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Abstract

Significance: As a promising hybrid imaging technique with x-ray excitable nanophosphors,
cone-beam x-ray luminescence computed tomography (CB-XLCT) has been proposed for
in-depth biological imaging applications. In situations in which the full rotation of the imaging
object (or x-ray source) is inapplicable, the x-ray excitation is limited by geometry, or a lower
x-ray excitation dose is mandatory, limited view CB-XLCT reconstruction would be essential.
However, this will result in severe ill-posedness and poor image quality.

Aim: The aim is to develop a limited view CB-XLCT imaging strategy to reduce the scanning
span and a corresponding reconstruction method to achieve robust imaging performance.

Approach: In this study, a group sparsity-based reconstruction method is proposed with the
consideration that nanophosphors usually cluster in certain regions, such as tumors or major
organs such as the liver. In addition, depth compensation (DC) is adopted to avoid the depth
inconsistency caused by a limited view strategy.

Results: Experiments using numerical simulations and physical phantoms with different edge-
to-edge distances were carried out to illustrate the validity of the proposed method. The recon-
struction results showed that the proposed method outperforms conventional methods in terms of
localization accuracy, target shape, image contrast, and spatial resolution with two perpendicular
projections.

Conclusions: A limited view CB-XLCT imaging strategy with two perpendicular projections
and a reconstruction method based on DC and group sparsity, which is essential for fast
CB-XLCT imaging and for some practical imaging applications, such as imaging-guided
surgery, is proposed.
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1 Introduction

X-ray luminescence computed tomography (XLCT) has attracted much attention as a CT/optical
dual-mode imaging technique.1–3 It utilizes x-ray excitable nanophosphors as biomarkers to
produce visible or near-infrared (NIR) light upon x-ray irritation and naturally combines x-ray
structure imaging of high resolution with optical molecular imaging of high sensitivity and
specificity. Compared with traditional optical molecular imaging modalities, such as fluores-
cence molecular tomography (FMT)4,5 and bioluminescence tomography (BLT),6,7 XLCT can
detect targets deeply seated in the imaging object with the use of x-rays and provides higher
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sensitivity due to the avoidance of background optical signals and autofluorescence. With the
above advantages, great efforts have been devoted to XLCT imaging and several types of XLCT
systems have been proposed according to the x-ray beam shapes. Narrow-beam2,3 and pencil-
beam XLCT8,9 can achieve high spatial resolution, but the long imaging time hinders their appli-
cation to fast biomedical applications. To reduce imaging time, cone-beam XLCT (CB-XLCT)
systems10–13 have been proposed for fast imaging to skip the translation step essential in narrow-
and pencil-beam XLCT systems.

However, due to high light scattering and low absorption properties in biological tissues, the
reconstruction of CB-XLCT is an ill-posed problem. To improve the imaging performance, much
prior information has been introduced for CB-XLCT reconstruction, such as permissible region,14 CT
images,15 and sparsity.16 Sparsity is the most frequently used prior information for CB-XLCT recon-
struction since nanophosphors are usually sparsely distributed inside the body. With this information,
in our previous studies, sparse view-based reconstruction methods have been proposed by Gao
et al.16 and Liu et al.,17 where two adjacent targets can be recovered accurately with only four
projections evenly distributed in a 360-deg span. Considering this, in some applications, such as
intraoperative breast cancer lumpectomy,18 only limited view projections could be acquired due
to geometry limitation and/or low-dose excitation. It is essential to develop a reconstruction
method for the limited view strategy to achieve robust imaging performance in these situations.

Though Liu et al. proposed single-view CB-XLCT reconstruction methods based on
sparsity19,20 or group sparsity,21 it either works for single target recovery or relies on CT images
to obtain group prior, whereas the reconstruction is related to the group LASSO model and im-
aging performance may be affected by inaccurate group information. In optical imaging, nano-
phosphors often cluster in some areas, such as tumor regions where luminescent signals are
simultaneously nonzero, and rarely distribute in other areas, such as normal tissues where lumi-
nescent signals are simultaneously near zero. Thus, beyond sparsity, nanophosphors can also be
characterized by group sparsity.22 With this prior information, instead of prior CT information,
it is possible to improve the image quality of limited view CB-XLCT for multiple targets.

In addition, due to the nonlinear depth sensitivity of measurements detected, the optical
intensity of targets far from the detector would be less than those near the detector,23,24 resulting
in low reconstructed values for far targets. Therefore, for optical imaging, especially for limited
view acquisition, depth compensation (DC) is essential for avoiding depth inconsistency and
obtaining high quality reconstructed images.

In this paper, a DC method is first adopted to level off the differences in detection sensitivities
by incorporating two weight matrices into the optimization function.23 To alleviate the ill-posed-
ness, group sparsity is then introduced as the prior information. Unlike Liu et al. who used the
group LASSO model with CT information, here, we add the fused LASSO (FL) penalty to the
objective function, which was solved efficiently with a split Bregman iterative method. To evalu-
ate the performance of the proposed method with the DC-FL penalty for CB-XLCT, both
numerical simulation and physical phantom experiments were performed and the proposed algo-
rithm was compared with the adaptive Tikhonov (Adaptik),25 fast iterative shrinkage-threshold-
ing algorithm (FISTA),26 and our previously proposed sparse view-based T-FISTA method16 in
terms of location error, imaging contrast, shape, and spatial resolution.

The structure of the paper is organized as follows. In Sec. 2, the methodology is presented.
First, the forward model for CB-XLCT is briefly described. Second, the DC matrix and FL penalty
are formulated. Finally, the split Bregman FL method is described to solve the objective function.
In Sec. 3, both numerical simulation and physical phantom experiments are performed to illustrate
the performance of the proposed algorithm. In Sec. 4, the results from numerical simulations and
physical phantom experiments are presented. In Sec. 5, some discussion and a conclusion
are given.

2 Methodology

2.1 Forward Problem

In the CB-XLCT system, x-rays penetrate the imaging object based on Lambert–Beers’ law, and
the x-ray intensity (Wcm−3) distribution XðrÞ in the imaging object is expressed as follows:10
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EQ-TARGET;temp:intralink-;e001;116;735XðrÞ ¼ Xðr0Þ exp
�
−
Z

r

r0

μtðτÞdτ
�
; (1)

where Xðr0Þ is the intensity of x-ray (Wcm−3) at the initial position r0, and μtðτÞ is the x-ray
attenuation coefficient (cm−1) obtained from x-ray transmission data. When irradiated by x-rays,
nanophosphors distributed in the imaging object can emit visible or near-infrared (NIR) light,
which is expressed as follows:

EQ-TARGET;temp:intralink-;e002;116;651SðrÞ ¼ εXðrÞnðrÞ; (2)

where SðrÞ is the source energy density (Wcm−3), ε is the light yield defined as the quantum
yield per unit nanophosphor concentration (mgmL−1), and nðrÞ is the nanophosphor concen-
tration in position r. The light transportation in scattering media is modeled by the radiative
transfer equation (RTE), but solving the RTE directly is extremely difficult. Considering the
highly scattering and weakly absorbing properties of biological tissues in the visible or NIR
spectral window, the RTE model is simplified to the following diffusion equation model:7

EQ-TARGET;temp:intralink-;e003;116;548

�
−∇½DðrÞ∇ΦðrÞ� þ μaðrÞΦðrÞ ¼ XðrÞ ðr ∈ ΩÞ
ΦðrÞ þ 2αDðrÞ½ν∇ΦðrÞ� ¼ 0 ðr ∈ ∂ΩÞ ; (3)

where DðrÞ is the diffusion coefficient that is calculated by DðrÞ ¼ ½3½μaðrÞ þ μ 0
sðrÞ��−1 and

μa and μ 0
s are the absorption and reduced scattering coefficients of the tissue, respectively.

ΦðrÞ is the photon fluence at position r, Ω is the domain of the imaged object, ∂Ω denotes
the boundary of Ω, α is a factor describing the optical reflective index mismatch, and ν is
the outward unit normal vector on ∂Ω.

With the finite-element method, Eq. (3) is discretized into a matrix equation, which builds
a linear relationship between the nanophosphor concentration N and photon measurements on
the object surface Φmeas:

EQ-TARGET;temp:intralink-;e004;116;407AN ¼ Φmeas; (4)

where A is a weight matrix used to map the unknown nanophosphor distribution to known
measurements.

2.2 Limited View Reconstruction with DC-FL for CB-XLCT

It is known that the detection sensitivity in optical imaging decreases nonlinearly with increased
depth.24 This makes CB-XLCT measurements hypersensitive to targets near the detector, which
typically happens in limited view imaging of multiple targets. The ill-posed weight matrix will
lead to reconstructed biases toward the superficial targets. To level off this bias, DC is first imple-
mented by incorporating two weight matrices into the objective function. Then, to take advan-
tage of the priors in CB-XLCT, a FL penalty is added for reconstruction based on group sparsity
priors. The final objective function is solved with the split Bregman method considering its
computation efficiency. Figure 1 gives the flowchart of the proposed algorithm.

2.2.1 Depth compensation for the inverse problem

Generally, the weight matrix A is ill-posed, and it is impractical to solve N directly. To obtain
a unique and stable solution, Eq. (4) is solved by the following minimization problem with the Lp

regularization term:

EQ-TARGET;temp:intralink-;e005;116;146min
n
fkAN −Φmeask2 þ λkNkPg; (5)

where λ is the regularization parameter and kNkp is the Lp-norm of N.
For effective DC, two weight matrices, i.e., data weight matrixWd and model weight matrix

Wm are introduced,23 and Eq. (5) are further converted to the following equations:
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EQ-TARGET;temp:intralink-;e006;116;467

�
min
y
fkAWdW−1

m Y −Φmeask22 þ λkYk2Pg
Y ¼ WmN

: (6)

In detail, Wd provides constraints or a priori information for the solution, which is
constructed as

EQ-TARGET;temp:intralink-;e007;116;401Wd ¼ diagðÑÞ ¼

0
BB@

ñq1 · · · 0

..

. . .
. ..

.

0 · · · ñqn

1
CCA; (7)

where Ñ is a rough approximation to the true solution N and q controls the compromise between
a close fit to the data and the stability of the solution, which was set according to Ref. 24. In this
paper, the rough approximation is obtained by the T-FISTA method.

Wm is used to level off the differences in detection sensitivities and is given by

EQ-TARGET;temp:intralink-;e008;116;285

8>>>><
>>>>:

βj ¼ 1
jmaxðAjÞ−minðAjÞj

Wm ¼ diagfβj � kAjk−12 g ¼

0
B@

βj � kAjk−12 · · · 0

..

. . .
. ..

.

0 · · · βn � kAnk−12

1
CA; j ¼ 1;2; · · · ; N

; (8)

where βj is a normalization factor that is inversely proportional to the absolute largest difference
between the elements within each column.

2.2.2 Fused LASSO penalty for the inverse problem

In this paper, the group sparsity of the luminescent signals, which means that the luminescent
signals should be roughly piecewise constant, is introduced as a priori information. As a result,
the FL penalty is incorporated into Eq. (6) to make use of the group sparsity:

EQ-TARGET;temp:intralink-;e009;116;106min
y
fkAWdW−1

m Y −Φmeask22 þ λ1kYk21 þ λ2kRYk21g; (9)

Fig. 1 The flowchart of the proposed DC-FL algorithm.
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where

EQ-TARGET;temp:intralink-;e010;116;723Rij ¼
8<
:

−1 j ¼ i; i ¼ 1;2; · · ·
1 j ¼ iþ 1; i ¼ 1;2; · · ·
0 otherwise

: (10)

The regularization term with parameter λ1 encourages the sparsity of the reconstructed sig-
nals, while the other term with parameter λ2 shrinks the differences between neighboring signals.

2.2.3 Split Bregman method for the fused LASSO problem

Generally, solving Eq. (9) is computationally challenging due to the nondifferentiability of the
objective function. Here, in this paper, we adopted a method based on the split Bregman iteration
for solving the general FL problem.27 The Bregman iteration technique is based on the Bregman
distance that generalizes the concept of metric associating a distance to a convex function not
necessarily differentiable, and it addresses the objective problem by analyzing it into several
functions and minimizing them separately in an efficient simple way. We introduce two auxiliary
variables, a and b, to represent Y and RY, and u and v are dual variables corresponding to the
linear constraints Y ¼ a and RY ¼ b, respectively. The split Bregman iteration can be imple-
mented as follows:

Initialization: y0, a0, b0, u0, and v0.

Let VðyÞ ¼ kAWdW−1
m Y −Φmeask22

Repeat:

1) ymþ1 ¼ arg minyfVðyÞ þ hum; y − ami þ hvm;Ry − bmi þ μ1
2
ky− amk22 þ μ2

2
kRy − bmk22g

2) amþ1 ¼ ζu−1
1
λ1
ðymþ1 þ μ−11 umÞ

3) bmþ1 ¼ ζu2−1λ2ðRymþ1 þ μ−12 vmÞ
4) umþ1 ¼ um þ δ1ðymþ1 − amþ1Þ
5) vmþ1 ¼ vm þ δ2ðRymþ1 − bmþ1Þ where ζ a soft thresholding operator.

Until

Convergence

In this paper, the regularization parameters λ1 and λ2 were set to 0.1 and 1, respectively. The
iteration numbers were set to 150 in simulations and 300 in phantom experiments according to
the results, respectively. More detailed information on this method can be found in Ref. 28.

3 Experimental Setup

3.1 Numerical Simulation Setup

Numerical simulations were implemented with a cylinder phantom with two luminescent targets
embedded to evaluate the performance of the proposed method. The geometry configuration of
the phantom is shown in Fig. 2. It was a cylinder placed on a rotating stage, with the rotational
axis defined as the Z axis and the bottom plane set as Z ¼ 0 cm. The diameter and height of the
cylindrical phantom were 3.0 and 2.5 cm, respectively. To approximate high scattering media,
the phantom was filled with 1% intralipid, where the absorption coefficient and reduced scatter-
ing coefficient were set to 0.02 and 10 cm−1, respectively. Two luminescent targets with nano-
phosphors of Y2O3∶Eu3þ were placed in the phantom at a depth of 1.0 cm. The targets were
0.4 cm in diameter and 0.5 cm in height. The edge-to-edge distance (EED) of the two targets was
set to 0.30 cm in case 1 and 0.10 cm in case 2. The nanophosphors were excited by CB x-rays
with a tube voltage of 40 kV. The initial phantom position setup is shown in Fig. 3. Luminescent
images were collected at every 90 deg for a full span of 360 deg. A total of four projections were
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collected, some of which were used for reconstruction. The detectors located on finite-element
nodes of the boundary were inside 160 deg. To make the simulations more realistic, white
Gaussian noise was added to generate noisy boundary measurements with a signal-to-noise ratio
set to 20 dB. In this paper, the analytical simulation was conducted with COMSOLMultiphysics
3.3 (COMSOL, Inc., Burlington, Massachusetts).

3.2 Phantom Experiments Setup

A physical phantom similar to the simulations was imaged based on the custom-made CB-XLCT
system developed by our lab. The system consists of a microfocus CB x-ray source that is used to
excite the phantom, a highly sensitive electron-multiplying charge-coupled device (EMCCD)
adopted for luminescent projections collection, and an x-ray flat panel detector to collect trans-
mitted x-ray signals, as described in Fig. 3. Figure 4 illustrates the setup of the physical phantom.
It was a transparent glass cylinder with a diameter of 3.0 cm and a height of 7.0 cm, filled with
1% intralipid and water (with an absorption coefficient of 0.02 cm−1 and a reduced scattering
coefficient of 10 cm−1). Two glass tubes of 0.4 cm diameter that contained nanophosphors of
Y2O3∶Eu3þ were implanted in the phantom. The concentration of Y2O3∶Eu3þ was 0.1 gmL−1.
Similar to simulation studies, two cases of phantom experiments with different EEDs (0.50 cm in

Fig. 2 Setup for the cylinder phantom. (a), (b) The view of the XY plane of the two cases.
(c), (d) The view of the XZ plane of the two cases. Two luminescent targets of Y2O3∶Eu3þ were
placed inside a cylinder phantom. The EED along the X axis is 0.30 cm in case 1 (first column) and
0.10 cm in case 2 (second column).

Fig. 3 Schematic diagram of the hybrid CB-XLCT/XCT imaging system and the initial phantom
position setup used in simulation and phantom experiments.

Gao et al.: Limited view cone-beam x-ray luminescence tomography. . .

Journal of Biomedical Optics 016004-6 January 2020 • Vol. 25(1)



case 1 and 0.23 cm in case 2) were performed. The detectors located on finite-element nodes of
the boundary were inside 160 deg. The imaging details can be found in Ref. 16.

Figures 4(a) and 4(b) show the representative x-ray projections of the physical phantoms with
different EEDs. Representative CT slices of the phantoms with different EEDs are shown in
Figs. 4(c) and 4(d). Regions between the blue and green lines were selected for the study.

3.3 Quantitative Evaluation

To quantitatively evaluate the performance of the proposed reconstruction method, in this
paper, three state-of-the-art methods were implemented for comparison, including the adaptive
Tikhonov regularization (Adaptik, L-2 norm), FISTA (L-1 norm), and our previously proposed
revised T-FISTA method. The regularization parameters were set according to Ref. 24, respec-
tively. The iteration numbers were chosen empirically according to the results and to ensure the
convergence of the calculation.

Images reconstructed by different methods were compared in terms of location error, imaging
contrast, shape, and spatial resolution. For quantitative evaluation, the position error (PE), Dice
similarity coefficient (DICE), contrast-to-noise ratio (CNR), and spatial resolution index (SPI)
were calculated, respectively.16

PE is defined as the Euclidean distance between the actual and reconstructed luminescent
positions:

EQ-TARGET;temp:intralink-;e011;116;159PE ¼ kpr − ptk2; (11)

where pr and pt denote the centers of the reconstructed and true targets, respectively.
DICE evaluates the similarity between the actual and reconstructed luminescent areas:

EQ-TARGET;temp:intralink-;e012;116;102DICE ¼ 2jROIr ∩ ROItj
jROIrj þ jROItj

; (12)

Fig. 4 Setup for experimental studies. (a), (b) Representative x-ray projections of the phantoms
with EED ¼ 0.50 cm and EED ¼ 0.23 cm, respectively. Regions between the blue and green lines
are used for analysis. (c), (d) XCT slice of the phantom, corresponding to the slice indicated by
the red line in (a) and (b), respectively. The left and right tubes are named as tube 1 and tube 2,
respectively. White scale bars in (a) and (c): 1 cm.
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where ROIr and ROIt denote the reconstructed and true luminescent areas, respectively. The
closer the reconstruction is to the true target, the closer the DICE is to 1. Otherwise, the DICE
is closer to 0.

CNR is used for quantitative evaluation of image contrast:

EQ-TARGET;temp:intralink-;e013;116;687CNR ¼ jMeanROI −MeanBKj
ðwVar2ROI þ ð1 − wÞVar2BKÞ1∕2

; (13)

where the subscripts ROI and BK denote the target and background regions, respectively, mean
and var denote the mean value and variance, respectively, and w is the weighting factor calculated
by the relative volumes of the ROI.

SPI is a spatial resolution quantitative index to analyze the performance of the algorithms in
resolving two targets:

EQ-TARGET;temp:intralink-;e014;116;582SPI ¼ nlmax − nlvalley
nlmax − nlmin

; (14)

where nl denotes the value of the profile along a given line that connects the two centers on
the reconstructed cross-section. nlmax, nlmin, and n

l
valley are the maximal, minimal, and valley value

between the two peak values, respectively. The more clearly the two targets are separated, the
closer the SPI is to 1.

4 Results

4.1 Numerical Simulations

Figure 5 shows the reconstruction results of case 1 with two projections in numerical simula-
tions. The height of the cross-section is 1.3 cm. The red circle in each image depicts the phantom
boundary, and the two yellow circles depict the true positions of the two targets. Two groups of
reconstructions were conducted. In the first group, the projection pair of 0 deg to 180 deg was
adopted for reconstruction, and the results are shown in the first row. It can be seen that both the
traditional L2-norm based method Adaptik and the L1-norm based method FISTA could not
resolve the two targets and introduce more noise in the images. Though the T-FISTA method
could resolve the two targets clearly, some noise existed in the image when compared with that

Fig. 5 CB-XLCT reconstruction results of simulation case 1 (EED ¼ 0.30 cm). (a)–(h) The first to
the fourth column are results obtained with the Adaptik, FISTA, T-FISTA, and DC-FL. The first and
second row are the results reconstructed with two projections of 180-deg and 90-deg view spans,
respectively. The yellow circles depict the true positions of the two targets, and the red circles
depict the boundary of the phantom. All images are normalized to the maximal value.
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obtained by the proposed method. In the second group, a reduced imaging span was adopted and
the projection pair of 0 deg to 90 deg was used for reconstruction. The results are shown in the
second row of Fig. 5. In this group, the other three methods could not resolve two targets effec-
tively, while the proposed algorithm could do it with good image quality.

To demonstrate whether the initial position of the 90-deg span would affect the imaging
performance, we performed another numerical simulation, where three other 90-deg span pro-
jection pairs, 30 deg to 120 deg, 60 deg to 150 deg, and 90 deg to 180 deg, were used, respec-
tively. The results are shown in Fig. 6. It can be seen that, no matter where the projection started,
the quality of reconstructed images was quite similar. This indicates that the initial position of
the limited view span has little effect on the reconstruction results.

Figure 7 shows the reconstruction results of simulation case 2, where two projection pairs of
0 deg to 90 deg were used. The upper row in Fig. 7 gives 2D slices while the lower row shows
corresponding 3D visualization results. In 3D results, values of <10% of the maximum value
were neglected. The cylinders depict the phantom, and the red objects represent the luminescent
targets. We can see that, as the two targets get closer, the tomographic images obtained with the
first three methods [Figs. 5(a)–5(c)] become much worse than those in case 1, and none of these
methods could separate the two targets clearly. By contrast, the proposed DC-FL method could
achieve high-quality imaging with accurate position and less noise, which can be further dem-
onstrated by the 3D renderings.

To further evaluate the performance of the proposed method, quantitative analysis was per-
formed, as shown in Table 1, which corresponds to the upper row in Fig. 7. The proposed method

Fig. 6 The reconstruction results for illustrating the effect of the initial position of the 90-deg span.
(a)–(c) Three different 90-deg span projection pairs: (a) 30 deg to 120 deg, (b) 60 deg to 150 deg,
(c) and 90 deg to 180 deg.

Fig. 7 (a)–(h) CB-XLCT reconstruction results of simulation case 2 (EED ¼ 0.10 cm). From left to
right: results obtained by the Adaptik, FISTA, T-FISTA, and DC-FL, respectively. From top to
bottom: 2D and 3D results reconstructed with two projection pairs of 0-deg to 90-deg view span,
respectively. The cylinders depict the phantom, and the red objects represent the luminescent
targets.
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achieves the least PE, which means the reconstructed positions of the two targets were most
accurate compared with those obtained by the other three methods. In addition, the proposed
method yields the highest DICE, CNR, and SPI, indicating that the targets were recovered with
the best shape, least noise, and best spatial resolution.

4.2 Phantom Experiments

Figure 8 shows the cross-sectional and 3D results of the phantom experiment. The first and third
rows show the tomographic fused XLCT/CT images corresponding to the CT slice indicated by

Table 1 Quantitative analysis of simulation case 2 with two projection pairs of 0 deg to 90 deg.

PE (mm) DICE

CNR SPITube 1 Tube 2 Tube 1 Tube 2

Adaptik 3.79 2.97 0.07 0.06 0.70 0.37

FISTA 3.81 3.05 0.05 0.05 1.40 0.30

T-FISTA 5.94 0.82 0.06 0.06 1.84 0.23

DC-FL 0.22 0.29 0.82 0.73 8.38 0.94

Fig. 8 Results of the phantom experiment. The first and third row shows the tomographic fused
XLCT/CT images, while the second and fourth row depicts the XLCT 3D visualization results of
(a)–(h) case 1 (EED ¼ 0.50 cm) and (i)–(p) case 2 (EED ¼ 0.23 cm), respectively. Reconstructions
obtained by the Adaptik, FISTA, T-FISTA, and DC-FL are shown from the first to the fourth column.
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the red line in Fig. 4(a), while the second and fourth rows depict the XLCT 3D visualization
results of case 1 (EED ¼ 0.50 cm) and case 2 (EED ¼ 0.23 cm), respectively. Reconstructions
obtained by the Adaptik, FISTA, T-FISTA, and DC-FL are shown from the first to the fourth
column. In both cases, two projection pairs of 0 deg to 90 deg were adopted for reconstruction.

The phantom experimental results indicate that the limited view used in the reconstruction
could only resolve one target [Figs. 8(a)–8(c) and 8(i)–8(k)] with the Adaptik, FISTA, and
T-FISTA methods, which might be due to one target being closer to the detector than the other
in the two projections. With the DC-based FL reconstruction strategy, both targets could be
resolved accurately as expected [Fig. 8(a)], even when the two tubes were close with an EED
of 0.23 cm [Fig. 8(l)]. The performance was further confirmed by the 3D results [Figs. 8(h)
and 8(p)].

To demonstrate whether the initial position would affect the imaging performance of the
phantom experiments, three other 90-deg span projection pairs, including 30 deg to 120 deg,
60 deg to 150 deg and 90 deg to 180 deg were tested, respectively. As shown in Fig. 9, images
reconstructed from different projection pairs are quite similar, indicating that the initial position
of the limited view span has little effect on the reconstruction results.

To further validate the proposed algorithm, a quantitative evaluation of phantom experiment
2 (third row in Fig. 8) was carried out, as presented in Table 2. Similar to results in simulations,
this demonstrates that, compared with the other methods, the proposed method yields the small-
est LE and the highest CNR, DICE, and SPI, indicating that the targets were recovered with the
least relative error.

5 Discussion and Conclusion

In this study, we established a group sparsity-based limited view CB-XLCT reconstruction
method. To reduce the depth-dependent value inconsistency caused by the limited view strategy,
DC was first adopted. Then, the group sparsity was introduced as prior information in consid-
eration of nanophosphors usually being clustered in groups. Both numerical simulations and
phantom experiments validate the performance of the proposed method.

Fig. 9 Results of the phantom experiment case 2 with different 90-deg span projection pairs.
(a)–(c) Three different 90-deg span projection pairs: (a) 30 deg to 120 deg, (b) 60 deg to 150 deg,
and (c) 90 deg to 180 deg.

Table 2 Quantitative analysis of phantom results of case 2.

PE (mm) DICE

CNR SPITube 1 Tube 2 Tube 1 Tube 2

Adaptik 5.65 1.33 0.01 0.23 1.68 0.24

FISTA 4.85 3.44 0.11 0.17 1.91 0.10

T-FISTA 3.52 3.45 0.28 0.26 2.78 0.02

DC-FL 0.93 0.64 0.48 0.68 5.00 0.98
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The reconstruction results of numerical simulations and phantom experiments show
that, with the proposed method, we can resolve the distribution of the nanophosphors even
when the targets are close to each other, using only two projections at 0 deg and 90 deg
(Figs. 6–8). Quantitative analysis (Tables 1 and 2) together with the 3D renderings indicates
that, compared with Adaptik, FISTA, and T-FISTA methods, the proposed DC-FL method
achieved the highest location accuracy, contrast, and resolution and the most consistent shape.
All of these results demonstrate the potential of the proposed method in improving imaging
performance and reducing the imaging time and radiation dose of limited view CB-XLCT.
Though DC-FL is designed for CB-XLCT in this paper, it can be extended to other XLCT
systems, such as narrow-beam XLCT or fan-beam XLCT systems. Further, with appropriate
forward models, DC-FL can be applied to other optical reconstructions, such as FMT
and BLT.

Our results indicate that no matter which projection is used as the initial view (0 deg, 30 deg,
60 deg, or 90 deg), the imaging performance is similar (Fig. 6), which suggests that 90-deg span
could be a robust imaging strategy for limited view imaging. We also find that a smaller span
(single view in simulations or 60 deg in phantom experiments) may also achieve comparable
performance. However, this depends on the position of the initial view, which may lead to unsta-
ble results. In addition, the imaging cost has been greatly reduced, i.e., from 94 s (with four
projections evenly collected in a 360-deg span) to 17 s (with two perpendicular projections
collected in a 90-deg span) in our experiments.

Although the proposed method achieved better performance, some important issues need to
be further addressed. In this work, all of the hyperparameters including regularization param-
eters, iteration numbers, and initial values were empirically optimized based on value ranges
suggested by references. The automatic selection of these parameters would substantially benefit
CB-XLCT. In addition, the rough approximation of the solution used for constructing Wd is
critical for the imaging performance of the proposed method. The more accurate the approxi-
mation is, the better the result that can be achieved. Furthermore, effective optimization methods
used to solve the FL problem, such as the primal-dual Newton conjugate gradient method,29 may
further improve the limited view imaging. In future work, more effort will be devoted to resolv-
ing more targets with smaller EED by the proposed method.
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