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Abstract. Abnormally shaped red blood cells (RBCs), called poikilocytes, can cause anemia.
At present, the biochemical abnormalities in poikilocytes are not well understood. Normal RBCs
and poikilocytes were analyzed using whole-blood and single-cell methods. Poikilocytes were
induced in rat blood by intragastrically administering titanium dioxide (TiO2) nanoparticles.
Complete blood count and inductively coupled plasma mass spectrometry analyses were per-
formed on whole-blood to measure average RBC morphology, blood hemoglobin (HGB), iron
content, and other blood parameters. Follow-up confocal Raman spectroscopy was performed on
single RBCs to analyze cell-type-specific HGB content. Two types of poikilocytes, acanthocytes
and echinocytes, were observed in TiO2 blood samples, along with normal RBCs. Acanthocytes
(diameter 7.7� 0.5 μm) and echinocytes (7.6� 0.6 μm) were microscopically larger (p < 0.05)
than normal RBCs (6.6� 0.4 μm) found in control blood samples (no TiO2 administration).
Similarly, mean corpuscular volume was higher (p < 0.05) in TiO2 whole-blood (70.70� 1.97 fl)
than in control whole-blood (67.42� 2.03 fl). Poikilocytes also had higher HGB content. Mean
corpuscular hemoglobin was higher (p < 0.05) in TiO2 whole-blood (21.84� 0.75 pg) than in
control whole-blood (20.8� 0.32 pg). Iron content was higher (p < 0.001) in TiO2 whole-blood
(697.0� 24.5 mg∕l) than in control whole-blood (503.4� 38.5 mg∕l), which supports elevated
HGB as iron is found in HGB. HGB-associated Raman bands at 1637, 1585, and 1372 cm−1

had higher (p < 0.001) amplitudes in acanthocytes and echinocytes than in RBCs from control
blood and normal RBCs from TiO2 blood. Further, the 1585-cm−1 band had a lower (p < 0.05)
amplitude in normal RBCs from TiO2 versus control RBCs. This represents biochemical abnor-
malities in normal appearing RBCs. Overall, poikilocytes, especially acanthocytes, have elevated
HGB. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JBO.25.1.015004]
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1 Introduction

Red blood cells (RBCs) are a major component of blood. They are important for transporting
oxygen and other gases in the lungs. RBC abnormalities may occur in different diseases, such as
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liver disease, elevated cholesterol, and diabetes.1–3 Abnormally shaped RBCs (poikilocytes)
may cause anemia, which increases health risks and cognitive loss.4,5 Poikilocytes can also be
the result of exposure to chemicals, such as the nanoparticle (NP) titanium dioxide (TiO2).

6–8

TiO2 is common and widely used in various consumer products, such as cosmetics, foods, paints,
paper, and sunscreens. Of note, a recent study published in the Journal of the American Medical
Association found that sunscreen ingredients entered the blood stream in large amounts.9 There
is a clear and considerable need to study blood abnormalities such as poikilocytes.

Current methods for studying blood include, but are not limited to, the complete blood count
(CBC), the blood glucose test, and the blood cholesterol test. Blood tests provide a range of
information such as RBC and white blood cell (WBC) counts, hemoglobin (HGB) levels, along
with cell size measurements such as mean corpuscular volume (MCV). However, the informa-
tion from blood tests is usually averaged across the whole sample, such as all RBCs, which
fails to capture intercellular heterogeneity. Single-cell analyses can complement blood tests by
providing information on heterogeneity, which is important for research to advance basic under-
standing of blood disorders. Optical tweezers have been employed to manipulate single RBCs to
investigate shear modulus10 and to investigate interactions between RBCs11 in the presence of
NPs.12 Micropipette aspiration has been employed to measure elongation.13 Raman spectroscopy
has been employed to analyze diabetic RBCs14 and ABO blood typing.15 These single-cell stud-
ies provide valuable information on RBC changes during poikilocytosis and other conditions.
However, the biochemical composition of poikilocytes, especially at the single-cell level, is not
well understood.

In this study, we combine whole-blood analyses, specifically CBC and inductively coupled
plasma mass spectrometry (ICP-MS), with single-cell analysis by confocal Raman spectroscopy.
TiO2 NPs of 5-nm size were used to induce poikilocytes, as related studies have shown that the
NPs affect the vascular system and damage liver function.7,8,16–18 Raman spectroscopy is a vibra-
tional spectroscopic method that provides information on the chemical bonds in the sample and
is applicable to many fields, including biomedicine.19,20 There is an increasing number of studies
using Raman spectroscopy to examine blood and biomolecules,21–24 including in the presence of
NPs such as nanodiamonds.25 In our study, two groups of rat subjects, low- and high-dose
groups, were administered TiO2. Control groups were administered only water. Whole-blood
from the high-dose group had a poikilocyte fraction of ∼70% (of RBCs) and was analyzed
by CBC and ICP-MS. A high poikilocyte fraction is needed for the whole-blood methods
to differentiate poikilocytes from normal RBCs in control blood samples. Single RBCs
(poikilocytes and normal RBCs) from the low-dose group, with much lower poikilocyte fraction
(∼30%), and controls were analyzed by Raman spectroscopy to obtain cell-type-specific
information.

2 Methods and Materials

2.1 Chemicals

The TiO2 NPs used in this study were purchased from Anhui Elite Industrial Co., Ltd.
(Elt-NT05) and the grain size was 5 nm. The NPs are 99.9% pure and the specific surface area
ranges from 150 to 300 m2∕g. There are trace amounts of iron (≤5 ppm). For preparing the
TiO2 suspensions, NPs were first mixed with distilled water at a body weight-dependent
concentration, and then the suspensions were treated by ultrasonic vibration for 30 min before
intragastric administration.

2.2 Animal Subjects and Dosing

All aspects of this study were approved by the animal research ethics committees of the City
University of Hong Kong, the University of Hong Kong, and the Department of Health of the
Hong Kong Special Administrative Region. Adult male Sprague Dawley rats (N ¼ 20) weighing
250 to 260 g were used in this study and acquired from the Laboratory Animal Unit of the
University of Hong Kong. Subjects were housed in standard cages with a temperature of
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25°C, humidity of 60% to 70%, 12/12 hour light/dark cycle, and regular access to food and
drinking water at the Laboratory Animal Research Unit of the City University of Hong Kong.

Subjects were separated into low-dose control (N ¼ 5), low-dose experimental (N ¼ 5),
high-dose control (N ¼ 5), and high-dose experimental (N ¼ 5) groups. For the control groups,
the subjects were intragastrically administered (gavage) with distilled water every two days for
20 days (low-dose) and every day for 60 days (high-dose). For the experimental groups, the
subjects were gavaged with TiO2 suspension at a concentration of 200 mg∕kg body weight
every two days for 20 days (low-dose) and 250 mg∕kg every day for 60 days (high-dose).
During gavage, a subject was wrapped in a towel and the back of its neck was grabbed tight
to open its mouth. Afterward, a plastic feeding tube was inserted into the stomach via the oral
cavity. Next, 1 ml of water or TiO2 suspension was injected into the subject.

2.3 Blood Collection and Sample Preparation

Twenty four hours after the last TiO2 injection, rats were anesthetized by pentobarbital (Alfasan
International B.V.) and blood was collected by cardiac puncture. For ICP-MS and CBC per-
formed on high-dose groups, 2.5 ml blood sample was collected. One and a half ml was placed
in a sterile tube for ICP-MS and 1 ml was placed in ethylenediaminetetraacetic acid (EDTA)
tubes (Jiangsu Yuli Medical Instrument Co., Ltd.) for CBC. For Raman spectroscopy performed
on low-dose groups, 2 ml blood sample was collected and stored in EDTA tubes. Blood smears
were prepared immediately after the sample was taken out from the EDTA tube. A drop of blood
was placed from the syringe onto the glass slide (Shanghai Machinery Import and Export
Company, Sail Brand 15 CAT. No. 7101). Afterward, a spreader slide was used to evenly
distribute the blood on the glass slide. Figure 1 illustrates the experimental flow.

2.4 Trace Metal Quantification

Titanium (Ti) and iron (Fe) contents were measured from whole-blood samples based on
Association of Analytical Communities 999.10 and determination by ICP-MS.26–29 Blood, nitric
acid (HNO3), and hydrogen peroxide (H2O2) were added to the digestion vessel and digested
using a microwave digester at four powers 250, 630, 500, and 0 W for 3, 5, 22, and 15 min,
respectively. Then the samples were transported to and analyzed using a PerkinElmer ELAN
DRC II ICP-MS. Afterward, the results were quantified by an external calibration method using
standard solutions. Calibration curves were drawn from calibration blanks at five standard points
with different concentrations.

Fig. 1 Experimental flowchart. Adult rats were administered TiO2 every other day by gavage at
a dose of 200 mg∕kg body weight for 20 days (low-dose, N ¼ 5) or 250 mg∕kg every day for
60 days (high-dose, N ¼ 5). Low- and high-dose controls (N ¼ 5 each) were administered distilled
water for equal durations. Whole-blood from high-dose subjects underwent a CBC and ICP-MS.
Raman spectroscopy was performed on individual RBCs of low-dose subjects using 514-nm
excitation and a confocal setup.
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2.5 Complete Blood Count

Whole-blood samples were put inside the CBC counter and aspirated by the autosampler. The
the samples were separated for the different tests and mixed with their respective reagents
for cytochemical reactions. The peroxidase, RBC, basophil (BASO), reticulocyte, and HGB
methods were used for the tests. RBCs, HGB, hematocrit (HCT), MCV, mean corpuscular
hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), red cell distribution
width (RDW), WBCs, neutrophils, lymphocytes, monocytes, eosinophils, BASO, platelet, and
mean platelet volume were measured by a Siemens ADVIA 2120i cell counter.

2.6 Confocal Raman Spectroscopy

The confocal Raman system used in the study was the Renishaw inVia™ Qontor® system from
the United Kingdom.30–33 The Raman setup was first calibrated with a silicon reference (peak at
520 cm−1) before taking further measurements. After calibration, the blood smear samples were
placed on a three-dimensional translation stage of the Raman microscope with a 50× objective
from Nikon Japan. The target RBC was then selected under the microscope’s viewing system
(500× magnification). With the confocal microscope setup, the vibrational signals from
a micron-sized cell or particle can be measured. The standard mode laser spot size of the
Raman system is ∼0.85 μm with the 50× objective. Figure 2 shows the Raman spectrometer
schematic.

For spectrum acquisition, the target RBC was positioned under the center of the microscope’s
field of view, which was also the position of the laser spot. After the target was placed in the right
position, the light and camera were turned off. The mirror of the camera was also removed before
the laser beam was turned on. Next, the beam spot was positioned at the center of the target RBC.
Continuous laser excitation at 514 nm (green) was employed with the argon ion laser with
1800 l∕mm grating for collection. A green laser was employed instead of a red or near-infrared
laser to reduce the spot size. From Fig. S1 in the Supplementary Material, the Raman peaks
were not obscured by the fluorescence background. The Raman shift range was recorded
between 1800 and 600 cm−1 using 10-s exposure time, 10 accumulations, and laser power of
∼2 mW. Two RBCs (normal) were analyzed per low-dose control smear. Two normal-looking
RBCs and four poikilocytes (two acanthocytes and two echinocytes) were analyzed per low-dose
experimental smear.

Spectrally analyzed RBCs from control subjects were termed normal. For RBCs from exper-
imental subjects, those with normal appearance were grouped as normal-looking. Poikilocytes
(acanthocytes and echinocytes) were observed. Note that normal-looking RBCs are not
poikilocytes. Acanthocytes and echinocytes are both RBCs with an abnormal shape and small
projections over the surface. The regularity of the spiculations can be used to distinguish acan-
thocytes from echinocytes.34 Echinocytes have a serrated outline with 10 to 30 small projections

Fig. 2 Schematic of Raman spectrometer with 514-nm laser and microscope (adapted from
Raman Station Manual). CCD, charged coupled device (detector).
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evenly distributed over the circumference, while acanthocytes have fewer spicules and the spic-
ules are varying in length and thickness and are placed irregularly on the surface of the cell.1,35,36

The number and distribution of spicules on the cell were the main factors that were used in this
study to distinguish between acanthocyte and echinocyte. Figure 3 shows the microscope images
of the RBC types.

Each Raman spectrum was imported to Origin Pro 8.5 SR1 and Origin Pro 2017 for process-
ing. Smoothing was performed using the Savitzky–Golay method, a local second-order poly-
nomial regression with an eight-point window. Next, fifth-order polynomial fitting was used for
background removal. After background removal, the wavenumber of the peaks of the spectra
were found by determining the wavenumber with the highest intensity around the chosen peak.
Peak heights were measured by fitting a Gaussian to peaks clearly visible on all spectra
(1637, 1585, 1372, and 1168 cm−1, see Fig. 3) and recording the maximum. Peak heights were
normalized by the integration of Raman signals at low wavenumbers (<1100 cm−1, where HGB
has few Raman bands37). The normalized height information was used for further statistical
analysis. Table S1 in the Supplementary Material shows the Raman peak assignments for
RBCs.21,38,39

The ratio of poikilocytes was determined by counting the number of poikilocytes and normal-
looking RBCs in the blood smear under the field of view of the microscope. The diameters of
the RBCs were measured and classified for different types (10 cells of each type per smear).
Acanthocytes are not regular in shape and the largest length of the cell was marked as the
diameter. The diameter data were used for further statistical analysis and compared with the
MCV data from literature.

2.7 Statistical Analysis

A two-tailed t-test, one-way, or two-way analysis of variance (ANOVA) followed by Tukey’s
HSD (honest significant difference) test were applied as appropriate for statistical analysis. The
data were expressed as mean� standard deviation. Statistically significant difference, denoted
as significant in the rest of this paper, was defined as p < 0.05.

Fig. 3 Representative RBCs (indicated by arrow) under 500× magnification and the correspond-
ing Raman spectra acquired. (a) Normal RBC (n ¼ 10), (b) normal-looking RBC (n ¼ 10),
(c) acanthocyte (n ¼ 10), and (d) echinocyte (n ¼ 10). The scale bar applies to all panels.
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3 Results

3.1 TiO2 Elevates Blood Titanium

Titanium contents from the blood of the high-dose control and experimental groups were
measured using ICP-MS (see Fig. 4). The mean titanium contents were 0.12� 0.02 mg∕l and
0.15� 0.02 mg∕l in control and experimental groups, respectively. The results show that blood
titanium content in the high-dose experimental group was significantly higher than that in the
control group (p < 0.05). This confirms that the TiO2 NP treatment delivered titanium into the
blood. Note that titanium has been previously reported at ∼0.1 mg∕l levels in normal rat
tissues.40,41 This likely comes from trace titanium in food and water.

3.2 Poikilocytes Are Larger Than Normal RBCs

Poikilocytes, abnormally shaped RBCs, were observed in the blood smear from the low-dose
experimental group. Two types of poikilocytes (acanthocyte and echinocyte) were observed.
Figure 3 shows four different types of RBCs from the blood smears: normal RBCs from controls
[Fig. 3(a)], normal-looking RBCs [Fig. 3(b)], acanthocytes [Fig. 3(c)], and echinocytes
[Fig. 3(d)] from experimental subjects under 500× magnification.

The average diameters of normal, normal-looking RBCs, acanthocytes, and echinocytes were
6.6� 0.4 μm, 7.1� 0.5 μm, 7.7� 0.5 μm, and 7.6� 0.6 μm, respectively (Fig. 5). The diam-
eters of acanthocytes and echinocytes were significantly larger than that of the normal RBCs

Fig. 4 Blood titanium concentrations for high-dose control (Con, n ¼ 5) and experimental
(Exp, n ¼ 5) groups measured by ICP-MS. Data are presented as mean and standard deviation.
The * indicates p < 0.05 by two-tailed t -test.

Fig. 5 RBC diameters for normal RBCs (N), normal-looking RBCs (NL), acanthocytes (A), and
echinocytes (E). Data are presented asmean and standard deviation. The * indicates p < 0.05 and
*** indicates p < 0.001 by one-way ANOVA and Tukey’s HSD test.
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with p < 0.001 and p < 0.05, respectively. The diameter of acanthocytes was larger than that of
the normal-looking RBCs with p < 0.05. For reference, normal RBCs in rats are 6 to 7 μm in
diameter according to the literature.42

3.3 Blood with High Poikilocyte Ratio Has Elevated Hemoglobin

Many poikilocytes, ∼70% of RBCs, were observed in the blood smears from the high-dose
experimental group (Fig. 6). In the low-dose group, the poikilocyte fraction was ∼30%. Both
acanthocytes and echinocytes were observed. The high ratio of poikilocytes in the high-dose
group facilitated using whole-blood CBC and ICP-MS measurements to analyze poikilocytes
when compared with controls (no poikilocytes).

Figure 7 shows that both MCV, 70.70� 1.97 fl, and MCH, 21.84� 0.75 pg, in the
high-dose experimental group were significantly higher than those in the control group,
67.42� 2.03 fl and 20.8� 0.32 pg, respectively (for both, p < 0.05). For RBC count, HGB,
HCT, MCHC, and RDW, the values were similar in both the control and experimental groups.
Also, WBC and platelet measures were similar between the groups (see Figs. S2 and S3 in
the Supplementary Material). Therefore, poikilocytes were on average larger and have more
HGB than normal RBCs.

Fig. 6 RBCs under 500× magnification for high-dose experimental group.

Fig. 7 RBC count, HGB, HCT, MCV, MCH, MCHC, and RDW for high-dose control (n ¼ 5) and
experimental groups (n ¼ 5). Data are presented as mean and standard deviation. The * indicates
p < 0.05 by one-way ANOVA and Tukey’s HSD test.
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3.4 Blood with High Poikilocyte Ratio Has Elevated Iron

Whole-blood iron content of the high-dose control and experimental groups, measured by ICP-
MS, were 503.4� 38.5 mg∕l in controls and 697.0� 24.5 mg∕l in experimental group (Fig. 8).
The difference is statistically significant (p < 0.001). Therefore, there is more iron in the blood
during poikilocytosis. Iron is a key element in the HGB protein. Thus, ICP-MS corroborates the
CBC findings of elevated HGB in poikilocytes.

3.5 Single-Cell Analysis Confirms Elevated Hemoglobin in Poikilocytes

To more precisely analyze poikilocytes and complement the above whole-blood analyses,
individual RBCs from low-dose experimental and control groups were analyzed by Raman spec-
troscopy. For all four types of RBCs (normal RBC, normal-looking RBC, acanthocytes, and
echinocytes), the Raman spectra were similar (Fig. 3). The bands were distributed over the range
of 673 to 1637 cm−1. Raman spectra of RBCs can be separated into four different regions
according to their corresponding vibration of different parts of the chemical structure.21 In the
region of porphyrin in-plane vibrational modes, the peaks 1637, 1585, 1559, and 1431 cm−1

were observed. The bands 1627, 1604, and 1547 cm−1 were not observed. For the region of
pyrrole ring stretching, the bands 1395, 1372, 1342, and 1306 cm−1 were observed. For the
methane CH deformation region, 1245 and 1228 cm−1 were observed. For the low-wavenumber
region, the bands 1166, 1132, 1090, 998, 975, 753, and 673 cm−1 were observed. The spectra of
poikilocytes and normal-looking cells in the low- and high-dose groups were compared and
show no big differences between the two doses (see Fig. S4 in the Supplementary Material).

For Raman spectra of acanthocytes, bands between 1650 and 1500 cm−1 and around 1400
and 1200 cm−1 were larger than that of other types of RBCs. Note that these bands were
associated with oxygenated HGB Raman scattering.37 For quantitative analysis (see Fig. 9),
the bands 1637 and 1585 cm−1, in the porphyrin in-plane and pyrrole ring regions, were
considerably higher (after normalization) in acanthocytes than normal and normal-looking
RBCs (p < 0.001). For these two bands, echinocytes were higher than normal-looking
RBCs (p < 0.001). The 1372-cm−1 band, in the pyrrole ring region, was higher in acanthocytes
and echinocytes than in normal-looking RBCs (p < 0.001). Interestingly, the 1585-cm−1 band
was higher in normal than in normal-looking RBCs (p < 0.05). This may represent biochemical
abnormalities in normal-looking RBCs in the absence of gross morphological abnormalities.
Since HGB and RBCs in this study were oxygenated, poikilocytes likely contain more HGB
than normal RBCs. In agreement with the band analysis, combined principal components and
linear discriminant analysis of the Raman spectra show that normal and normal-looking spectra
group together, while acanthocyte and echinocyte spectra group together (see Fig. S5 in the
Supplementary Material).

Fig. 8 Blood iron concentration for high-dose control (n ¼ 5) and experimental groups (n ¼ 5)
measured by ICP-MS. Data are presented as mean and standard deviation. The *** indicates
p < 0.001 by two-tailed t -test.
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4 Discussion

The increased blood titanium content of the TiO2 experimental group compared with the control
group measured by ICP-MS indicates that titanium NPs were transported from the digestive
system into the blood. Acanthocytes and echinocytes, two types of poikilocytes, were observed
under microscope from TiO2 subjects and were on average larger than normal-looking RBCs.
The CBC further showed that poikilocytes had more HGB than normal RBCs. Similarly, blood
iron content was increased in the TiO2 group compared with the control group. From single RBC
Raman spectroscopy, the intensities of HGB-associated bands at 1637 and 1585 cm−1 were
larger in acanthocytes than in normal and normal-looking RBCs. These bands were also larger
in echinocytes than in normal-looking RBCs. The intensity of the 1342 -cm−1 band was larger in
acanthocytes and echinocytes than in normal-looking RBCs and that of the 1585-cm−1 band was
larger in normal than in normal-looking RBCs.

4.1 Poikilocytes Are Enlarged

Acanthocytes and echinocytes in the low TiO2 dose group had larger diameters than normal
RBCs in control subjects (Fig. 5), which was 6 to 7 μm. Grissa et al.6 and Duan et al.7 reported
that the MCVof RBCs treated with TiO2 increased with increasing TiO2 dose and was propor-
tional to the dose administrated. Average size increase in poikilocytosis was also observed in
the high-dose group by the MCV of RBCs measurement in the CBC (Fig. 7).

4.2 Poikilocytes Have Elevated Hemoglobin

CBC and many traditional blood tests analyze a blood sample containing many cell types instead
of single cells or a single cell type. Therefore, a high TiO2 dose was used to produce many
poikilocytes. In our study, ∼70% of RBCs were poikilocytes in the high-dose experimental
group (Fig. 6). From the CBC results, the MCH of RBCs after treatment with TiO2 was
significantly higher than that of control subjects (Fig. 7). Therefore, RBCs in poikilocytosis
have more HGB.

The iron content of blood from the high-dose experimental group was measured by ICP-MS
and found to be higher than that of the control group (Fig. 8). Iron is an important element for
blood production and about 73% of body iron is found in HGB.43 Therefore, blood iron content
is closely related to the HGB level. This result further supports the CBC results of increased
hemoglobin content in poikilocytes.

Follow-up analysis of individual RBCs with Raman spectroscopy (Fig. 9) showed that the
bands in acanthocytes, especially 1637, 1585, and 1372 cm−1, were significantly higher than

Fig. 9 Raman band heights normalized by low wavenumber signal (see Sec. 2 for details) for
normal RBCs (N), normal-looking RBCs (NL), acanthocytes (A), and echinocytes (E) at different
wavenumbers. Data are presented as mean and standard deviation. The * and *** indicate
p < 0.05 and 0.001, respectively, by two-way ANOVA and Tukey’s HSD test.
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those of normal-looking RBCs. The band of 1637 cm−1 assigned to v10 is due to translocation of
the iron ion out of the heme plane during oxygenation. Therefore, oxygenation causes an
increase in the intensity of this band.44 The 1585-cm−1 band assigned to v37 is larger in the
oxygenated state than in the deoxygenated state in RBCs.44 The 1559-cm−1 band assigned
to v2 only appears in RBCs in arterioles and is absent in venules.24 The 1372-cm−1 band is
the so-called oxidation state marker and appears in the spectra of RBCs in arterioles but is
absent in venules.24 The 1228-cm−1 band assigned to v13 or v42 becomes more intense as the
cell becomes oxygenated.21 Based on this data, poikilocytes, especially acanthocytes, have
higher HGB content than normal and normal-looking cells, as the intensities of the above bands
were proportional to oxygenation.

4.3 Mechanisms of TiO2-Induced Poikilocytosis

In this study, we observed that exposure to TiO2 NPs leads to the formation of acanthocytes and
echinocytes, two forms of poikilocytes. Acanthocytes result from alterations in RBC membrane
lipids and proteins and can occur in patients with liver dysfunction, postsplenectomy, and other
conditions.35,45 A resulting consequence of having acanthocytes in the blood is that they are
vulnerable to being destroyed by the spleen, leading to anemia. In echinocytes, the mechanism
of membrane alteration is different. Surface receptors on the RBC bind with cholesterol (do
not integrate with the membrane), inducing the shape changes.46 Echinocytes may be found
in patients with liver dysfunction. TiO2 NPs at the doses employed in this study are known
to affect liver function and that of other organs such as the spleen.7,18 As acanthocyte and
echinocyte formation are both closely related to liver (and spleen) dysfunction, this is the likely
mechanism through which TiO2 induces poikilocytes.

4.4 Health Effects

Poikilocytes contain more HGB compared with normal and normal-looking RBCs. Excessive
blood oxygen levels may cause hyperoxia, which is excessive oxygen in body tissues. Oxygen
toxicity may cause nausea, dizziness, abnormal sensations, headache, disorientation, and
lightheadedness.47 TiO2-treated subjects had higher blood iron level, which may elevate the risk
of cardiovascular disease as high stored iron levels accelerate oxidation of cholesterol and
damage the arteries.48

4.5 Technical Considerations

For this study, the CBC analysis showed similar MCHC between control and experimental
groups. However, single-cell Raman spectroscopy demonstrated increased amplitude of
HGB-related vibrational bands. Considering the laser spot size is considerably smaller than
an RBC, this likely indicates increased HGB concentration in poikilocytes (rather than a larger
cell with similar HGB concentration). In the authors’ opinion, the Raman observations are likely
more representative in this case as CBC has to average across a large number of cell types. Such
single-cell analysis is particularly important in the mechanistic elucidation of biological func-
tions, due to the emerging consensus of cellular heterogeneity even within an isogenic cell
population.49,50 Hence, single-cell Raman spectroscopy offers a key probe with spatial resolution
that can overcome the limitations of stochastic averages computed from bulk measurements in
heterogeneous populations. Ultimately, single-cell analysis can better delineate signaling path-
ways and networks, focus on specific populations aiding in differentiation of normal cells and
poikilocytes, and suggest targeted therapeutic interventions.

The peaks observed due to the green, 514-nm laser applied to excite Raman scattering could
be slightly different than other laser wavelengths (i.e., 633 nm21). Furthermore, the cells were
placed on a glass slide for Raman spectroscopy. The glass background spectrum is shown in
Fig. S1 in the Supplementary Material and compensated for as part of the background subtrac-
tion. It is worth noting that the location of the laser spot on different parts of an RBC will affect
the Raman signal as the physical structure of an RBC is not homogeneous. In the spectra of
normal RBC, three bands were missing: 1627, 1604, and 1547cm−1, compared with the results
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of Wood and McNaughton.21 These bands were assigned to vc═c, v19, and v11, respectively.
These missing bands were likely merged with adjacent bands as the spectral resolution of our
system was limited to 4 cm−1.

5 Conclusions

This study measured blood from rats treated with TiO2 NPs to analyze differences between
poikilocytes and normal RBCs. CBC and ICP-MS measurements from poikilocytes were larger
and carried more HGB than normal RBCs. Follow-up Raman spectroscopy analysis of single
RBCs confirmed that poikilocytes, especially acanthocytes, carried more HGB. Further, single-
cell Raman spectroscopy is able to study the biochemical differences between RBC types and
advance basic hematologic understanding acquired primarily by whole-blood methods.
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