROI was manually modified to avoid selecting capillary walls near
fibers. Image size: 295 × 295 μm2. Scale bar: 50 μm.
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3 Applying THG Microscopy to Histologically Assess the Treatment
of Vitiligo

The low ratio value indicates the high sensitivity of THGM to observe minute changes in the
appearance of melanin inside or around the basal cells. We thus further investigated the potential
to apply THGM for the assistance of assessment in vitiligo treatments. The objective of the
clinical study is to investigate the potential role of THGM to evaluate repigmentation in patients

Fig. 4 The same image, as shown in Fig. 3, was analyzed. (a) The initial cytoplasmic segmen-
tation suggested by the program. (b) Imposition of the initial segmentation on the THG image. The
bright blue boundaries delineate segmented cells. The segmented nuclei are masked yellow.
(c) ROI is manually modified to avoid false segmentation and fiber regions. (d) Imposition of the
modified segmentation on the THG image. Cytoplasmic regions are masked with bright green.

Table 1 The seven-point PGA score.

−2 Disease progression as patches

−1 Active border extension

0 No change

1 Round follicular repigmentation

2 Perifollicular repigmentation with confluence <10% of the lesion

3 Repigmentation between 10% and 90% of the lesion

4 Repigmentation with confluence >90% of the lesion
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with vitiligo. A total of 23 patients having stable generalized vitiligo on the face or trunk were
recruited. Subjects could receive treatments, including topical corticosteroids, calcineurin inhib-
itors, calcipotriol, and UVB phototherapy for their vitiligo. In each patient, one target vitiliginous
lesion and one normal skin area away from vitiligo were selected, and the center of the selected

Fig. 5 (a, b) Enhanced perifollicular repigmentation of vitiligo after 24-week NB-ultraviolet B (NB-
UVB) treatment. PGA score 2 (perifollicular repigmentation with confluence <10%) was rated.

Fig. 6 In vivo THG microscopy images with an en face view in a representative case with PGA
score-1 at week 24. (a) The baseline images at the depth of basal cells showed low intensity of
THG-brightness in the vitiligo lesion, compared to the normal skin (b). (c) Presence of THG-bright
dendritic melanocytes (yellow arrows) and mildly increased THG-brightness in part of the basal
and suprabasal keratinocytes after 24-week NB-UVB therapy. (d) The intensity of THG was also
increased in normal basal cells after NB-UVB treatment. THG is shown in purple pseudocolor.
Image size: 250 × 250 μm2.
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areas was first imaged by HGM at baseline. At week 24, we evaluated the target lesion for the
therapeutic efficacy based on the seven-point PGA score, as presented in Table 1. For instance,
a 57-year-old female subject having scattered perifollicular repigmentation with confluence
<10% after receiving 24-week NB-UVB treatment was scored as PGA 2 (Fig. 5). As a result,
15 of the 23 patients showed no improvement based on the PGA scores (with score 0, −1, or −2).

To examine the potential of in vivo HGM on assessing the treatment efficacy of vitiligo, we
further imaged by HGM the center of the target vitiligo lesions, which responded poorly to
current treatments in these 15 patients at week 24. In a representative 41-year-old female patient
having the target vitiligo lesion on the abdomen, the slide-free en face THGM images showed
low THG intensity in the vitiligo lesion at baseline [Fig. 6(a)], compared to the normal basal cells
[Fig. 6(b)]. At week 24, although being scored as PGA-1, the THGM clearly revealed the
reappearance of dendritic melanocytes (yellow arrows) and repigmentation with increased
THG brightness on part of the basal and suprabasal keratinocytes [Fig. 6(c)]. The surrounding
normal skin also showed enhanced THG signals in the stratum basale [Fig. 6(d)], which possibly
resulted from the tanning effect of UVB treatment. Figure 7 showed the representative THG
imaging from a 55-year-old female patient who had the target vitiligo on the mandible and was
scored as PGA-1 at week 24. At baseline, the basal cells in the target vitiligo lesion had very
weak THG signals [Fig. 7(a)], compared with the normal skin [Fig. 7(b)]. After 24-week NB-
UVB treatment, increased THG signals distributed in the ORS and the surrounding basal ker-
atinocytes were noted, which indicated the early phenomenon of perifollicular repigmentation

Fig. 7 In vivo THG microscopy images with an en face view in a representative case with PGA
score-1 at week 24. (a) The baseline images at the depth of basal cells showed low intensity of
THG-brightness in the vitiligo lesion, compared to the normal skin (b). (c) Presence of THG-bright
basal cells (yellow arrows) around the follicular space (green asterisk) in the ORS and surrounding
basal keratinocytes was noted after 24-week NB-UVB therapy. The intensity of THG was com-
patible with the normal basal keratinocytes (d). THG is shown in purple pseudocolor. Image size:
250 × 250 μm2.
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[Fig. 7(c)]. The intensity of THG in the repigmentation area was compatible with the normal
basal keratinocytes [Fig. 7(d)]. These microscopic improvements were not assessable by the
physician’s naked eyes. The relative dark THG background of vitiliginous basal cell cytoplasm
lacking melanin provided an excellent signal-to-background ratio for the visualization of the
repigmentation.

As a result, our THGM provides extra histopathological information to assist the evaluation
of the therapeutic effect. Seven out of 15 patients showed improvement under UVB treatment
based on the THGM images. It is noted that the pattern of the repigmentation as evaluated by
physicians was follicular in all of the lesions. This indicates that melanocytes in the ORS or
bulge of the hair follicle were stimulated by NB-UVB and caused follicular pigmentation in
the vitiligo lesions.

4 Noninvasiveness and Photodamage Concern

The invasive nature of tightly focused femtosecond light is always a concern of clinical appli-
cations. With a tightly focused femtosecond laser light, the photodamage on skin can be roughly
divided into the linear photothermal and photochemical effects and the nonlinear multiphoton-
induced ionization and plasma effects. For 1260-nm light, the major linear absorbents in human
skin will be water and lipid, and temperature rise would be the most likely effect. A recent
metabolism study17 compared the effects of epidermal growth factor application and low-level
near-infrared (NIR) laser therapy (LLLT, 780 nm, 25 mW, 0.5, 1.5, and 3 J∕cm2) on cultured
epithelial cells with three applications per day for 3 days. LLLT with a total 27 J∕cm2 dosage
was found to enhance cell migration; however, no significant effects of laser irradiation on other
cell functions were observed. For multiphoton ionization effect with tightly focused NIR femto-
second light on a diffraction-limited spot under a high NA objective, live cells irradiated with 730
to 800 nm (1.7 to 1.55 eV) beams of>1 mW average power (total exposure per cell = 0.2 J) were
found to inhibit cloning efficiency.18 A previous study of mammalian embryos19 indicated that
by moving the tightly focused femtosecond excitation wavelength to 1047 nm (1.18 eV), with no
more than 13-mW average power (five optical scanning sections collected every 15 min;
total exposure ¼ 2 J∕embryo), the imaged embryos were found to be able to maintain viability.
The proportion of the embryos developed to morulae and blastocysts was not significantly differ-
ent between imaged and nonimaged embryos (total exposure ¼ 2 J∕embryo; n ¼ 21 embryos:
imaged ¼ 0.89� 0.15; nonimaged ¼ 0.83� 0.24).19 This significant reduction on femtosecond
laser damage indicates the dominant role of multiphoton process in the cell viability under tightly
focused femtosecond NIR light. For example, a three-photon process with 730-nm light can
generate the effect of 243 nm (5.1 eV) UV light20 to cause DNA damage. When the excitation
photon energy is lowered by shifting the laser wavelength toward longer wavelength, the order
number of nonlinear damage process increases, thus drastically increasing the nonlinear damage
threshold.21 For 1047-nm light, it will require four-photon processes to generate the similar effect
of 5-eV photon light. For 1260-nm (0.98 eV) light, the nonlinear process required to generate
similar 5 eV effects will be a five-photon process, a less likely event under low pulse energy on
the order of 1 nJ, which is our case. By shifting the femtosecond laser wavelength even further to
1230 nm,8 with 120-mW average power (3 min continuously per embryo; total exposure =
21.6 J), the HGM-imaged embryos under tightly focused light were also found to maintain
viability. The blastocyst development rate of the HGM-imaged embryos with laser exposure
is 94% (n ¼ 85 embryos: blastocyst stage = 80 embryos), and the rate of the embryos without
laser radiation is the same 94% (n ¼ 80 embryos: blastocyst stage = 75 embryos). The propor-
tion of the embryos developing to blastocysts showed no difference between imaged and non-
imaged embryos, thus indicating no observable influence on DNA expression. This conclusion
was supported by other 1230-nm based HGM studies of in vivo zebrafish embryos develop-
ments,22,23 where even after 100 mW and 20 h continuous observation (total exposure
7200 J∕embryo), our reported technique induced no observable biodamages so that there is
no reduction in cloning efficiency and each cell could function and divide normally to accom-
plish the whole development process, exactly the same as the control group. For small animal
validation on the cell viability under high average-power femtosecond Cr:F laser illumination,
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after 150 mW, 3-h continuous observation under the THG microscope in the 80 × 80 mm2 area
(1620 J total exposure with 2.5 × 107 J∕cm2),24 the observed hamster buccal tissues were
excised immediately. Histological examinations were then performed under a light microscope
by an experienced pathologist. This procedure was repeated for three hamsters. The buccal squ-
amous epithelium and subepithelial stroma were reported to be normal. No evidence of coagu-
lation necrosis could be found. For human skin study, a previous study using femtosecond 750-
nm light20 indicated a higher three-photon damage threshold when compared with the direct
irradiation experiments on embryos.18

In this clinical study, the central wavelength of the femtosecond excitation light is 1260 nm,
longer than the 1230 nm. With a 105-MHz repetition rate, 100-mW radiation corresponds to
a pulse energy of 0.95 nJ. In a previous neuron activity recording imaging by using three-photon
microscopy in brain,25 tightly focused 1300-nm light with 50-mW average power and 400-kHz
repetition rate, corresponding to 125 nJ per pulse, was applied for continuous imaging with no
reported damage in GFP-labeled animals. With less than 100 times pulse energy, if the nonlinear
damage process is up to the fifth order, the nonlinear photodamage per pulse in our study will be
>ð100Þ5 times lower than this previous three-photon study and thus can be totally negligible,
even after considering the fact that our system has 250 times more pulses per second. To compare
with the previous embryo and mucosa studies at 1230 nm, in each imaged skin location, the total
exposure time for acquiring one HGM image stack in this trial was around 28.6 to 35.7 s, cor-
responding to a total of 2.86 to 3.57 J∕exposure. With much lower total laser exposure on
a similar wavelength, we thus do not expect photodamages.

As a result, subjectively, the vitiligo patients do not feel any heat or discomfort on the
100 mW Cr:F laser-irradiated skin, and the dermatological skin examination immediately after
HGM imaging reveals no erythema, pigmentation, crust, or vesicular formation. Objectively,
during the course (less than 30 min) of real-time HGM imaging, there is no morphological alter-
ation of epidermal cells or dermal structures, such as structural distortion or cellular burst. We
have repeatedly performed imaging on the same cutaneous area, and the HGM morphology
remains the same. We further conclude that there are no sensitive temperature changes above
42°C to 43°C to cause protein denaturation or noxious stimulation and thus would like to refer
the HGM system as a noninvasive imaging system for vitiligo patients. Similar conclusions on
the clinical study have been reported previously.14,26,27

5 Summary

Melanin is known to provide strong THG contrast in human skin. With a high concentration in
the basal cell cytoplasm, THG contrast provided by melanin overshadows other THG sources in
human skin studies. For better understanding of the THG signals in keratinocytes without the
influence of melanin, an in vivo HGM study was first conducted on vitiliginous skin. As a result,
the THG-brightness ratio between the melanin-lacking cytoplasm of basal cells and collagen
fibers was measured to be 1.106 at the dermal–epidermal junctions of vitiliginous skin, indicat-
ing high sensitivity of THGM for the presence of melanin. We then applied HGM to assist the
histopathological assessment of therapeutic efficacy of vitiligo. As a result, our study indicates
the high potential of THGM to provide early and sensitive microscopic assessment on repig-
mentation treatment in vitiligo.
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