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Abstract

Significance:Machine learning is increasingly being applied to the classification of microscopic
data. In order to detect some complex and dynamic cellular processes, time-resolved live-cell
imaging might be necessary. Incorporating the temporal information into the classification
process may allow for a better and more specific classification.

Aim: We propose a methodology for cell classification based on the time-lapse quantitative
phase images (QPIs) gained by digital holographic microscopy (DHM) with the goal of increas-
ing performance of classification of dynamic cellular processes.

Approach: The methodology was demonstrated by studying epithelial–mesenchymal transition
(EMT) which entails major and distinct time-dependent morphological changes. The time-lapse
QPIs of EMT were obtained over a 48-h period and specific novel features representing the
dynamic cell behavior were extracted. The two distinct end-state phenotypes were classified
by several supervised machine learning algorithms and the results were compared with the
classification performed on single-time-point images.

Results: In comparison to the single-time-point approach, our data suggest the incorporation of
temporal information into the classification of cell phenotypes during EMT improves perfor-
mance by nearly 9% in terms of accuracy, and further indicate the potential of DHM to monitor
cellular morphological changes.

Conclusions: Proposed approach based on the time-lapse images gained by DHM could
improve the monitoring of live cell behavior in an automated fashion and could be further devel-
oped into a tool for high-throughput automated analysis of unique cell behavior.
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1 Introduction

Currently, automated image acquisition systems enable microscopic experiments that generate
large image datasets. Manual observation and evaluation of the microscopic images require a
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trained biologist who performs an inspection for every image, which is both time-consuming and
requires considerable effort and concentration by the investigator. Human analysis can be biased,
varying with skill and scientific rigor. Consequently, these and other aspects impose significant
constraints on the speed, reliability, and validity of such evaluation of microscopic images.

One approach to address these limitations is supervised machine learning,1 which is increas-
ingly being applied to the classification of microscopic data.2,3 As an objective unbiased method
of scoring the content of microscopic images, this method has been argued to be more sensitive,
consistent, and accurate in comparison to subjective manual interpretation.

When applying the supervised machine learning to cell classification, a computer is trained
based on example images of cells belonging to predefined cell classes.4 Once segmented suc-
cessfully, the cells are often represented by a set of unique features for the purpose of dimen-
sionality reduction. The features are summarized into a feature vector, which serves as an input
to the classifier. After the classifier is trained on the user-labeled training examples, it is then able
to distinguish between a defined set of cell classes in an experimental sample.

When exploiting machine learning in light microscopy, most microscopic techniques only
provide intensity images and do not detect the phase delay induced by the imaged cells. Digital
holographic microscopy (DHM) enables such phase detection and hence provides quantitative
phase images (QPIs) of live cells with high intrinsic contrast without labeling. The phase in the
image corresponds to the dry mass density distribution within the cell and correspondingly it is
quantitative in terms of cell mass. As such, DHM provides additional information, which has
great potential for automated interpretation of cell behavior. Also other label-free microscopic
techniques have been applied to cell imaging, including harmonic generation microscopy5–7 or
Raman imaging.8 These methods, however, require intense laser light passing through the speci-
men that could influence the cell behavior and moreover entail scanning, hence are not widefield.
Both approaches enable visualization of cell structure and function and could be considered
complementary techniques to QPI.

Several studies have applied machine learning classification algorithms to QPI gained by
DHM with outcomes such as morphology-based classification of red blood cells, automated
detection and classification of living organisms in drinking water resources, and automated diag-
nosis of breast and prostate cancer from tissue biopsies.9–12 We have previously reported the
advantage of an automated DHM-based analysis in the classification of different cell morphol-
ogies in response to nutritional deprivation. This study demonstrated that the quantitative nature
of single-time-point images acquired by coherence-controlled holographic microscope (CCHM)
improves the classification of cellular morphologies as compared to other techniques.13,14

However, some complex dynamic processes demand time-resolved live-cell imaging in order
to gain more information and correctly interpret the cell behavior poststimuli. Efforts to analyze
more complex dynamic cellular processes using single-cell kinetic states from holographic
cytometry of human melanoma cells have also been reported, acquiring single-time-point images
from time-lapse microscopy for analysis.15 Several other studies applied machine learning for
classification of cells using time-lapse QPI.16–18

To our present knowledge, these studies have not applied machine learning for cell classi-
fication of time-lapse QPIs using the features extracted from time-lapse images, and thus a tem-
poral context, for classification. We hypothesize that the inclusion of time data will allow better
assessment and characterization of live cell behavior.

Herein we report a methodology for cell classification during cellular transitions based on
time-lapse QPI using the Namru Mus musculus mammary gland (NMuMG) cell line, a well-
established TGFβ-inducible epithelial–mesenchymal transition (EMT) model system.19,20 EMT
is a fundamental process occurring during development and during pathological conditions, par-
ticularly in fibrosis and wound healing. In addition, EMT is believed to be the key, initial step in
cancer metastasis and has been linked to chemotherapy resistance.21,22 During EMT, cell cycle is
arrested, the cells lose their epithelial features and acquire a more mesenchymal, fibroblast-like
phenotype visible as increased cell area and cell elongation.

Although EMT has been well characterized, a better understanding of the regulation and dynam-
ics of this process is necessary to better predict disease progression and to develop novel therapies
for metastatic disease. EMT in breast cancer cells has already been studied using QPI,23 but only
single-time-point images were used for the monitoring. Given the gradual and time-dependent
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morphological changes occurring during EMT, assessment of only the epithelial and morphological
end states will provide partial information about this complex transition. We therefore reasoned that
analysis of EMT through time-lapse QPI may reveal novel cell phenotypic changes previously
undetected. The additional benefit with using this microscopic approach is the lack of requirement
for cell modifications with fluorescent reporters. The identification of novel physical characteristics
of either end state, or of cells during this transition, could help provide guidance for additional
studies and thus a better understanding of EMT and metastasis.

The two morphologically distinct phenotypes observed during EMT (epithelial and mesen-
chymal) represent the categories for cell classification in these sets of experiments. The time-
lapse images of cells were obtained by CCHM14,24 during the 48-h TGFβ treatment period. The
imaging in CCHM is based on the interference of the object and the reference light beams, which
enables detection of the phase delay induced by the specimen. This quantitative nature of the
images enables the extraction of features representing cell behavior, which formed input for the
cell classification. The cells were classified by several supervised machine learning algorithms
and the results were compared with the single-time-point approach used in our previous paper.13

Collectively, this system allowed assessment of the contribution of time-lapse QPI to cell clas-
sification of a dynamic and time-dependent cell phenotypic switch as well as comparison of this
approach with classification based purely on single-time-point images.

2 Methods

2.1 Cell Culture Techniques

NMuMG cells (provided by Dr. Theresa Vincent) were grown in Dulbecco’s modified
Eagle’s medium (Sigma-Aldrich, Czech Republic) supplemented with GlutaMAX™ (Life
Technologies, Czech Republic), 10% fetal bovine serum (Sigma-Aldrich, Czech Republic),
100 U∕ml penicillin, and 0.1 mg∕ml streptomycin (Life Technologies, Czech Republic). The
cells were harvested by trypsinization and transferred into 10 sterilized observation chambers
μ-Slide I (Ibidi GmbH, Germany) at 50 cells∕mm2 to ensure a low density for segmentation of
individual cells. Once the cells were transferred to the observation chambers, they were kept
in the incubator and imaged the day after. The 10 chambers were divided into control and
TGFβ-treated (10 ng∕ml) with imaging beginning immediately after treatment.

2.2 CCHM

Quantitative phase imaging of cells was performed by CCHM,14,24,25 now also available as
Q-Phase (TESCAN ORSAY HOLDING, a.s., Brno, Czech Republic). The optical setup of the
microscope is based on Mach–Zehnder type interferometer modified for incoherent, off-axis
holographic microscopy as shown in Fig. 1(b). The illumination is formed by a low-coherence
source (halogen lamp) while the beam is split into two separated optical pathways—reference
and object arm. Both arms contain matching condensers, objectives, and tube lenses. In the
reference arm, the diffraction grating is placed in order to ensure the achromatic formation
of the interference pattern (hologram) in the output plane. The hologram is recorded by the
CCD camera and numerically reconstructed using a Q–Phase software (TESCAN ORSAY
HOLDING, a. s., Brno, Czech Republic). The numerical reconstruction of the image is based
on carrier removal in the Fourier plane.26 The hologram is Fourier transformed using the 2-D fast
Fourier transform (FFT) algorithm. The image spectrum in extracted by a windowing operation,
whereas the window is centered at the carrier frequency. The frequency origin is translated to the
center of the window, and the 2-D inverse FFT is applied to obtain the complex amplitude.
Amplitude and phase are derived from the complex amplitude as modulus and argument, respec-
tively. Since the values in the raw phase image are wrapped on the interval (−π; π), the phase
unwrapping algorithm27 is applied. After the reconstruction, the image can still be burdened
by the optical aberrations of the imaging system, imperfect adjustment of the microscope,
or possibly by surrounding temperature changes. This issue is solved by the subtraction of
the compensation surface described in detail in Ref. 28. In this way, a final unwrapped and
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compensated phase image is obtained. Such reconstructed QPI is proportional to the optical path
difference of the two arms according to the following equation:

EQ-TARGET;temp:intralink-;e001;116;453φðx; yÞ ¼ 2π

λ
dðx; yÞ½ncðx; yÞ − nm�; (1)

where λ is the illumination wavelength, d is the cell thickness, and nc is the mean axially inte-
grated refractive index of the cell immersed in the culture medium of refractive index nm

29 as
depicted in Fig. 1(a). According to Refs. 30 and 31, measured phase is proportional to the dry
mass density within the cell (units of pg μm−2), which can be obtained from the measured phase
as follows:

EQ-TARGET;temp:intralink-;e002;116;350ρðx; yÞ ¼ λ

2πγ
φðx; yÞ; (2)

where γ is the refraction increment.29 Based on the refractive index model of a cell introduced
by Barer,32 the effective cell refractive index is linearly proportional to the concentration of protein
in the cell where a proportionality constant is represented by γ. Several unconjugated proteins were
measured, and the refraction increment for proteins is and approximated as 0.18 to 0.21 ml∕g.

The use of incoherent illumination enables strong suppression of coherent noise and parasitic
interferences. Moreover, the low illumination power of the source (0.2 μW∕cm2) is not likely to
influence the physiological functions of imaged cells, making CCHM very convenient for live
cell imaging.

2.3 Image Acquisition

The NMuMG cells were imaged by CCHM. During the experiment, the samples were illumi-
nated with the halogen lamp through the interference filter (λ ¼ 650 nm, 10 nm FWHM).
Microscope objectives (Nikon Plan Fluor 20 × ∕0.5) were utilized for the imaging, providing
the field of view 140 μm. For the purpose of classification, it was essential to acquire a reason-
ably large number of cells undergoing EMT. Therefore, six fields of view were imaged with a
5-min interval, each ∼1 mm apart from each other. Each chamber was imaged for 48 h in the
presence or absence of TGFβ to obtain the time-lapse QPI for the classification. The media were
not changed during the imaging period and conditions within the microscope mimicked that of
the cell incubator (temperature 37°C) to ensure the cells were not subjected to stress.

Fig. 1 Imaging in CCHM. (a) Model of an adhered cell in the observation chamber imaged by
CCHM. (b) Optical setup of CCHM: light source (S), relay lens (L), beamsplitters (BS), condensers
(C), specimen (SP), reference object (RO), microobjectives (O), tube lenses (TL), diffraction gra-
ting (DG), output lenses (OL), output plane (OP), and detector (D).
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All time-lapse images of cells were gathered in the database. The database consisted of six
48-h-long records. Since none of the cells remained in the field of view for the whole imaging
due to migration, 150 min (30 time-lapse images with interval 5 min) were determined as an
optimal length of the time-lapse record for one cell. Hundred and eighty cells were chosen for the
monitoring. Based on their morphology, the cells were labeled by the expert biologist as either
epithelial (95 cells) or mesenchymal (85 cells). The cells with uncertain class membership were
not considered and were excluded from the database. The two types of classified cell morphol-
ogies are shown in Fig. 2.

2.4 Classification

Classification, as a category of supervised machine learning, aims to build a model that makes
predictions based on self-learning procedure on known labeled data. In the case of cell classi-
fication, the algorithm identifies patterns in the input images and trains a model based on labels
assigned to the cells by an expert biologist. Such trained model is able to classify cells in new,
previously unseen images. The essential requirement for successful classification is a sufficiently
large database of labeled cell images, in which the classifier is trained. The overview of the
classification process based on time-lapse QPI is shown in Fig. 3 and is described in more detail
in the following paragraphs.

Fig. 2 Examples of segmented QPIs of (a) epithelial and (b) mesenchymal phenotype gained by
CCHM 2 and 30 h after the application of TGFβ, respectively. During EMT, the cell morphology
changed from rounded to elongated, with the cell mass distributing relatively equally over the cell
area, while the cell area increased significantly. QPIs are shown in grayscale in units of pg∕μm2

recalculated from phase (in radians) according to Davies.31

Fig. 3 Overview of the proposed feature-based classification process based on time-lapse QPI.
First, image preprocessing is carried out. The cells in the image are segmented from the back-
ground and identified as ROIs. Cell features are extracted for every ROI. Feature values in several
time instants create a time series. Dynamic features are extracted from the time-series while cre-
ating the feature vectors representing behavior of cells. The data are split into training and testing
set. Both training and testing data are labeled by the expert biologist. After the feature selection,
testing data form input for the classifier. The classifier is trained on the training data and prepared
to perform the classification on testing data.
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2.5 Image Preprocessing and Feature Extraction

Before the classification itself, the cells were first segmented from the background in the time-
lapse images by marker-controlled watershed segmentation approach.33 The individual cells
were tracked using the cell tracking algorithm scripted in MATLAB (MathWorks, Inc.). The
algorithm performs cell tracking by linking every segmented cell in the given frame to the nearest
cell in the next frame. Only cells remaining in the field of view throughout the specified time
were considered for assessment. Further, highly overlapping cells where the segmentation was
not clear were not included, nor were cells located on the border of the image. The included cells
were identified as separate regions of interest (ROIs), where each ROI was represented by a set of
cell features—a procedure referred to as feature extraction. Two types of features were extracted
from each cell: morphometric and QPI features. Morphometric features mostly reflect the shape
of the cell. These features involved footprint area, perimeter of the footprint area, convex area,
perimeter of the convex area, solidity, roundness, indentation, eccentricity, extent, and centroid
of the cell. QPI features are extracted from the phase values of the cell in QPI and therefore,
contain quantitative information about the dry mass density distribution within the cell. QPI
features were composed of the total phase of the cell, average phase, median, variance, standard
deviation, skewness, and kurtosis of the phase values. Both types of features are described in
more detail in our previous work.13 In the next step, all extracted features undergo normalization
in order to scale the feature values to a fixed range from 0 to 1.

Each cell in a time instant therefore is represented by a feature vector composed of the cell
features captured. Since every cell was recorded in time, each cell feature provides a univariate
time series composed of the values of cell features over time. Accordingly, the consideration of
all cell features, gives rise to a multivariate time series. There are two possible ways for the
representation of time series. In the first, the values of time series itself represent the input for
the classification, which will be referred to as a value-based approach. In the second, the feature-
based approach, the time series is further represented by the newly defined time-lapse features,
which subsequently form the time-lapse feature vector.

In order to explain the formation of the final time-lapse feature vector in the feature-based
approach, the brief notation will be introduced. Let X ¼ fX1; X2; : : : ; XQg represent a collection
ofQmultivariate time series, whereQ is the number of cells in the experiment. Each multivariate
time series Xi is formed by n observations (n is the number of time points) and d-dimensional
variable (d is the number of cell features) as shown in Fig. 4(a). The multivariate time series Xi

can be written as

Fig. 4 Overview of the time-lapse feature extraction process. (a) Each cell is represented by the
multivariate time series composed of univariate time series (formed by cell feature values obtained
within the time period). (b) Time-lapse feature extraction from univariate time series composing a
partial time-lapse feature set. Individual segments represent the group of time-lapse features
obtained by the extraction technique. The length of the segments indicates the approximate num-
ber of extracted time-lapse features for the group. (c) Construction of the final time-lapse feature
vector. The final vector representing a single cell is formed by the concatenation of partial time-
lapse feature sets belonging to a cell. In addition, the motion and PCA features are added.
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EQ-TARGET;temp:intralink-;e003;116;735Xi ¼ fXijtg; for j ¼ 1; : : : ; d; t ¼ 1; : : : ; n; (3)

with the total number of observations d × n ×Q.
We will consider the j’th component of the i’th time series Xij ¼ fXij1; : : : ; Xijng to be a

univariate time series. Therefore, the univariate time series will be composed of the values of one
cell feature recorded in time. For each univariate time series Xij, a feat time-lapse feature vector
M ¼ ðm1; m2; : : : ; mLÞ is formed, where each m is a time-lapse feature extracted from the time
series and L is the number of time-lapse features. In this way, each time series Xij is transformed
into a partial time-lapse feature vectorMij. Each multivariate time series is therefore transformed
into d time-lapse feature vectors. The vectors are then concatenated into a final time-lapse feature
vector of d × L dimensions.

The idea of the transformation is extracting information which would otherwise not be
obvious as well as reducing the number of features compared to the value-based approach and
therefore lowering computational time. The latter is obvious when encountering longer time
series. There are several possible methods used for dealing with the feature-based representation
of the time series. The employed feature extraction techniques are briefly described in the fol-
lowing paragraph.

Statistical features carry global information about the time series. The following metrics
were chosen in order to statistically represent the structure of the time series: mean value,
median value, standard deviation, minimum value, maximum value, skewness, and kurtosis.
Fourier transform features are formed by the most significant coefficients gained by FFT algo-
rithm. Wavelet transformation features are formed by detail and approximation coefficients
computed by discrete wavelet transform algorithm. The trend is represented by the coefficients
obtained by the linear least squares fitting of the time series and characterizes a long-term
change in the mean value of a cell feature. Approximate entropy quantifies the unpredictability
of fluctuations in the time series. The presence of repetitive patterns of fluctuation in a time
series renders it more predictable and leads to a relatively small approximate entropy.
Symbolic aggregate approximation (SAX) features are gained by SAX method,34 which is
composed of two steps: piecewise aggregate approximation (PAA)35 and the conversion of
a PAA sequence into a string composed of letters, where the original time series is converted
to a symbol string.

All of the above time-lapse features were extracted from each of the univariate time series and
created a partial time-lapse feature vector as shown in Fig. 4(b). Subsequently, the partial time-
lapse feature vectors obtained from each univariate time series were concatenated into a final
time-lapse feature vector, whereas other extracted time-lapse features (principal components
analysis and motion features) were added on the tail as shown in Fig. 4(c).

Principal components analysis (PCA) features were gained by applying PCA36 on the whole
multivariate time series, while mapping the multivariate data into a lower dimensional space.
Motion features are composed of accumulated distance (overall distance travelled by the cell
between the initial and the end point during the time interval), Euclidean distance (length of
the straight line between the cell’s starting and end point reached during the time of monitoring),
velocity (overall distance travelled by the cell over the elapsed time), and directionality (ratio of
the Euclidian and accumulated distance). The position of the cell was determined by the cell
centroids for all calculated motion features. Both PCA and motion features were added into the
final time-lapse feature vector.

In the value-based approach, the extraction of time-lapse features is omitted, since the final
time-lapse feature vector is composed of the raw data (values in each time point) contained in the
multivariate time series. The final time-lapse feature vector is created by concatenating the uni-
variate time series behind each other.

In both approaches, the final time-lapse feature vector represents a unique behavioral pattern
of a cell. Before passing the vectors to the classification algorithms, the time-lapse feature values
are scaled to a fixed range from 0 to 1. The example of a set of final time-lapse feature vectors
gained by feature-based approach can be seen in Fig. 5, where the first 32 rows represent feature
vectors extracted from epithelial cells and the other 35 rows from mesenchymal cells with the
columns representing individual time-lapse feature values. The data are further split into training
and testing set and are labeled by the expert biologist. Since the final time-lapse feature vectors
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are of substantial size, the next step is the selection of features with the highest potential to
distinguish between the given classes, which would then form input for the machine learning
classification algorithms.

2.6 Feature Selection

Since the time-lapse feature vectors are composed of a high number of features, feature selection
is performed in order to reduce the dimensionality of the data, which leads to lower computation
complexity and makes the training of the classification algorithms less time-consuming.
Moreover, in this case, when the number of observations is limited in comparison to the large
number of features, the limited observations may lead the learning algorithm to overfit to the
noise. Reducing the number of features is therefore, in this case, an essential step before the
classification.

We applied the filter approach for the feature selection.37 First, the t-test was applied to each
feature and the p-value for each feature was compared as a measure of the feature’s ability to
discriminate between the two classes. To estimate the order of class separation by the features,
the empirical cumulative distribution function (CDF) of the p-values was computed. There
were ∼15% of features, which have the p-values close to zero and 30% of features having the
p-values smaller than 0.05. It can be concluded that there are roughly 200 features in the origi-
nal time-lapse feature set, which have the potential to separate the two cell classes. In the value-
based approach, there are ∼18% of features, which have the p-values close to zero and 30% of
features having the p-values smaller than 0.05. CDF of the p-values showed that there are
roughly 150 features from the original time-lapse feature set having rather high discriminative
power.

The features were subsequently ordered by their p-values. In order to define the appropriate
number of features to be selected, the classification error (the number of misclassified obser-
vations divided by the number of observations) as a function of the number of features was
plotted. To obtain the classification error, several classification algorithms were employed.
The results of the classification error in feature-based approach is shown in Fig. 6. The clas-
sification error was computed for different numbers of features between 2 and 25. The final
number of selected features was determined as the mean value of the results produced by
employing different classification algorithms. In the feature-based approach, the filter feature
selection method obtains the smallest classification error when 10 features are engaged.
Only these 10 features with the highest discriminative power are kept in the reduced time-lapse
feature vectors used for the classification. In the value-based approach, 12 features were deter-
mined as optimal.

Fig. 5 Example of the final time-lapse feature vectors concatenated into matrix. Elements of the
matrix contain the (normalized) time-lapse feature values and are visualized using color: from blue
(low values) to yellow (high values). First 32 rows represent time-lapse feature vectors extracted
from epithelial cells and the other 35 rows from mesenchymal cells.
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2.7 Classification Algorithms

After the features with the highest potential to distinguish between the epithelial and mesenchy-
mal cell classes were selected, they create the input for the classification algorithms. Since the
performance of the classification is highly dependent on the selection of the classification algo-
rithm, we employed several supervised machine learning algorithms to correctly compare the
performance of the classification based on single-time-point and time-lapse QPI. The following
algorithms were tested in several possible variations with differently set parameters: decision
trees (complex, medium, and simple tree, with defined maximum number of splits 100, 20,
and 4, respectively), discriminant analysis (linear and quadratic discriminant), support vector
machines (with linear, quadratic, cubic, and Gaussian kernel), k-nearest neighbor classifier
(KNN), (fine KNN with k ¼ 1 and Euclidean distance, medium KNN with k ¼ 10 and
Euclidean distance, cosine KNN with k ¼ 10 and cosine distance, cubic KNN with k ¼ 10 and
cubic distance, weighted KNN with k ¼ 10, and weighted by the inverse square of the Euclidean
distance) ensemble classifiers (bagged trees, boosted trees, subspace discriminant, and subspace
KNN) and artificial neural network (feed-forward backpropagation neural network with one
hidden layer containing 10 hidden neurons).

Several performance measures were calculated from the confusion matrix for each classifi-
cation algorithm: accuracy, precision, recall, and F-score. Classification accuracy of a classifier
is calculated as the ratio of the sum of the principal diagonal values to the sum of all values in
the confusion matrix. It expresses the ratio of correctly classified examples by the classifier.
Precision is the ratio of correctly classified positive examples to the total number of positive
examples, while recall is the ratio of correctly classified positive examples to the all examples
in actual class. F-score can be interpreted as a harmonic mean of precision and recall. Fivefold
cross validation was used to evaluate the performance of the classification algorithms. The data
were partitioned into five randomly chosen subsets of roughly equal size. One subset (testing set)
was used for testing of the classifier, which had been trained on the remaining subsets (training
set). This process was repeated five times, such that each subset was used for the validation.
Since cross validation does not use all the data for training, it is a commonly used method
to avoid overfitting. The overall performance of the classification algorithm was determined
as the mean of performance measure values reached in the iterations. The whole classification
procedure was performed in MATLAB.

3 Results and Discussion

After 48 h, the cells in the control conditions maintained their epithelial state, whereas the cells
treated with TGFβ transitioned to the mesenchymal state as previously shown.19,20 We observed
changes in cell morphology to occur ∼17 h posttreatment. The cells lost their epithelial features
and acquired more mesenchymal, fibroblast-like phenotype. The cells became elongated, with
the cell mass distributing relatively equally over the cell area, while the cell area increased
significantly.

Fig. 6 Classification error as a function of the number of features in feature-based approach.
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The classification was first performed on the reduced time-lapse feature vectors gained by
value-based approach. The same procedure was then repeated for the reduced time-lapse feature
vectors gained by feature-based approach. The classification was also performed on the features
extracted from the single-time-point QPI to evaluate the contribution of the methodology based
on time-lapse QPI.

The performance of the classification implementing the value-based approach is summarized
in Table 1. The overall accuracy of the classification was 0.923� 0.053. The overall precision,
recall, and F-score were 0.907� 0.052, 0.882� 0.089, and 0.893� 0.070, respectively. The
performance of the classification using the feature-based approach is summarized in Table 2.
Assessing the cell behavior by the time-lapse features led to higher performance of the classifier,
as observed with the value-based approach, with the overall accuracy of the classification reach-
ing 0.978� 0.011. Further, with the incorporation of time-lapse features, the overall precision,
recall, and F-score were 0.968� 0.014, 0.961� 0.013, and 0.964� 0.013, respectively.

In order to correctly evaluate the benefit of incorporating the temporal information over the
classification based solely on the static QPI, the classification was performed also on the static
QPIs of cells undergoing EMT. The static QPI images were obtained from the time-lapse data by
selecting one image from each time-lapse sequence. The classification of epithelial and mesen-
chymal cells based on the static QPI was performed according to the methodology previously
described in our paper.13 The performance of the classification based on single-time-point QPI

Table 1 Performance of the classification by supervised machine learning algorithms using
value-based approach.

Accuracy Precision Recall F -score

Decision trees (complex) 0.79 0.84 0.631 0.726

Decision trees (medium) 0.876 0.836 0.826 0.831

Decision trees (simple) 0.889 0.863 0.829 0.842

Linear discriminant analysis 0.974 0.952 0.951 0.954

Quadratic discriminant analysis 0.919 0.89 0.882 0.893

SVM (linear) 0.951 0.943 0.928 0.932

SVM (quadratic) 0.971 0.963 0.947 0.953

SVM (cubic) 0.982 0.979 0.971 0.972

SVM (Gaussian medium) 0.98 0.984 0.981 0.983

KNN (fine) 0.945 0.941 0.926 0.93

KNN (medium) 0.918 0.896 0.887 0.891

KNN (cosine) 0.938 0.889 0.874 0.88

KNN (cubic) 0.889 0.852 0.84 0.844

KNN (weighted) 0.884 0.83 0.829 0.829

Bagged trees 0.82 0.827 0.705 0.761

Subspace discriminant 0.954 0.941 0.945 0.937

Subspace KNN 0.981 0.962 0.961 0.963

Boosted trees 0.931 0.913 0.906 0.909

Neural networks 0.952 0.941 0.942 0.943

Mean ± SD 0.923� 0.053 0.907� 0.052 0.882� 0.089 0.893� 0.070
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is summarized in Table 3. The overall accuracy of the classification was 0.889� 0.053. The
overall precision, recall, and F-score were 0.873� 0.053, 0.838� 0.198, and 0.853 � 0.077,
respectively.

The performance of the classification obtained by the mentioned classification approaches
was compared by statistical hypothesis testing. The Wilcoxon signed rank test was used in order
to reveal the significant differences between the three distributions, with a null hypothesis that
the median difference between pairs of observations is zero and a p-value of 0.05 to be con-
sidered statistically significant. The test revealed very significant differences between the fea-
ture-based and value-based time-lapse classification approaches (p < 0.001) in terms of all
performance parameters (accuracy, precision, recall, and F-score). Significantly different results
(p < 0.001) were obtained also from the classification based on static QPI and the classification
based on time-lapse QPI employing the feature-based approach. According to the test, the clas-
sification based on static QPI and the classification based on time-lapse QPI using the value-
based approach provided different performance of the classification with a lower significance
(p < 0.01 for precision and p < 0.05 for other performance parameters). The performance results
of all approaches are shown in the form of box-whisker plots in Fig. 7.

Several conclusions can be drawn from the results of the classification. The classification
based on time-lapse QPI using either value-based or feature-based approach outperforms the

Table 2 Performance of the classification by supervised machine learning algorithms using fea-
ture-based approach.

Accuracy Precision Recall F -score

Decision trees (complex) 0.981 0.969 0.962 0.965

Decision trees (medium) 0.986 0.981 0.975 0.976

Decision trees (simple) 0.991 0.983 0.981 0.981

Linear discriminant analysis 0.965 0.956 0.954 0.957

Quadratic discriminant analysis 0.981 0.969 0.959 0.961

SVM (linear) 0.951 0.952 0.944 0.947

SVM (quadratic) 0.989 0.986 0.981 0.985

SVM (cubic) 0.991 0.984 0.971 0.982

SVM (Gaussian medium) 0.991 0.989 0.98 0.981

KNN (fine) 0.971 0.961 0.945 0.952

KNN (medium) 0.988 0.981 0.962 0.97

KNN (cosine) 0.982 0.977 0.963 0.971

KNN (cubic) 0.965 0.955 0.951 0.95

KNN (weighted) 0.974 0.951 0.948 0.949

Bagged trees 0.987 0.97 0.971 0.973

Subspace discriminant 0.981 0.965 0.956 0.958

Subspace KNN 0.964 0.941 0.942 0.941

Boosted trees 0.969 0.954 0.949 0.952

Neural networks 0.973 0.962 0.956 0.958

Mean� SD 0.978� 0.011 0.968� 0.014 0.961� 0.013 0.964� 0.013
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classification based on static QPI, which does not consider the temporal information. Hence,
taking into account the time information appears to improve the classification of the two cell
phenotypes by nearly 9% in terms of accuracy. However, when it comes to the classification
based on time-lapse QPI, the feature-based approach outperforms the value-based approach.
The low-performance values in the value-based approach can be due to many factors, but mainly
a consequence of the features, which are in this case the raw time series data, not fully repre-
senting the cell behavior. The other possibility is the increased sensitivity of this approach to the
amount of noise in the time series.

Although the performance of the classification based on time-lapse QPI using the feature-
based approach was relatively high, further improvement could be achieved by enlargement of
the time-lapse QPI dataset, which would allow the classification algorithms to improve the train-
ing based on more extensive data.

Continued QPI-based classification of cell phenotype during EMT, beyond the epithelial and
mesenchymal states, may allow for further understanding of this cell identity switch and thus
cancer progression. Accordingly, even though the methodology was assessed using analysis of
one specific cellular process, we suggest this analysis will be informative in the study of other
dynamic cellular phenomena such as monitoring of cell cycle progression, cell death, and cel-
lular response to external stimuli.

Table 3 Performance of the classification by supervised machine learning algorithms using the
static QPI.

Accuracy Precision Recall F -score

Decision trees (complex) 0.891 0.839 0.833 0.83

Decision trees (medium) 0.886 0.86 0.882 0.872

Decision trees (simple) 0.923 0.929 0.918 0.922

Linear discriminant analysis 0.962 0.946 0.945 0.945

Quadratic discriminant analysis 0.892 0.842 0.82 0.832

SVM (linear) 0.912 0.897 0.879 0.888

SVM (quadratic) 0.88 0.961 0.949 0.955

SVM (cubic) 0.944 0.934 0.927 0.93

SVM (Gaussian medium) 0.937 0.912 0.906 0.907

KNN (fine) 0.895 0.869 0.844 0.857

KNN (medium) 0.762 0.808 0.618 0.701

KNN (cosine) 0.899 0.867 0.85 0.857

KNN (cubic) 0.79 0.791 0.632 0.697

KNN (weighted) 0.791 0.763 0.661 0.71

Bagged trees 0.871 0.841 0.775 0.806

Subspace discriminant 0.89 0.849 0.837 0.842

Subspace KNN 0.94 0.919 0.895 0.908

Boosted trees 0.935 0.917 0.91 0.914

Neural networks 0.89 0.846 0.842 0.841

Mean ± SD 0.889� 0.053 0.873� 0.053 0.838� 0.098 0.853� 0.077
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4 Conclusions

We have proposed a new methodology for cell classification based on the time-lapse QPIs using
cells undergoing EMT as the biological system of focus. We have applied several supervised
classification algorithms to differentiate between two distinct cell morphologies. Our findings
show that the extraction of the time-lapse features representing dynamic cell behavior outper-
forms analysis based solely on the single-time-point QPIs, which indicates the importance of
incorporating temporal information into the classification process. Despite the challenging time-
lapse feature extraction, the proposed approach provides a novel, yet efficient way to classify the
cells in QPIs with promising performance results. This approach could improve the monitoring
of live cell behavior in an automated fashion and we believe that exploiting the methodology in
QPI could contribute to promoting the DHM as an analysis tool and potentially a standard diag-
nostic technique used in biology and medicine.
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