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Abstract. In recent years, the acquisition of image and video infor-
mation for processing, analysis, understanding, and exploitation of
the underlying content in various applications, ranging from remote
sensing to biomedical imaging, has grown at an unprecedented rate.
Analysis by human observers is quite laborious, tiresome, and time
consuming, if not infeasible, given the large and continuously rising
volume of data. Hence the need for systems capable of automatically
and effectively analyzing the aforementioned imagery for a variety of
uses that span the spectrum from homeland security to elderly care. In
order to achieve the above, tools such as image segmentation provide
the appropriate foundation for expediting and improving the effective-
ness of subsequent high-level tasks by providing a condensed and
pertinent representation of image information. We provide a compre-
hensive survey of color image segmentation strategies adopted over
the last decade, though notable contributions in the gray scale domain
will also be discussed. Our taxonomy of segmentation techniques is
sampled from a wide spectrum of spatially blind (or feature-based)
approaches such as clustering and histogram thresholding as well
as spatially guided (or spatial domain-based) methods such as region
growing/splitting/merging, energy-driven parametric/geometric active
contours, supervised/unsupervised graph cuts, and watersheds, to
name a few. In addition, qualitative and quantitative results of promi-
nent algorithms on several images from the Berkeley segmentation
dataset are shown in order to furnish a fair indication of the current
quality of the state of the art. Finally, we provide a brief discussion
on our current perspective of the field as well as its associated future
trends. © 2012 SPIE and IS&T. [DOI: 10.1117/1.JEI.21.4.040901]

1 Introduction
Color image segmentation facilitates the separation of
spatial-spectral attributes contained in images into their
individual constituents; a task that is accomplished quite
comfortably by our visual system and cortical mechanisms.
However, mimicking this capability of human observers in
an artificial environment has been found to be an extremely
challenging problem. Formally, color image segmentation is

defined as the process of partitioning or segregating an image
into regions (also called as clusters or groups), manifesting
homogeneous or nearly homogeneous attributes such as
color, texture, gradient as well as spatial attributes pertaining
to location. Fundamentally, a segmentation algorithm for an
image is said to be “complete” when it provides a unique
region or label assignment for every pixel, such that all pixels
in a segmented region satisfy certain criteria while the same
principles are not universally satisfied for pixels from
disjoint regions.

The cardinal motivation for image segmentation is two-
fold. It not only provides an end user with the flexibility
to efficiently access and manipulate individual content, but
also furnishes a compact representation of the data wherein
all subsequent processing can be done at a region/segment
level as opposed to the pixel level, resulting in potentially
significant computational gains. To this effect, segmentation
is predominantly employed as a preprocessing step to anno-
tate, enhance, analyze, classify, categorize, and/or abstract
information from images. In general, there are many appli-
cations for color image segmentation in the image proces-
sing, computer vision, and pattern recognition fields,
including content-based image retrieval (CBIR), image ren-
dering, region classification, segment-based compression,
surveillance, perceptual ranking of regions, graphics, and
multimedia to name a few. Furthermore, many approaches
have been developed in other modalities of imaging such
as remote sensing (multi/hyperspectral data) and biomedical
imaging [computed tomography (CT)], positron emission
tomography (PET), and magnetic resonance imaging (MRI)
data for sophisticated applications such as large area search,
three-dimensional (3-D) modeling, visualization, and navi-
gation. The exponential growth of the number of applica-
tions that employ segmentation in itself provides a strong
motivation for continued research and development.

In the context of color imagery, segmentation is often
viewed as an ill-defined problem with no perfect solution
but multiple generally acceptable solutions due to its sub-
jective nature. The subjectivity of segmentation has been
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extensively substantiated in experiments1 conducted at the
University of California at Berkeley to develop an evaluation
benchmark, where a database of manually generated seg-
mentations of images with natural content was developed
using multiple human observers. In Fig. 1(a), 10 images
(arbitrarily named airplane, starfish, race cars, hills, boat,

church, cheetah, dolphins, lake, and skydiver) from the
aforementioned database are displayed. Additionally, several
manually segmented ground truths with region boundaries
superimposed (in green) on the original image are shown
in Fig. 1(b) to 1(f). Analysis of the obtained ground truth
results by Martin et al. divulged two imperative aspects:

Fig. 1 Berkeley segmentation benchmark:1 (a) original images, and (b) to (f) region boundaries of multiple manually generated segmentations
overlaid on the images.
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1. an arbitrary image may have a unique suitable segmenta-
tion outcome while others possess multiple acceptable solu-
tions, and 2. the variability in adequate solutions is primarily
due to the differences in the level of attention (or granularity)
and the degree of detail from one human observer to another,
as seen in Fig. 1. Consequently, most present day algorithms
for segmentation aim to provide generally acceptable out-
comes rather than a “gold standard” solution.

There are several excellent surveys of image segmentation
strategies and practices. The studies done by Fu et al.2 and
Pal et al.3 are amongst the earliest ones that have been widely
popular. In their work, Fu et al.2 categorized segmentation
approaches developed during the 1970s and early 1980s
for gray scale images into three classes; namely, clustering,
edge detection, and region extraction. On the other hand,
Pal et al.3 reviewed more complex segmentation techniques
established in the late 1980s and early 1990s that involved
fuzzy/nonfuzzy mechanisms, markov random fields (MRFs)
probabilistic models, color information as well as neural net-
works—all of which were still in their early stages of devel-
opment. The surveys done by Lucchese et al.4 and Cheng
et al.5 were among the first that exclusively provided an
in-depth overview of algorithms targeted at segmenting color
images, instituted throughout the 1990s.

In this paper, we provide a comprehensive overview of
the image segmentation realm with the goals to: 1. facilitate
access to contemporary procedures and practices developed
in the recent past (2001 to current), 2. establish current
standards of segmentation outcomes from a qualitative and
quantitative standpoint by displaying results acquired from
state-of-the-art techniques, 3. discuss our view on the field
as it stands today, and 4. outline avenues of future research.
The remainder of this paper is organized as follows. Section 2
provides broad and specific categorizations of segmentation
approaches based on their inherent methodology and illus-
trates experimental results derived from prominent color
image segmentation algorithms. Furthermore, Sec. 3 pro-
vides a brief quantitative evaluation of the aforementioned
algorithms. Finally, conclusions and future directives are
presented in Sec. 4.

2 Classification of Segmentation Methodologies
Segmentation procedures can be broadly categorized from a
high level perspective as well as specifically grouped based
on their technical grounding (low level classification). The
following subsections describe each of the two taxonomies
in detail.

2.1 High-Level Taxonomy
Image segmentation techniques can, in general, be broadly
classified (see Fig. 2) based on: 1. the image type, 2. the
extent of human interaction, 3. the manner in which the
image is represented for processing, 4. the number and type
of attributes used and, 5. the fundamental principle of
operation.

The first criterion segregates algorithms that have been
developed for monochrome (or single band) images from
the ones that handle color (or three band) images. The second
criterion distinguishes methods that require human interven-
tion (supervised processes) for segmentation from the ones
that operate without any manual interference (fully automatic
or unsupervised processes). The third criterion separates seg-
mentation procedures that directly operate on the original
image (single scale configuration) from the ones that operate
on multiple representations of the image (multiscale config-
uration), each manifesting different amount of information.
The fourth criterion differentiates algorithms based on the
type of image information (e.g., gray/color intensity, gradi-
ent/edge, or textural features) utilized to perform the segmen-
tation. It is imperative to note that most methods use the
aforementioned image attributes individually (single attri-
bute methods) or in specific combinations (multiple attribute
methods) to categorize them. Finally, the last criterion based
on the underlying principle of operation discriminates seg-
mentation mechanisms as being either spatially blind or
spatially guided. Spatially blind approaches as the name sug-
gests are techniques that are “blind” to spatial information,
or, in other words, do not take into account the spatial
arrangement of pixels in an image. Instead these methods
rely heavily on grouping image information in a suitable
attribute/feature space. On the other hand, spatially guided
approaches tend to exploit the spatial arrangement of pixels
in an image during the segmentation process.

2.2 Low-Level Taxonomy
As mentioned previously, most segmentation modus oper-
andi can be viewed as being either spatially blind or spatially
guided. It is this distinction that forms the basis of our low-
level taxonomy where we specifically group segmentation
procedures based on their technical components, as depicted
in Fig. 3.

2.2.1 Spatially blind approaches

Spatially blind approaches perform segmentation in certain
attribute/feature spaces, predominantly related to intensity
(gray or color). Popular segmentation techniques that fall

Fig. 2 High-level taxonomy of image segmentation algorithms.
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within the notion of being spatially blind involve clustering
and histogram thresholding.

Clustering. In its simplest form, clustering is a spatially
blind technique wherein the image data is viewed as a

point cloud on a one-dimensional (1-D) gray scale axis or
in a 3-D color space (see Fig. 4) depending on the image
type.

Several different color spaces—such as RGB, Commis-
sion International de l’Eclairage (CIE) L�a�b� and

Fig. 3 Low-level taxonomy of image segmentation algorithms.
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L�u�v�, YCbCr, HSI etc., to name a few—with different
properties have been extensively utilized for segmentation.6

The essence of a typical clustering protocol is to analyze this
gray/color intensity point cloud and partition it using pre-
defined metrics/objective functions to identify meaningful
pixel groupings also known as classes or clusters. Further-
more, the clustering process is done such that, when com-
plete, the pixel data within a specific class possess, in
general, a high degree of similarity while the data between
classes has low affinity. The biggest advantage of clustering
approaches over others is inherent in their simplicity and
ease of implementation. However, since the point clouds
generated are image dependent, selecting/initializing the
number of clusters so as to obtain semantic partitioning with
respect to the image being processed is a challenging task,
especially in the case of color imagery. Furthermore, as the
dimensionality of the feature space is increased exponen-
tially, acquiring definitive clusters becomes an arduous task.

Although many clustering approaches have been devel-
oped for various applications, partitioning a feature space
using a specific set of fixed points is the most widely adopted
approach. Voronoi tessellation (VT) is a procedure in which
a feature space is decomposed into various clusters (called
Voronoi cells/regions) using a fixed set of points called
sites, such that each observation in the feature space is
assigned to the closest site predicated on a certain distance
metric. More specifically, if X is a feature space constrained
with a distance function d, and ðPkÞk∈K is a set of K sites in
the space, then a Voronoi cell Vk formed using the site Pk is
the set of all points x ∈ X that satisfy:

Vk ¼ ½x ∈ Xjdðx; PkÞ ≤ dðx; PjÞ ∀j ≠ k� ; (1)

where dðx; PkÞ represents the distance from x to Pk.
Arbeláez et al.7 proposed a VT-based image segmentation
technique utilizing color and lightness information derived
from the image. The segmentation objective was achieved
in a two-step process comprised of: 1. presegmentation and
2. hierarchical representation. The presegmentation step
employed a VT process wherein the extreme components
of the lightness (L�) channel were used as sites to form
an extrema mosaic of Voronoi regions. The second step
involved the development of a stratified hierarchy of parti-
tions derived from the extrema mosaic using a pseudo-
distance metric called ultrametric, specifically defined for
color images. Subsequently, a single real-valued soft bound-
ary image called the ultra-metric contour map (UCM) was
constructed to arrive at the final segmentation.

Centroidal voronoi tessellation (CVT) is a special cate-
gory of VT wherein the sites producing Voronoi cells are

chosen equivalent to their center of mass. Wang et al.8 gen-
eralized the basic CVT by integrating an edge-related energy
function with a classic clustering energy metric to propose
an edge-weighted centroidal voronoi tessellation (EWCVT)
for effective segmentation of color images. CVTs form the
core of many prominent clustering algorithms such as
K-means. The K-means algorithm partitions a set of n-pixels
into K clusters by minimizing an objective function. From
a color segmentation perspective, the aforementioned algo-
rithm analyzes the image data in a 3-D space to eventually
identifyK-sites (known as cluster centers or means) such that
the mean squared distance from each data point to its nearest
center is minimized. To this effect, in an arbitrary iteration
(called as a Voronoi iteration or Lloyd’s algorithm), the
entire color space is separated into K partitions by assigning
each observation to the cluster with the closest center (note
initialization in the first iteration may be randomly done).
Following this, a new estimate of the cluster center is com-
puted based on the current cluster assignment information
and is utilized as an input to the next iteration of the algo-
rithm. The algorithmic steps described above are repeated
until convergence is achieved. McQueen9 was the first to
employ the K-means algorithm to handle multivariate data.
Among recent advances, Kanungo et al.10 proposed an effi-
cient version of the algorithm called the “filtering algorithm,”
by utilizing a k-dimensional (kd) tree representation of the
image data. For each node of this tree, a set of candidate
centers were determined and strategically filtered as they
were propagated to the node’s children. The biggest advan-
tage of this approach was that, since the kd-tree representa-
tion was formed from the original data rather than from the
computed centers, it did not mandate an update in its struc-
ture for all iterations, in contrast to the conventionalK-means
architecture. Chen et al.11 employed a generalization of the
classical K-means algorithm better known as the adaptive
clustering algorithm (ACA), with spatially adaptive features
pertaining to color and texture, to yield perceptually tuned
segmentations. Consequently, the ACA method is an excep-
tion to the norm of spatially blind clustering. In his work,
Mignotte12 proposed a novel color image segmentation pro-
cedure based on the fusion of multiple K-means clustering
results by minimizing the Euclidean distance function,
obtained from an image described in six different color
spaces namely RGB, HSV, YIQ, XYZ, LAB, and LUV.
Once the label fields from each of these color spaces are
obtained, a local histogram of the class labels across the
aforementioned label fields is computed for each pixel,
and the set of all histograms are employed as input feature
vectors to a fusion mechanism that culminates in the final

Fig. 4 Sample color images with their corresponding 3-D point clouds.
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segmentation output. The fusion scheme is comprised of the
K-means algorithm using the Bhattacharya similarity coeffi-
cient, which is a histogram-based similarity metric. The algo-
rithm in Mignotte12 was further enhanced in Mignotte13 by
using a spatially constrained K-means labeling process in
place of the fusion mechanism to arrive at the optimal result.
While the prior algorithm developed by Mignotte was aimed
at exploring the possibility of integrating multiple segmenta-
tion maps from simple data partitioning models to obtain an
accurate result, the later algorithm was novel in the sense that
within the K-means framework implicit spatial associations
in an image were taken into account (similar to the work in
Ref. 14) to uncover the best solution, and consequently the
process was not completely spatially blind.

Mean shift clustering15 is another routine that has had per-
vasive use for gray/color image segmentation within the last
decade. This generic nonparametric technique facilitates the
analysis of multidimensional feature spaces with arbitrarily
shaped clusters, based on the “mean shift” concept, origin-
ally proposed by Fununaga et al.16 The mean shift procedure
is a kernel density estimation (or Parzen window-based tech-
nique) that scrutinizes a feature space as an empirical prob-
ability density function (pdf) and considers the set of pixel
values from an arbitrary image as discrete samples of that
function. The procedure exploits the fact that clusters/dense
regions in a feature space typically manifest themselves as
modes of the aforementioned pdf. In what follows, if S is
a finite point cloud in an n-dimensional Euclidean space,
X and K is a symmetric Kernel function of specific charac-
teristics, then the sample mean mðxÞ at a pixel x ∈ X com-
puted utilizing a weighted combination of its nearby points
determined by K is given as:17

mðxÞ ¼
P

s∈SKðs − xÞsP
s∈SKðs − xÞ : (2)

To this effect, at every pixel location x, a mean shift vector
mðxÞ − x is obtained with K centered at x, such that the vec-
tor points towards the direction of the maximum increase in
density. Subsequently, the operation x←mðxÞ is performed
that shifts the value of x toward the mean followed by the
re-estimation of mðxÞ. This process is repeated until conver-
gence of mðxÞ is achieved. At the end of the mean shift pro-
cess, the closest peak in the pdf is identified for each pixel.
Since the mean shift algorithm uses spatial knowledge in its
framework, it also represents an exception to conventional
spatially blind clustering. Mean shift clustering guided by
edge information was first seen in the work by Christoudias

et al.,18 who proposed the edge detection and image segmen-
tation (EDISON) system, aimed at improving the sensitivity
of extracting homogeneous regions while maintaining or ide-
ally minimizing over-segmentation of an image. Figure 5
illustrates a few results of the EDISON system using default
parameters (spatial band hs ¼ 7, color band width hr ¼ 6.5,
and minimum region size M ¼ 20). Hong et al.19 proposed
an improved version of the mean shift segmentation algo-
rithm by incorporating: 1. an enhanced technique for mode
detection, 2. an optimized process for the global analysis
of the locally identified modes, and 3. the elimination of
textured areas in order to achieve stable results in various
background conditions. Ozden et al.20 pioneered an effective
technique that combined low-level color and spatial and tex-
ture features in the mean shift framework for color image
segmentation.

Neural networks-based data clustering is a category
that has originated exclusively from the field of artificial
intelligence. Within this domain, methods involving self-
organizing maps (SOMs) have received the most attention
in the last decade. A self-organizing map or a self-organizing
feature map (SOFM)—alternately known as a Kohonen
map—is a specific kind of artificial neural network (ANN)
that was first introduced by Kohonen21 as a tool for providing
intelligent representations of high/multi-dimensional feature
spaces in significantly lower (one or two) dimensions. A
SOM (shown in Fig. 6) comprises of an input layer of nodes/
neurons organized in a vector whose size is equivalent to the
dimensions of the input feature space. Each node is con-
nected in parallel to a two-dimensional (2-D) output layer of
neurons in a rectangular or hexagonal arrangement as well as
their corresponding neighboring neurons utilizing an appro-
priate weighting scheme that signifies the strength of various
connections. A SOM operates in a “training” phase that gra-
dually constructs a feature map using a subset of samples
from the input feature space, followed by a mapping routine
in which an arbitrary new input sample is automatically clas-
sified. At the culmination of the two modes of operation, a
low-dimensional map that reflects the topological relation-
ships of samples in the feature space predicated on their simi-
larity is subsequently generated. In other words, samples that
have similar characteristics in the input feature space form
distinct clusters in this map.

Huang et al.22 developed a color image segmentation
methodology that employed a two-stage SOM-based ANN.
The algorithm is initiated by an RGB to HVC (hue-value-
chroma) color conversion of the input image, which is
employed by an SOM to identify a large initial set of

Fig. 5 Results of the EDISON system.18
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color classes. The resultant set of classes are further refined
by first computing the normalized Euclidean distance among
them, and the obtained between-class distances are furnished
as inputs to a second SOM that identifies the final batch of
segmented clusters. In a similar scheme, Ong et al.23 con-
structed a color image segmentation technique based on a
hierarchical two-stage SOM in which the first stage identifies
dominant colors in the input image presented in the L�u�v�
color space, while the second stage integrates a variable-
sized 1-D feature map and cluster merging/discarding opera-
tions to acquire the eventual segmentation result. Li et al.24

demonstrated an effective color image segmentation
approach using a SOM and the fuzzy-C-means (FCM) clus-
tering procedure. The algorithm is initiated by finding well-
suited image-dependent features derived from five different
color spaces using a SOM. Subsequently, the obtained fea-
tures were employed in a FCM protocol to attain the output
segmentation. Dong et al.25 instituted two alternate ANN-
based strategies for color image segmentation. The first
strategy was unsupervised. It involved distinguishing a set
of color prototypes using SOM-based learning from the
input image represented in the L�u�v� color space. These
color prototypes were passed on to a simulated annealing-
driven clustering routine to yield well-defined clusters. The
second method, built off the aforementioned algorithm, was
coupled with hierarchical pixel learning (that generated
different sizes of color prototypes in the scene) and classi-
fication protocols to provide more accurate segmentation
outcomes in a supervised fashion. Partitioning of color
imagery using SOM and adaptive resonance theory (ART)
was first seen in the work of Yeo et al.,26 who proposed
two compound ANN architectures called SOMART and
SmART (SOM unified with a variation of ART) that yielded
improved segmentations in comparison to traditional SOM-
based techniques. On the other hand, Araújo et al.27 designed
a fast and robust self-adaptive topology ANN model called

local adaptive receptive field SOM (LARFSOM) that
deduced compact clusters and inferred their appropriate
number based on color distributions learned rapidly from
the network’s training phase using a small percentage of
pixels from the input image. The algorithm was tested on
color images with varying segmentation complexities and
was found to outperform several prior SOM-based techni-
ques. Frisch28 introduced a novel approach robust to illumi-
nation variations that employed SOMs for the construction of
fuzzy measures applicable to color image segmentation. This
work was a unique attempt wherein efficient fuzzy measures,
to accomplish the segmentation task, were derived using
SOM-based processing. Ilea et al.29 devised a fully automatic
image segmentation algorithm called CTex using color and
texture descriptors. The CTex segmentation architecture first
extracts dominant colors from the input image presented in
the RGB and YIQ color spaces using an SOM classifier. In
doing so, the appropriate number of clusters (K) in the scene
are also identified. Subsequently, a conventional K-means
clustering algorithm is employed in a six-dimensional (6-D)
multispace spanned by both the above stated color spaces to
obtain a segmentation result purely based on color informa-
tion. This is followed by the computation of textural features
using a Gabor filter bank, which, along with the previously
acquired segments, are provided as input to a novel adaptive
spatial K-means (ASKM) clustering algorithm that deline-
ates coherent regions of color and texture in the input image.

The clustering techniques discussed so far are typically
categorized as hard clustering approaches since every obser-
vation in the feature space has a unique and mandatory clus-
ter assignment yielding clusters with sharp boundaries. In
contrast, significant work has been done for the advancement
of fuzzy clustering methods that facilitate observations to
bear a certain degree of belongingness or membership to
more than one cluster, resulting in overlapping clusters and/
or clusters with “soft” boundaries. The Fuzzy-C-Means

Fig. 6 Self-organizing map (SOM) in a rectangular neural layout.
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(FCM) algorithm, originally developed by Dunn30 is the
most widely utilized fuzzy clustering methodology and is
similar to the K-means technique, partitions a set of
n-pixels (X ¼ fx1; : : : ; xng) into C fuzzy clusters (C ¼
fc1; : : : ; cng) by minimizing an objective function. The
objective function utilized by the FCM algorithm is
represented as:

Jm ¼
Xn
i¼1

Xc
j¼1

umijkxi − cjk2; (3)

where

umij ¼
1

P
c
k¼1

�
kxi−cjk
kxi−ckk

�
2∕ðm−1Þ ; and cj ¼

P
n
i¼1 u

m
ij ⋅ xiP

n
i¼1 u

m
ij

:

(4)

From Eqs. (3) and (4) it can be inferred that the FCM objec-
tive function differs from K-means by incorporating mem-
bership values uij for various observations xi in the feature
space as well as a “fuzzifier” term mjm ∈ f1 ≤ m ≤ ∞g that
directs the extent of cluster fuzziness.

In their work, Yang et al.31 proposed two eigen-based
fuzzy clustering routines namely, separate eigenspace FCM
(SEFCM) and couple eigen-based FCM (CEFCM), for seg-
mentation of objects with desired attributes in color imagery.
Given an arbitrary image with a predefined set of pixels,
the color space in which the image is expressed is initially
divided into two eigenspaces called principal and residual
eigenspaces using the Principal Component Transformation.
Following this, the SEFCM design obtains a segmentation
output by integrating the results of independently applying
the FCM algorithm to the aforementioned eigenspaces. The
integration process involves a logical selection of common
pixels from the two clustering results. On the other hand,
the CEFCM arrangement obtains an output segmentation
result by jointly considering the principal and residual
eigenspaces. Both routines were found to outperform the
traditional FCM clustering approach from a color object seg-
mentation perspective. Liew et al.32 instituted an adaptive
fuzzy clustering scheme by imposing local spatial continuity
using contextual information. The method was targeted for
exploiting inter-pixel correlation existent in most conven-
tional imagery in a fuzzy framework. Chen et al.14 proposed
a computationally efficient version of the FCM algorithm
using a two-phase scheme involving data reduction followed
by clustering. This computationally more efficient approach
was found to produce results of similar quality to the con-
ventional FCM. More recently, Hung et al.33 developed a
weighted FCM (WFCM) clustering technique wherein the
weights for various features were computed using a bootstrap
method. Incorporating the bootstrap approach was found to
provide satisfactory weights to individual features from a sta-
tistical variation viewpoint and enhance the performance of
the WFCM procedure. Tziakos et al.34 proposed an approach
using the Laplacian Eigen (LE) map algorithm, a manifold
learning technique, to boost the performance of FCM clus-
tering. The methodology is commenced by extracting local
image characteristics from overlapping regions in a high-
dimensional feature space, from which a low-dimensional
manifold was learned using spectral graph theory. Following

this, the LE-based dimensionality reduction technique was
used to compute a low dimensional map that captured local
image characteristic variations, eventually used to enhance
the performance of FCM clustering. Krinidis et al.35 and
Wang et al.36 developed alternate yet efficient versions of
the FCM scheme that employed both local intensity and
spatial information. Yu et al.37 founded an ant colony-fuzzy
C-means hybrid algorithm (AFHA) for color image segmen-
tation that adaptively clustered image elements utilizing
intelligent cluster center initializations as well as subsam-
pling for computational efficiency. The results of the AFHA
structure were found to have smaller distortions and more
stable cluster centroids over the conventional FCM.

Besides the practices discussed so far in this section, sev-
eral unique clustering-based methods for image segmenta-
tion have also been proposed. Veenman et al.38 developed
an efficient and optimized model for clustering using a cel-
lular co-evolutionary algorithm (CCA) that does not require
any prior knowledge of the number of clusters. On the other
hand, Allili et al.39 instituted a clustering model that com-
bined a generalized Gaussian mixture model with a pertinent
feature selection to alleviate problems of under/over seg-
mentation. Jeon et al.40 introduced a sparse clustering
method for color image data using the principle of positive
tensor factorization (PTF). Aghbari et al.41 proposed a hill-
manipulation process where the protocol of segmenting an
arbitrary color image was treated in an equivalent fashion
to that of finding hills in its corresponding 3-D intensity his-
togram. Ma et al.42 introduced the notion of clustering using
lossy data coding and compression and demonstrated their
work on natural scene color images. The algorithm in Ma
et al.42 was employed by Yang et al.,43 who proposed a com-
pression-based texture merging (CTM) routine that treated
segmentation as a task of clustering textural features mod-
eled as a mixture of Gaussian distributions, wherein the
clustering methodology was acquired from a lossy data com-
pression protocol. Sample segmentation outcomes of the
CTM algorithm using default parameters (coding data length
parameter γ ¼ 0.2) are exhibited in Fig. 7. Huang et al.44

advocated the concept of pure “clustering-then-labeling” for
efficient segmentation of color images.

Histogram thresholding. Histogram thresholding [see
Ref. 45 for a comprehensive survey] is a spatially blind tech-
nique primarily based on the principle that segments of an
image can be identified by delineating peaks, valleys, and/
or shapes in its corresponding intensity histogram. Similar
to clustering, histogram thresholding protocols require mini-
mal effort to realize in comparison with most other segmen-
tation algorithms and function without the need for any
a priori information about the image being partitioned.
Owed to its simplicity, intensity histogram thresholding initi-
ally gained popularity for segmenting gray-scale images.
However, during its course of development, it was found
that thresholding intensity histograms did not work well
for low-contrast images without obvious peaks and yielded
ambiguous partitions in the presence of spurious peaks man-
ifested by noise. Additionally, for color images, it was deter-
mined that thresholding in a multidimensional space is a
difficult task. Figure 8 illustrates color histograms of the star-
fish and boat images in the RGB space, generated using an
open-source ImageJ plugin called Color Inspector 3D.46
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Each color bin in the 3-D histogram is represented as a
sphere whose volume is proportional to the frequency of
occurrence of that color. From the histograms, it can be
observed that finding multiple thresholds to efficiently
partition them presents a challenging problem.

Kurugollu et al.47 proposed an algorithm for color image
segmentation that involved two major steps, namely multi-
thresholding and fusion. The method is initiated by forming
2-D histograms using pair-wise band combinations (RG,
GB, and BR), each of which were subjected to a peak finding
protocol. Following this, based on the delineated peaks, a
multithresholding scheme was used to form a segmentation
result unique to each pair of channels. These three segmenta-
tion results were fused using a label concordance algorithm
and refined using a spatial chromatic majority filter to derive
the final segmentation result. In a similar framework, Cheng
et al.,48 designed a color image segmentation scheme, based
on the idea of thresholding a homogram, which simulta-
neously captured the occurrence of gray levels along with
adjoining homogeneity values among pixels. The segmenta-
tion routine was initiated by forming a homogram individu-
ally for each color channel, the peaks of which were used
to guide a subsequent thresholding scheme to acquire an
initial oversegmented set of clusters. Finally, the three sets
of clustering results from the red, green, and blue planes,
respectively, were united together to achieve the final seg-
mentation. Mushrif et al.49 exploited the concept of Histon
thresholding based on rough set theory to devise an efficient
algorithm for color image segmentation. A Histon is defined
as a set of pixels that are all potentially part of a particular
segment. Their three-step architecture involved computing a
Histon, followed by thresholding and culminating in a region
merging process (discussed in Sec. 2.2.2.1). Additionally,
they further enhanced the aforementioned methodology

though the work in Mushrif et al.50 using an Atanassov’s
intuitionistic fuzzy set (A-IFS) Histon representation of the
input image. In their work, Manay et al.51 proposed an adap-
tive thresholding structure for fast segmentation using an
anisotropic diffusion model based on the principle that, for
an arbitrary local area, an optimal threshold can be derived
close to image edges using a smooth version of it.

2.2.2 Spatially guided approaches

In contrast to spatially blind methods, spatially guided
approaches, as the name suggests, are guided by spatial rela-
tionships of pixels for segmentation. Their primary objective
is to form pixel groupings that are compact or homogeneous
from a spatial standpoint, irrespective of their relationships in
specific feature spaces. However, despite the development of
many spatially guided techniques, the use of region and edge
information explicitly or in an integrated framework remain
widely-accepted alternatives for the formation of spatially
compact regions.

Segmentation techniques that distinctly use region infor-
mation typically employ protocols involving growing, split-
ting, and merging individually or in suitable combinations.
For the formation of an arbitrary region, growing is a process
that starts from a single pixel or small predefined labeled set
of pixels called a seed and is based on a certain homogeneity
criterion iteratively accumulates pixels around it, as depicted
in Fig. 9. The growth of a region stops when pixels satisfying
the homogeneity criterion are no longer found. Most grow-
ing approaches help create spatially connected and compact
regions relative to other routines in literature. Additionally,
the established regions possess specific user-defined proper-
ties with high tolerance to noise. However, sequential design
(pixel-by-pixel agglomeration) of growing procedures often

Fig. 8 Sample color images with their corresponding 3-D color histograms.

Fig. 7 Results of the CTM algorithm.43

Journal of Electronic Imaging 040901-9 Oct–Dec 2012/Vol. 21(4)

Vantaram and Saber: Survey of contemporary trends in color image segmentation



results in intensive computational schemes with significant
memory requirements. In addition, the presence of varying
shades of colors produce, in general, oversegmented outputs.
Furthermore, the quality of the segmentation is heavily
dependent on the order in which the seeds are processed.

In comparison with the region growing, region splitting is
a technique that is initiated with an inhomogeneous segmen-
tation of an image, which is repetitively split until segments
satisfying a particular homogeneity criterion are obtained.
Splitting can be achieved via diverse methods such as
quadrature tree decomposition, watersheds, or implicitly via
region growing when multiple seeds are placed in homoge-
neous areas that fall under different categories of our low-
level taxonomy. Consequently, we do not explicitly group
them in our discussion. The aforementioned growing and
splitting procedures generally yield good results for simple
images with well-defined homogeneous regions. However,
utilizing them purely based on color homogeneity may, in
general, pose difficulties due to varying shades of color, non-
uniformity of color spaces, illumination, and texture dispa-
rities. Region merging is a process in which subregions—
potentially part of a larger identifiable region—are fused
together to yield a reduced set of segments that are spatially
meaningful with respect to the input image content (see
Fig. 10 for a simplified illustration). In general, for reason-
ably complex images, growing/splitting methods often result
in an oversegmented region map. As a result, they are often
integrated with some type of a region-merging scheme to
improve the final outcome.

Region-growing approaches. Fan et al.52 proposed an
automatic image segmentation algorithm that begins with

an edge detection scheme, wherein the centroids between
the detected edges are chosen as the set of candidate seed
points. Subsequently, a growth procedure is utilized to
spatially integrate pixels, in a recursive fashion, to an appro-
priately chosen seed from the entire set until the final
segmentation is achieved. Wan et al.53 were the first to intro-
duce a theoretical criteria for a specific category of region
growing algorithms called symmetric region growing, which
are insensitive to the selection of the initial seed points.
Fondón et al.54 introduced a multistep region growing pro-
cedure for color image segmentation, in which the extent of
growth can be controlled using a tolerance parameter depen-
dent on the variance of the actual grown region. Although
the method was successful in accurately delineating spatial
extent of regions, it necessitated manual selection of seed
points and could only handle one region at a time. Qin et al.55

advocated the use of semantic information for effective
region growing, and proposed an MRF-based multivariate
image segmentation algorithm.

Region-merging approaches. Similar to growing, a sig-
nificant number of approaches have been proposed that
explicitly use a merging protocol for region-based segmen-
tation. Devaux et al.56 built a unique segmentation architec-
ture that employed the Karhunen-Loeve transform (KLT) in
combination with color and textural attributes for region-
based segmentation of color aerial images. The algorithm
separately exploited color and texture information to come
up with two initial segmentation maps that are subsequently
fused together in a merging protocol. Chen et al.57 developed
a segmentation technique based on color contrast. The tech-
nique began by converting the color input image from RGB

Fig. 9 Seed pixels (left) and region formed after a few iterations of growing (right).

Fig. 10 Initial regions (left), and updated region map after a few iterations of merging (right).
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to CIE L�a�b� and then utilized the later computed values to
estimate contrast information with four directional operators.
The estimated contrast map was thresholded to identify an
initial set of regions, which were appropriately merged
using a connection and verification process. Nock et al.58

explored a statistical region merging structure of segmenting
image data, based on the notion that perceptual grouping
with region merging can be effectively used to encapsulate
the big picture of a scene, using primary local glimpses of it.
Nock et al.59 further enhanced the work in 2005 their work
by treating statistical region merging as a nonparametric
mixture model estimation problem. In his work, Kim60

devised an approach for segmenting low-depth-of-field
images using morphological filters and region merging. The
procedure involved an initial conversion of a low-depth-of-
field image to an alternate feature space representing higher
order statistics (HOS). The resultant HOS map was simpli-
fied using morphological reconstruction followed by region
merging to produce the output segmentation result. Kuan
et al.61 presented a novel region merging strategy for seg-
menting salient regions in color images. The technique gen-
erated an initial set of regions by extracting dominant colors
in the input image, using a nonparametric density estimation
methodology. Subsequently, a merging protocol based on
“importance index” and “merging likelihood” criterions was
used to refine the initial set. With a similar global objective to
the work in Kuan et al.,61 Liu et al.62 proposed an unsuper-
vised segmentation algorithm aimed at salient object extrac-
tion. The method was based on region merging in a binary
partition tree (BPT) framework. It utilized a novel dissimi-
larity measure that considered color difference, area factor,
and adjacency degree criterions. A robust termination criter-
ion for conventional region merging algorithms based on a
novel distinctness predicate of adjacent regions was pro-
posed in Tan et al.63 The effectiveness of the aforementioned
criterion was demonstrated using two new merging criteria
based on local and global image characteristics. Region mer-
ging techniques using statistical measures from the field
of information theory was first seen in the work of Calderero
et al.64 The proposed merging protocols were unique in the
fact that they did not make any assumptions of color or
texture homogeneity of regions, but were characterized by
nonparametric region models.

Hybrid growing-merging approaches. Integration of
growing and merging is another popular region-based meth-
odology in the segmentation realm. Deng et al.65 proposed
the prominently known J-SEGmentation (JSEG) algorithm
that integrated color quantization and spatial segmentation

for extraction of color-texture regions in images and video
(see Fig. 11). The JSEG method commences in a color quan-
tization step utilized to obtain a “color class map,” which
is subsequently employed to compute a J-image based on
certain spatial constraints. These spatial constraints were
designed such that the resultant J-image corresponded to
measurements of local homogeneities that acquired high
values at region boundaries and low values for homogeneous
color-texture regions. Subsequently, the J-image is utilized as
a reference to identify suitable seed points to initiate a region
growing process, wherein the obtained regions are eventually
refined in a merging process using a color similarity criter-
ion. Although the JSEG method was efficient in deriving
spatially compact regions, it suffered from the fact that the
use of color quantization caused over segmentation in
regions of varying shades due to illumination or texture dis-
parities, as viewed in some of the results of Fig. 11 (see chee-
tah, skydiver, and lake images). The segmentation outcomes
displayed in Fig. 11 were obtained using default parametric
settings, where the parameters named color quantization
threshold (qthresh) and number of scales (Iscale) are, by
default, automatically computed, while the region merge
threshold parameter (mthresh) was set equivalent to 0.4.

The aforementioned drawback of the JSEG technique to a
certain extent was addressed byWang et al.,66 who advocated
the use of mean shift clustering instead of color quantization
for improved results. In their work, Wang et al.67 uncovered
another drawback of the JSEG procedure by demonstrating
that ignoring color discontinuity in the computation of the
J-measure caused over-segmented results. To overcome this
deficiency, they proposed a novel hybrid measure for homo-
geneity. Amidst other hybrid approaches, Cheng68 postulated
a segmentation procedure for color image data in a growing-
merging framework integrated with 3-D clustering and
relaxation labeling. Shih et al.69 developed a segmentation
algorithm based on seeded region growing and merging,
incorporating strategies to avoid pixel order dependencies.
He et al.70 employed the concept of gradient vector flow
(GVF) in a seeded region growing and region adjacency
graph (RAG)-based merging architecture. Dynamic color
gradient thresholding (DCGT) integrated with a growing-
merging scheme was first seen in the work by Balasubrama-
nian et al.71 The DCGT technique was used to guide a region
growth procedure for the formation of an initial set of
regions, which were further refined in a merging protocol.
Both steps were performed purely based on color informa-
tion. To this effect, the DCGT algorithm faced problems
of oversegmentation due to the lack of a texture descriptor
and was computationally expensive. Figure 12 portrays the

Fig. 11 Results of the JSEG algorithm.65
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segmentation outcomes achieved from the DCGT algorithm
using default parametric values described in Balasubrama-
nian et al.71

More recently, Ugarriza et al.72 proposed a novel Gradient
SEGmentation (GSEG) algorithm, which simultaneously
laid emphasis on the homogeneous and heterogeneous
characteristics of image data using color-texture-gradient
attributes and did not exclusively depend on the initial
assignment of clusters to arrive at the final segmentation
(see Fig. 13). Region formation in the GSEG method was
done using a unique growing approach based on the principle
of dynamic gradient thresholding that iteratively thresholded
gradient information derived from the image, commencing at
pixel clusters with small gradient magnitudes (gradually
varying intensity) and culminating at pixels groupings pos-
sessing large gradient magnitudes (abrupt intensity varia-
tions) with no dependency in the order in which they were
processed. Another aspect of their growth approach different
from conventional approaches was the dynamic seed addi-
tion component that accommodated simultaneous growth
of several adjacent and/or nonadjacent image regions. The
resulting regions were optimized using an efficient region

merging approach based on statistical analysis of a multivari-
ate space involving the aforementioned attributes. The work
in Ugarriza et al.72 was enhanced by Vantaram et al.73 who
proposed a multiresolution extension of the GSEG metho-
dology called MAPGSEG and demonstrated that the seg-
mentation results of low-resolution images can be utilized
to efficiently partition their corresponding high-resolution
counterparts. Overall, the MAPGSEG framework was shown
to achieve, in general, comparable segmentation results to
the GSEG algorithm (as seen in Figs. 13 and 14) at half
its computational expense. The parametric settings utilized
to achieve the results depicted in Figs. 13 and 14 have
been detailed in Ugarriza et al.72 and Vantaram et al.73

Krinidis et al.74 instituted an approach for color texture
image segmentation in a growing-merging schema based on
a 3-D physics-based deformable surface model derived from
intensity and spatial information of images. Color image
segmentation using the dual tree complex wavelet transform
(DT-CWT) integrated with a growing-merging strategy
was seen in Celik et al.75 The partitioning process was
initiated by the DT-CWT computation that enabled multi-
scale edge detection, wherein the acquired edges were

Fig. 12 Results of the DCGT algorithm.71

Fig. 13 Results of the GSEG algorithm.72

Fig. 14 Results of the MAPGSEG algorithm.73
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subjected to binary morphological operations to locate
suitable seed points. These seed points were employed in
a region-growing approach to delineate an initial set of
regions, which were fine-tuned in a subsequent merging pro-
cess. Recently, Panagiotakis et al.76 devised a scheme for
natural image segmentation in a growing-merging structure
based on tree equipartion and Bayesian flooding processes
for feature extraction. Additionally, several hybrid region-
based approaches77–84 have also been proposed.

In contrast to the segmentation approaches discussed in
the last three subsections, energy-based segmentation tech-
niques aim to minimize explicit cost functions. They can, in
general, be classified into ones that explicitly utilize edge/
contour-based energy (e.g., active contours) or ones that
employ region-based energy to delineate different regions
(e.g., Mumford-Shah formulation and Bayesian techniques
like MRFs.

Active contours. Within the notion of using edge/contour-
based energy, curve evolution methods involving active
contours better known as “evolving fronts” have gained tre-
mendous popularity over the last decade. From a high-level
viewpoint, active contours can be categorized based on their
implementation as being either parametric active contours
(PACs) or geometric active contours (GACs).

PACs are generally represented in a Lagrangian formula-
tion where the evolving curves are called “snakes,” a concept
first introduced by Kass et al.85 A snake is defined as a curve
or a deformable spline vðsÞ ¼ ½xðsÞ; yðsÞ� that constantly
moves/evolves based on a specific energy model EðvÞ until
it attains a shape that best fits an object (or multiple objects)
of interest in the scene. This energy functional typically com-
prises of internal (Eint½vðsÞ�) and external (Eext½vðsÞ�) energy
terms as shown in Eqs. (5) and (6), whose combined effect
drives a snake towards the boundary of an object resulting in
the overall energy being minimized, given as:
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Z
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In the aforementioned equations, ðx; yÞ symbolizes the
coordinates of a snake in the image domain, while s is pro-
portional to its arc length. Furthermore, Eint½vðsÞ� is contour-
dependent. It is utilized to control its tension and rigidity via
parameters αðsÞ, βðsÞ, respectively, and is minimized when a
snake possesses a shape that is in close proximity to the
object of interest. On the other hand, Eext½vðsÞ� is explicitly
calculated in the image domain and is minimized when the
physical location of a snake is along the boundaries of the
object of interest. Among PACs, there exists a class of snakes
called region-based active contours given that they are
designed to attract to boundaries that distinguish homoge-
neous regions. Since its inception, it has been uncovered
that the traditional snake model suffers from two major draw-
backs that derail it from converging on the desired object
of interest. The first occurs when the contour initialization

is far from the true object boundary, and the second is
when the object of interest has cavities that are concave
in nature. To overcome the first shortcoming, multiresolution
methods and pressure forces, as well as several enhanced
models such as balloon/distance snake models, have been
proposed. On the other hand, methods involving GVF and
directional snake models have been offered to account for
the second deficiency. PACs have several merits over
classical segmentation techniques such as: 1. they are self-
accommodative in their pursuit for a global energy mini-
mum, 2. they can be easily molded via the Eext½vðsÞ� term
as needed, 3. they can be designed to be image scale depen-
dent, and finally 4. they are not biased toward any particular
object/region shape and consequently are effective for
segmenting/tracking objects in spatio-temporal dimensions.
Major potential demerits of PACs include: 1. brazing loca-
lized energy minima, 2. ignoring minor image features for
global energy minimization, 3. focusing only a few regions
at a time, and 4. relying on stringent convergence criteria for
high accuracy. Dumitras et al.86 proposed a three-step algo-
rithm using angular-map-driven snakes for shape description
and extraction of objects in color imagery. The first step
involved computation of an angular map using all color pixel
vectors and a reference vector that characterizes color
changes in the input image. This map is utilized as input to
an edge detection protocol in the second stage of processing.
Finally, the resultant edge map is presented to a snake model
to segment the object of interest. Dumitras et al. experimen-
ted with distance and GVF snake models in their work. The
use of PAC evolution based on a cubic smoothing spline for
real time segmentation of images was first seen in the work
of Precioso et al.87 Moreover, through this work Precioso
et al.87 demonstrated that the choice of a smoothing spline
approximation instead of spline interpolation makes a snake
more robust to noise variations. More recently, Ozertem
et al.88 introduced a nonparametric formulation of a snake-
energy function using kernel density estimation that ex-
ploited the underlying kernel density estimate of the image
data. Lankton et al.89 propounded a method on region-based
active contours driven by localized region energy calcula-
tions for improved segmentation accuracy.

In comparison to PACs, GACs are implicitly represented
in an Eulerian formulation where evolving curves are
evaluated as the level sets of a distance function in two-
dimensions, a theory first introduced for image segmentation
by Malladi et al.90 based on the work originally done by
Osher et al.91 The key idea of a level set-based segmentation
method is to commence with a closed contour Γ in two
dimensions, which is eventually made to propagate in a
direction orthogonal to itself at a specific speed F, driven
by a higher dimensional scalar function defined over the
input image. Thus the evolving front at any location ðx; yÞ
is derived as the zero level set of the aforementioned scalar
function at time instant t, mathematically represented as:

Γ ¼ fΦðx; y; tÞ∶Φðx; y; tÞ ¼ 0g: (7)

Employing the chain rule on Eq. (7) and performing spe-
cific algebraic simplifications, the evolution of Φ (given the
value of Φðx; y; tÞ ¼ 0) can be expressed as:

Φt þ k∇ΦkF ¼ 0: (8)
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Equation (8) is popularly referred to as the level set equation
and serves as a useful tool to track the evolution of contours
along images. Figure 15 shows the segmentation results
obtained using an open-source level set toolbox92 using
default parametric settings. The primary virtue of GACs over
alternate contour energy-based approaches is that its implicit
boundary formulation can efficiently undergo topological
changes pertinent to splitting or merging. Consequently
GACs are better suited for shape-invariant multiregion/object
segmentation. A secondary asset of GACs over conventional
schemes is its nonparametric nature that allows it to be
generically used for disparate datasets.

Brox et al.93 designed a GAC-based segmentation ap-
proach for multiple regions utilizing coupled level set
functions. More specifically, their segmentation framework
employed one level set function for each region. It was
novel because it allowed for the extraction of an arbitrary
number of regions unlike conventional level set approaches
that optimally extracted one or two regions. Michailovich
et al.94 proposed a segmentation method for gray and color
images based on GACs using an energy function that incor-
porated the Bhattacharya distance. The underlying algorithm
was based on the notion that regions in an image can be
delineated using a curve evolved in a manner such that the
Bhattacharya distance between the estimates of probability
densities among various segmentation classes is maximized.
To this effect, a cost function that measured the dissimilarity
between contents of regions was defined and employed such
that a contour was made to converge to a shape that mini-
mized overlap between the aforementioned contents (or
equivalently maximized the distance among probability den-
sities of various segments). Another approach targeted at
segmenting multiple regions in color images using GACs
was demonstrated in the work of Ayed et al.95 The proposed
technique allowed the number of regions being segmented to
be automatically varied via a region merging methodology
Furthermore, Bertelli et al.96 employed GACs that evolved
based on cost functions derived from within-region (pixel-
pair) dissimilarity instead of between-region cuts in a binary
or multiphase level set composition, for multiregion seg-
mentation of color images. Xie97 introduced a GAC model
that incorporated magnetostatic interactions among object
boundaries and active contours for efficient segmentation.
The proposed approach was found to be extremely robust
in the presence of complex geometries as well as problems
pertinent to contour initialization and weak/broken edges.
The algorithm in Xie97 was enhanced in Xie,98 with and with-
out random initializations of active contours, for object
segmentation in color imagery. Fuzzy energy-based active

contours using a pseudo-level set formulation for object
detection/segmentation in color images was seen in the work
by Krinidis et al.99 The advantages of their approach were,
in general, twofold: 1. the underlying cost function was
capable of detecting objects whose boundaries were not
well defined by gradient calculations, and 2. the fuzzy energy
alteration to the conventional model enabled a contour to
quickly converge to the desired object of interest within a
few iterations. Li et al.100 instituted a unique segmentation
algorithm using GACs in a level set formulation wherein
the regularity of the level set function was maintained during
the curve evolution process. The approach was designed to
minimize a cost function derived from gradient flow and was
comprised of a distance regularization term in conjunction
with an external energy term that forced the zero level set
to the desired locations. On the other hand, Salah et al.101

introduced a process for multiregion segmentation of image
data in a level set framework, using an energy functional that
encompassed a term to evaluate the deviation of mapped data
(acquired using a kernel function) within each segmented
region from a piecewise model, in addition to a classic reg-
ularization term that enforced smoothness of region borders.
More recently, Karoui et al.102 proposed an algorithm for seg-
mentation of textured regions in images using a GAC-based
level set formulation, which minimized a cost function com-
prised of a similarity measure between region features and
texture descriptors, along with a boundary-based component
that imposed smoothness/regularity of region boundaries on
the evolution process. Ghosh et al.103 pioneered a single
object segmentation algorithm in a variational formulation
based on edge flow vectors derived from several image fea-
tures pertaining to color, texture, and intensity edges. Wang
et al.104 devised a color segmentation protocol based on the
work by Deng et al.,65 using a level set formulation that mini-
mized a global inhomogeneity metric for segmentation of
photographic imagery.

In context of GACs-based curve evolution, other notable
contributions involved the use of Geodesic active contours
for region/object segmentation. Geodesic active contours are
dynamically modeled level set methods that facilitate com-
bining common curve evolution practices with energy mini-
mization techniques and are considered as the geometric
alternative for snakes. In their work, Goldenberg et al.105

devised a computationally efficient implementation of a geo-
desic active contour model that was numerically consistent
using a narrow band level set formulation and a fast march-
ing technique. Their implementation, involving advanced
numerical methods, was found to efficiently solve a geo-
metric nonlinear model for applications involving region

Fig. 15 Level set segmentation results obtained using an open source toolbox.92
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segmentation and object tracking. Furthermore, Sagiv
et al.106 utilized a geodesic active contour framework for seg-
menting textured regions in natural scene images, where the
texture was modeled using Gabor filters sensitive to a set of
orientations, scales and frequencies.

Mumford-Shah functional-based approaches. Chan
et al.107 proposed a unique model for active contour-based
segmentation using the Mumford-Shah (MS) functional. If
~C, g, and f represent a smooth closed segmenting contour,
the observed image data and its piece-wise approximation
respectively, then the MS energy functional Eðf; ~CÞ is
defined as:

Eðf;→ CÞ ¼ β

ZZ
Ω
ðf − gÞ2dAþ α

ZZ
Ω\C

j∇fj2dA

þ γ

I
C
ds: (9)

In Eq. (9) Ω symbolizes the image domain while the α, β,
γ parameters appropriately weight various terms in the func-
tional in order to control the segmentation scale and the
smoothness of the outcome. The use of the MS functional
enabled the development of a curve evolution process for
region/object segmentation without utilizing edge informa-
tion as a stopping criterion, as typically employed by con-
ventional approaches. Tsai et al.108 extended the work of
Chan et al.107 by divulging an estimation-theoretic approach
to curve evolution using the MS functional for color image
segmentation and smoothing. Heiler et al.109 proposed an
algorithm for segmentation based on integrating the use of
natural image statistics with the technique by Chan et al.107

In their work, Gao et al.110 demonstrated a new hierarchical
image segmentation and smoothing algorithm based on a
multiphase level set formulation and the Chan-Vese piece-
wise constant smooth active contour model.

Bayesian segmentation techniques. A class of energy-
based segmentation approaches that have maintained contin-
ued interest among researchers over the past few years stems
from the field of probability theory wherein region charac-
teristics are modeled through MRFs. In a standard MRF-
based procedure, the segmentation objective is formulated
using the maximum A-posteriori probability (MAP) criter-
ion. According to the MAP criterion, a desired segmentation
Ŝ is defined as the one that maximizes the a posteriori prob-
ability pðS∕IÞ of segmentation S, pertaining to an observed
image I, which according to the Bayes rule is mathematically
expressed as:

pðS∕IÞ ¼ arg max
S∈Ω

fpðI∕SÞpðSÞg: (10)

The terms pðI∕SÞ and pðSÞ are known as the class con-
ditional and a priori probability distributions, respectively,
while Ω represents the set of all possible segmentation out-
comes. The conditional probability is typically responsible
for characterizing the underlying distribution of intensity
values or other attributes/features in an image. In contrast,
the a priori probability distribution is employed for imposing
spatial connectivity constraints for region formation. Several
optimization approaches [e.g., iterative conditional modes

(ICM), highest confidence first (HCF), and simulated anneal-
ing] integrated with parametric estimation methods [e.g.,
expectation maximization (EM), maximum likelihood (ML)
estimation] have been utilized to achieve the aforementioned
maximization. The primary advantage of Bayesian-based
segmentation is its mathematically principled approach that
uses statistical inference and a priori information about the
underlying data. Consequently it is extensively favored for
segmenting images that contain nondeterministic content
such as textures and statistical noise, which often prove chal-
lenging for traditional segmentation modus operandi.

In his work, Mukherjee111 demonstrated an MRF-based
algorithm that used a multidimensional luminance-chromi-
nance feature space for improved segmentation of color
images. The initial segmentation estimate for the MRF
model was obtained using a conventional region growing
approach, and the resultant regions were refined using a mer-
ging protocol. Gao et al.112 described a color image segmen-
tation technique involving color conversion and MRF-EM
modeling of regions in a unique narrow-band multiresolution
implementation. The algorithm was initialized by a transfor-
mation of the input image from RGB to LUV for improved
color differentiation, which was subsequently utilized as
input to an MRF processing module. The parameters of the
MRF model were estimated through an EM technique,
wherein MRF-EM processing was invoked in a multiresolu-
tion framework for computational efficiency. Luo et al.113

introduced the concept of nonpurposive grouping (NPG)
that defined the expectations of a perceptually acceptable
segmentation outcome and proposed a probabilistic model
to the NPG problem using an MRF formulation of regions
in a HCF framework. Deng et al.114 evinced a function-based
weighting parameter between the class conditional and the
a priori probability components of an MRF model for image
segmentation. The aforementioned weighting parameter was
utilized to overcome the training phase typically necessitated
to estimate MRF model parameters, consequently making
the algorithm completely unsupervised. Tab et al.115 came
up with a multiresolution color image segmentation ap-
proach, which was capable of segmenting regions with
similar patterns across different resolution levels, by incor-
porating MRF modeling of regions and the discrete wavelet
transform. The algorithm was specifically targeted at object-
based wavelet coding applications. Xia et al.116 instituted an
adaptive algorithm for segmenting textured images using a
couple Markov random field (CMRF) comprised of a finite
symmetric conditional Markov model (FSCM), which typi-
fied an image for feature extraction/estimation, and a multi-
level logistic model (MLL), which characterized the labeling
process to arrive at the desired segmentation outcome. The
FSCM and MLL models were mutually dependent terms that
were implemented using a simulated annealing scheme. Kato
et al.117 pioneered an ICM-based architecture MRF model,
which combined color and texture information for seg-
mentation. Moreover, to facilitate accurate estimation of
parameters requisited by the model, an estimation methodol-
ogy based on the EM algorithm was developed. A couple of
years later, Kato118 proposed a color image segmentation
algorithm based on an MRF formulation in which pixel
classes were characterized by a multivariate Gaussian distri-
bution. Estimates of the number of classes, class model
parameters, and pixel labels that made up the renowned
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“incomplete data problem” were all derived from a posterior
distribution using a reversible jump Markov Chain Monte
Carlo (RJMCMC) method. Diplaros et al.119 presented a
novel generative model and EM algorithm for MRF-based
color image segmentation that generated a class label for a
pixel using prior distributions that shared similar parameters
with its neighboring pixels. The proposed algorithm was
found to possess an advantage of being relatively simple
from an implementation standpoint with competing qualita-
tive performance against traditional MRF-based segmenta-
tion methods. Nikou et al.120 proposed a new family of
Gauss-Markov random field (GMRF)-based smoothness
priors for modeling class/label probability distributions
needed in a conventional MRF using spatially variant finite
mixture models (SVFMMs) for color image segmentation.
An important aspect of the use of GMRFs in this work
was that it took into account individual class statistics to
enforce class-dependent smoothness constraints. More
recently, the work by Nikou et al.120 was further used by
Nikou et al.121 in 2010 to illustrate an advanced hierarchical
Bayesian model for mixture model-based segmentation.
Mignotte122 designed an MRF fusion model targeted at
quickly integrating results estimated from multiple relatively
simplistic clustering models to eventually yield an enhanced/
accurate final segmentation. This work was novel in the
fact that the MRF fusion model made use of a segmentation
evaluation metric called the probabilistic rand index (PRI),
wherein to have perceptual significance the fusion was
achieved in the penalized maximum PRI sense. Chen et al.123

established a new segmentation algorithm formulated as a
labeling problem using a probability maximization model,
founded on an iterative optimization scheme that alternated
between MAP and ML estimations. This MAP-ML-based
technique was shown to qualitatively and quantitatively out-
perform state-of-the-art segmentation approaches. In their
work, Vantaram et al.124 furnished a hybrid image segmenta-
tion algorithm using a Gibbs random field (GRF) model
(which is an MRF formulation under specific constraints)
to form an initial estimate of the label field. This estimate
was subsequently refined using color, texture, and gradient
features integrated with a split-and-merge mechanism to
arrive at the final set of segmented regions (see Fig. 16 for
sample outcomes using a default minimum segment size
parameter S ¼ 30 pixels).

Conditional random field (CRF), which is an extension of
the conventional MRF model, is another probabilistic model
that has been effectively used for segmentation. Zhang
et al.125 devised an approach that combined a CRF to fashion
spatial relationships among image superpixels with a

multilayer Bayesian Network (BN) that sculpted casual
dependencies pervasive among different image entities such
as regions, edges vertices, to formulate a unified probabilistic
graphical model for image segmentation. This unified
graphical model was found to surpass the results obtained
from prior art that explicitly employed either a CRF or
BN for segmentation. On the other hand, Lee et al.126 pro-
posed the use of the AdaBoost machine learning algorithm
for identifying disparities between image regions in a CRF
formulation for efficient segmentation in automatic/
semi-automatic configurations. The approach was success-
fully demonstrated on document and natural scene type
imagery.

Similar to MRFs, a popular category of Bayesian segmen-
tation methods that originate from the field of probability
theory are the ones based on Gaussian mixture models
(GMMs) for representing region processes in images. Carson
et al.127 proposed an image segmentation protocol wherein
the joint distribution of color, texture, and position features
were modeled as a mixture of Gaussians whose parameters
were estimated using the EM algorithm. The resultant set
of regions that Carson et al. called a “Blobworld” representa-
tion were employed in an image querying application with
enhanced performance over classical content-based image
retrieval procedures. In a similar architecture, Khan et al.128

presented an unsupervised color image segmentation algo-
rithm where the joint distribution of pixel features pertinent
to color, texture, brightness, and position were represented
as GMMs. The underlying parameters for the models were
assessed using three flavors of the EM algorithm namely
penalized EM (PEM), penalized stochastic EM (PSEM)
and a novel penalized inverse EM (PIEM) technique. The
proposed PIEM method was tested on the Berkeley segmen-
tation database with favorable performance. Integration of
the mean shift algorithm and GMMs was first seen in the
work by Park et al.,129 who developed a segmentation tech-
nique in which the number of mixture components were
estimated using an adaptive mean shift methodology with
parameters derived using a mean field annealing EM proto-
col. The aforementioned mean shift-GMM combination was
found to be a competent solution for automatically segment-
ing color imagery without oversegmentation or isolated
region formation. Greggio et al.130 instituted a fast GMM
(FGMM)-based segmentation protocol that automatically
inferred the number of components of a GMM as well as
their corresponding means and covariances, without neces-
sitating any prior knowledge or conscientious initialization.
In contrast to some of the above-described GMM-based
approaches, Liu et al.131 advocated the use of nonparametric

Fig. 16 Results of the GRF-based segmentation algorithm in Vantaram et al.124
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mixture models with multivariate orthogonal polynomials to
overcome the dependency of parametric models on a priori
assumptions for color image segmentation. This methodol-
ogy, named as the stochastic nonparametric EM (SNEM)
technique, was evaluated on the Berkeley database and found
to perform well in several empirical situations.

Besides the energy-based techniques discussed in the last
three subsections, several other approaches involving spe-
cialized energy classes,132 energy functionals,133,134 total
variation (TV)-based functionals,135,136 convex relaxation
procedures,137–139 curve evolution-based approaches,140–143

Bayesian principles 144–148 and other PDE as well as aniso-
tropic diffusion-based techniques149–152 have been developed
for various applications.

Graph-based segmentation techniques. Within the
realms of energy-driven approaches, there exists a prominent
category of techniques that employ graph representations
for image segmentation. In a graph theoretic formulation
(see Fig. 17), an image can be represented as an undirected
graph G ¼ ðV; EÞ, where every node vi ∈ V corresponds to
an individual pixel and every edge component ðvi; vjÞ ∈ E
pairwise connects neighboring pixel elements in G, repre-
sented as vertices vi and vj. Additionally, each edge is
assigned a weight (wij) based on the amount of similarity
between the two neighboring elements. Thus for an arbitrary
image embodied as a graph, the ultimate goal from a segmen-
tation viewpoint is to partition it utilizing metrics that yield
a set of disconnected subgraphs exemplifying meaningful
regions that concur with scene content. One significant ben-
efit of graph-based approaches is their capitalization of var-
ious cost functions for global energy minimization that more
often than not yield optimized segmentation outcomes in a
generic framework. On the other hand, graph-partitioning
methods suffer from significant computational complexity
thereby requiring various restrictions and simplifications in
order to yield reasonable results in practical real life applica-
tions at the expense of the quality of the segmentation.

A popular criterion that involves identifying a set of edges
crossing a specified path in a graph whose removal results
in several disjoint subgraphs is generically called a “cut.”
Furthermore, the aggregate weight of all the aforementioned
edges that cross the cut is called its cost or capacity. It is
imperative to understand that segmentation protocols using
graphs are predominantly pair-wise graph partitioning pro-
cesses that begin by splitting G into two partitions and con-
tinue to recursively split subsequent subgroups until certain
stopping criteria are met. Wu et al.153 was the first to demon-
strate a novel spectral graph theoretic approach based on
the minimum cut criterion for image segmentation. The algo-
rithm was initiated by the construction of an adjacency graph

G analogous to the above-described architecture. Moreover,
the weights (wij) of the edge components E were derived
using a local derivative operator wherein large discontinu-
ities (or strong edges) were associated with small costs while
small discontinuities (or weak edges) were tagged with large
costs. Subsequently, the proposed methodology determined
the minimum cuts in the graph G that collectively incurred
the least cost during the partitioning process and in doing
so identified closed contours comprised of strong edges in
the scene as the final set of segments. A drawback of the
minimum cut criterion was that it recurrently yielded small
partitions containing isolated nodes in G. To overcome this
deficiency, Shi et al.154 proposed the normalized cut (Ncut)
measure, which is an unbiased metric of disassociation
between graph partitions. The Ncut criterion was computed
as the cumulative ratio of, the aggregate weight of edge com-
ponents crossing a cut to the aggregate weight of edge com-
ponents in various subgroups (that are delineated by a cut)
connecting to all nodes in G. To this effect, the Ncut value
for isolated nodes was bound to be large, since the aggregate
weight of edge components crossing a cut represents a large
percentage of the total connections from that small set of
isolated nodes to all other nodes in the graph. The introduc-
tion of the Ncut standard led to the development of several
segmentation approaches.155,156 Malik et al.,155 devised a
segmentation algorithm in a normalized cuts framework
that incorporated contour cues with texture features based on
the concept of textons, to facilitate formation of regions of
consistent brightness and texture. On the other hand, Tao
et al.156 established a robust color image segmentation algo-
rithm that integrated the strengths of the mean shift and
normalized cuts methodologies with real-time performance.

In contrast to the Ncut solution that minimized the total
linkage between partitions normalized by the association of
the nodes within them, Sarkar et al.157 designed a segmenta-
tion algorithm based on an average cut metric that minimized
the total link weight between partitions normalized by the size
of the partitions. Sarkar et al.157 found the qualitative perfor-
mance of the average cut criterion from a segmentation per-
spective to be similar to the Ncut measure with significantly
reduced computational load. In their work, Gdalyahu et al.158

introduced a graph-based segmentation approach by defining
a low complexity typical cut criterion robust to noise and
spurious cluster formation. The algorithm is initiated by the
formulation of samples cuts inG generated using the Karger’s
contraction algorithm to eventually derive an average solution
called a typical cut for the optimal partitioning ofG. The work
was demonstrated both on synthetic/real color and gray scale
images. Wang et al.159 introduced an image segmentation
algorithm that employed a cost function aimed at finding a
cut with the minimum mean edge weight in a graph. The
mean cut measure possessed several advantages over other
graph-partitioning approaches as it facilitated cuts with
open/closed contours, guaranteed connected partitions, and
was not influenced by large foreground regions, smooth/
short boundaries, and similar-weight partitions. A couple of
years later, Wang et al.160 generalized their work in 2001
to define a revolutionary cost function for graph-based seg-
mentation called the ratio cut that enabled region as well
as pixel-based segmentation independent of size, shape,
smoothness, and boundary-length attributes. Recently, Kim
et al.161 proposed a novel approach for segmentation ofFig. 17 Graph theoretic formulation of an image.
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color textured images by formulating the segmentation task as
a minimum cut problem in a weighted graph, wherein infor-
mation from color and texture features were fused in a multi-
variate mixture model. To find globally optimal minimum
cuts, the unsupervised algorithm relied heavily on specific
type of split moves.

The graph-based mechanisms discussed thus far are fully
automatic and require, in general, substantial computations.
On the contrary, a significant effort has been devoted to the
development of supervised techniques involving human
interaction to overcome the computational burden mani-
fested by their unsupervised counterparts as well as for
achieving results that are more tailored towards user require-
ments. Boykov et al.162,163 proposed the first known interac-
tive graph cuts-based segmentation algorithm designed to
divide an image into foreground and background regions,
as displayed in Fig. 18. To accomplish the aforementioned
objective, Boykov et al. represented an image as an undir-
ected graph G ¼ ðV; EÞ where a node vi ∈ V corresponded
to a particular pixel and ascertained two additional nodes
called an object terminal (source node-s) and a background
terminal (sink node-t). In this new representation of G, the
set of edges E consisted of two types of distinctly weighted
components called neighborhood links (n-links) that con-
nected neighboring vertices (vi and vj), and terminal links
(t-links) that connected pixels to source/sink nodes. The
algorithm starts by allowing a user, through mouse-operated
brush strokes, to interactively mark a set of pixels (called
“seeds”) pertaining to foreground/background content in
the scene. These marked pixels were subsequently employed
as hard constraints during the segmentation process. Addi-
tionally, the algorithm uses a cost function that incorporates
region and boundary information imposed as soft constraints
on the segmentation protocol. The aforementioned cost
function was predicated on specific edge weights partially
derived from foreground/background intensity histograms.
Finally, a unique graph-cut framework based on the min-
cut/max flow criterion164 was utilized to uncover a single
globally optimal solution as the final segmentation outcome,
satisfying user-defined hard constraints while maintaining
the best balance between region and boundary information.
The algorithm was demonstrated on gray scale images and
3-D CT/MRI volumes.

The work by Boykov et al.164 was further enhanced by
Rother et al.,166 who devised an interactive graph-cut meth-
odology for color imagery called “GrabCut,” where color
information was incorporated into the cost function using

a Gaussian mixture model. The proposed technique first
acquires an optimal “hard” partitioning result, using the
aforementioned graph-cut algorithm enforced in an iterative
scheme that fluctuates between estimation and parameter
learning to solve the min-cut/max-flow criterion until con-
vergence is achieved. Subsequently, a border matting proto-
col is employed as a post processing or corrective editing
mechanism to arrive at the final segmentation result. Han
et al.167 established a color image segmentation algorithm
by extending the GrabCut methodology to accommodate
color and multiscale nonlinear structure tensor texture
(MSNST) features. This augmented GrabCut technique was
found to have superior performance in comparison with its
traditional equivalent over a diverse test bed of images taken
from the Berkeley segmentation database. Li et al.168 devel-
oped an interactive foreground/background segmentation
tool called “Lazy Snapping”with instant visual feedback dri-
ven by a novel segmentation algorithm that integrated graph
cuts and precomputed oversegmentation. The proposed fra-
mework comprised of an object-marking step where users
indicate foreground objects of interest at a coarse scale, fol-
lowed by a boundary-editing step where object boundaries
are delineated at a finer scale. Yang et al.169 devised a new
foreground/background segmentation algorithm called
“progressive-cut” that explicitly incorporated user evaluation
and interaction, along with intention/expectation in a graph-
cut schema, for yielding enhanced visual feedback and seg-
mentation accuracy with minimal interaction. Feng et al.170

proposed an unsupervised extension of the binary (or fore-
ground/background) s-t graph cut known as a graduated
graph cut (GGC), with an architecture that possessed cap-
abilities of self-validated labeling of MRFs. Moreover, by
utilizing different MRF optimizing protocols, Feng et al. pro-
posed three algorithms; namely, tree-structured graph cuts
(TSGC), net structured graph cuts (NSGC), and hierarchical
graph cuts (HGC) for color image segmentation.

Among other advancements concerned with graph-based
segmentation, a number of approaches have been developed
that fall outside the category of using “cuts” for partitioning
an image. Felzenszwalb et al.171 developed a tree-structured
segmentation technique by defining a predicate for determin-
ing the existence of a boundary pairwise between regions,
utilizing graph representations of images (see Fig. 19). This
predicate was defined as the disparity among pixel intensities
along the boundary between the regions relative to the neigh-
boring pixel intensity differences within each of the regions.
The results portrayed in Fig. 19 were derived using default

Fig. 18 Results of the interactive graph cuts-based segmentation algorithm in Boykov et al.,162 acquired using an implementation provided by
Gulshan et al.165 Each image shown is user-defined foreground (white) and background (red) brush strokes as well as corresponding segmentation
outcomes.
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parametric settings sigma ¼ 0.5, k ¼ 500, and min ¼ 20,
each of which are illustrated in Felzenszwalb et al.171

Ding et al.172 established another tree-structured graph
segmentation procedure for sematic object segmentation.
The work employed a scale-based connected coherence tree
algorithm (CCTA) that connected all coherent/similar pixels
in a graph using a specific criterion that maximized the prob-
ability of them being part of salient regions in a scene.
Dupuis et al.173 introduced a new color image segmentation
process formulated in a graph-partitioning architecture where
an affinity matrix, which signified the pairwise similarity of
nodes (or pixels) in a graph, was acquired using a linear com-
bination of affinity matrices from multiple visual cues such
as color, texture, gradient, and luminance. The resultant
affinity matrix was utilized in the partitioning process that
included meta-edge computations and node contraction
operations to arrive at the final segmentation result. Grady
et al.174 proposed a graph-partitioning algorithm that un-
covered partitions with small isoperimetric ratios, as an
alternative to conventional spectral graph partitioning. The
algorithm was found to be significantly faster in comparison
to Ncuts-based segmentation with much more stable results.
Image segmentation using random walks was first seen in
the work of Grady175, who presented an interactive process,
which assigned to every un-labeled pixel a label that corre-
sponded to the highest probability that a random walker ori-
ginating at that pixel would first reach the assigned label,
from amongst a set of user-defined ones. The algorithm was
demonstrated on synthetic and real imagery with satisfactory
performance. The work in Grady et al.174 was extended by
Yang et al.176 using a constrained random walk-based algo-
rithm that accommodated multiple user inputs together with
local contour deformation, for enabling highly accurate
and computationally efficient object segmentation in color
imagery. Xiang et al.177 designed an interactive image

segmentation algorithm using graph-based transductive
classification, a procedure that involved multiple linear
reconstructions in small image windows (MLRW). The algo-
rithm was a two-step process where, in every 3 × 3 image
window, the color intensity of the central pixel was first
reconstructed using a weighted combination of its eight
neighbors and the acquired optimal weights were in turn
used in the second step to linearly reconstruct the class
label of that pixel.

Apart from the procedures discussed in this subsection,
numerous supervised/unsupervised segmentation methods
involving graph-cuts178–181 and hybrid techniques using
graph formulations182–188 have been developed as tools for
driving various imaging applications.

Watershed-based segmentation techniques. Over the
years, methods based on morphological watersheds have
carved out a niche of their own in the segmentation literature.
Watershed segmentation protocols typically utilize region as
well as contour information to partition an image, by viewing
it as a 3-D topographic relief (see Fig. 20) involving two spa-
tial dimensions, and the third one being a specific attribute
(e.g., intensity or gradient). Conceptually, watershed algo-
rithms identify a pixel in an image as being stationed189

in the attribute-terrain, either within troughs/basins generally
associated with region minimums or at a location where a
drop of water would flow toward single or multiple region
minimums. Pixel conglomerations that satisfy the first two
conditions typically form catchment basins better known
as watersheds, while ones that conform to the third condition
(multiple region minimums) typify watershed lines, as
depicted in Fig. 20. Watershed segmentation possesses sev-
eral advantages such as: 1. simplicity in algorithmic design,
2. minimal computational complexity, 3. ability to provide
close contours even in low contrast regions with weak

Fig. 19 Results of the graph-based segmentation algorithm in Felzenszwalb et al.171

Fig. 20 Sample image and 3-D topographic relief of its gradient.
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boundaries, and 4. means to serve as a stable initialization for
more sophisticated segmentation mechanisms. On the down-
side, the output achieved by a watershed transform is often
oversegmented and requires post-processing schemes invol-
ving region merging and markers (connected components
branding flat regions or objects in images) to yield a more
suitable outcome.

Gao et al.190 developed a three-step color image segmen-
tation approach entailing simplification, marker extraction,
and boundary decision processes, respectively. The first step
was responsible for getting rid of any unwarranted image
information from a segmentation standpoint, while the sec-
ond step facilitated the functionality of homogeneous region
identification. Finally, a modified region-growing-based
watershed algorithm was performed in the last step to deter-
mine the eventual region boundaries. In a disparate research
endeavor, Gao et al.191 devised a marker-based watershed
segmentation methodology based on the concept of disjoint
set union that involved pixel sorting, set union, and pixel
resolving processes. Hill et al.192 incorporated the concept
of texture gradient in a watershed segmentation framework
to counter oversegmentation problems while partitioning
textured regions that are perceptually homogeneous in
images. The algorithm begins by extracting texture and gra-
dient information from the scene using a nondecimated form
for the complex wavelet transform. Subsequently, a new mar-
ker-guided watershed algorithm was employed to identify a
final set of homogeneous textured/nontextured regions.
Nguyen et al.193 pioneered a novel segmentation approach
called “watersnakes” that unified principles from energy-
based active contours with the watershed transform. Through
the watersnake scheme, Nguyen et al. formulated watershed
segmentation as an energy minimization problem for
region/object segmentation. In a similar context of fusing
energy-based methodologies and watershed segmentation,
Vanhamel et al.194 utilized a vector energy-based nonlinear
diffusion filtering multiscale space, where a hierarchy of
strong edges, smooth segments, and detailed segments were
extracted by color-gradient watersheds to identify meaning-
ful regions. The aforementioned algorithm was demonstrated
on simulated as well as natural scene color imagery. Kim
et al.195 proposed an effective watershed segmentation
method in a multiresolution architecture using a wavelet
transform. Once the image pyramid was constructed, the
algorithm starts at the lowest level using a watershed seg-
mentation step. The obtained segments were optimized using
a region-merging protocol and projected to the next higher
resolution using an inverse wavelet transform. The aforesaid
step was continued until a segmentation outcome at the

highest/original image resolution was achieved. In contrast,
Jung196 designed a color image segmentation protocol called
Waveseg using a dyadic wavelet decomposition scheme to
create multiresolution representations of the input image.
To this effect, a watershed transformation was applied to
the image at the lowest resolution yielding an initial segmen-
tation. This segmentation estimate was repetitively projected
to subsequent higher resolutions using inverse wavelet trans-
forms and contour refinements processes to obtain a full
resolution estimate of the identified regions. Finally, a region
merging protocol was exercised to merge adjoining regions
with similar colors producing the output segmentation result.
The algorithm was found to perform favorably in compari-
son to state-of-the-art methods especially when handling
noisy color images. Arbeláez et al.197 introduced a three-
step contemporary image segmentation strategy (abbreviated
as gPb-owt-ucm) involving a transformation, called the
oriented watershed transform (OWT). In the first step, the
proposed algorithm detects contours in the input image by
computing a metric called the globalized probability of
boundary (gPb), using brightness, color, and texture cues.
The identified contours (which may not be closed) are sub-
sequently given as input to an OWT to yield an initial set
of regions. Finally, an agglomerative clustering procedure
is utilized to hierarchically form meaningful regions repre-
sented as a “region-tree” by an ultrametric contour map
(UCM). Figure 21 illustrates the results of the gPb-owt-ucm
methodology achieved by thresholding the UCM at level 0.3.

In addition to the segmentation approaches discussed in
this subsection, several other hybrid methods involving the
watershed transform198,199 have been proposed, emphasizing
its importance in the segmentation realm.

As mentioned at the beginning of Sec. 2.2, a major por-
tion of segmentation practices can be viewed as being either
spatially blind or spatially guided, and within the notion of
each of these principles, dominant groups of methods have
been discussed. However, there are several techniques that
may not distinctly fall in any of the aforementioned dominant
categories but nonetheless provide valuable contributions to
the field of image segmentation. Consequently, we will cate-
gorize them as a separate group called “miscellaneous”
approaches. Among these are: 1. fuzzy-based procedures
such as the ones involving fuzzy homogeneity200,201 and
fuzzy region completion,202 2. supervised techniques using
adaptive weighted distances,203 spline regression,204 geode-
sic matting,205 and linear programming,206 3. methods
using specialized image features; namely, Quaternions,207,208

textons,209–212 histogram of oriented gradients (HOG),213 and
local binary patterns (LBP)214,215 4. methodologies that

Fig. 21 Results of the gPb-owt-ucm algorithm.197
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employ turbo-pixel or super-pixel based representations of
image data,216–221 5. physics-based processes robust to sha-
dowing, shading, and highlighting effects222 (see Fig. 22 for
sample segmentation outcomes with default parameters),223

6. routines that treat segmentation as a classification task
using sophisticated classifiers such as support vector
machines (SVMs)224,225 or employ specialized properties
of images,226 7. top down (TD) or bottom up (BU) schemes
using shape constraints, 227 as well as integrated TD-BU
frameworks,228 8. mechanisms involving statistical princi-
ples,229 information bottleneck method230 and algorithms
that consider segmentation as a task of finding perceptually
salient groupings,231,232 and finally 9. co-clustering strate-
gies, which combine multiple segmentations into one
improved result233–235 as well as co-segmentation methods
that jointly segment multiple images, which contain a com-
mon object.236–244 Co-clustering and co-segmentation (refer-
enced above) are amongst the newest techniques being
researched in the segmentation domain. Co-clustering is for-
mally defined as the process of jointly clustering two or more
images that closely maintain their semantic foreground and
background content such as shapes, color, and texture of
objects/regions. Examples of such a set of images include
digital video frames in close proximity and series of images
taken under varying camera exposure and/or illumination
conditions. On the other hand, co-segmentation is a proce-
dure wherein multiple images that have diverse backgrounds
are processed to segment common foreground objects well
correlated in terms of their color-texture composition.
Co-segmentation has several applications such as image edit-
ing, image similarity measurement, video summarization/
tracking, and object-based image retrieval to name a few.

3 Quantitave Evaluation of Segmentation
Methodologies

The unprecedented growth in the number of applications
involving segmentation across diverse imaging modalities
has resulted in the development of metrics for quantitative
evaluation of segmentation methods and their corresponding
outcomes. In his work, Zhang245 provided a comprehensive
review of approaches established to analyze segmentations
from a quantitative viewpoint that categorized most ap-
proaches as being either analytical or empirical based on
their fundamental principle of operation. While the techni-
ques in the analytical category typically grade segmentations
by analyzing properties of the algorithms that generated
them, empirical techniques indirectly gauge segmentation
quality by using test images that have reference/ground truth

results to compute consistency and/or discrepancy metrics
between them.

In order to objectively judge the quality of various seg-
mentation outcomes displayed in this paper, we adopt an
empirical/indirect evaluation technique utilizing a metric
called the normalized probabilistic rand (NPR) index.246

The NPR index is an accurate measure of segmentation cor-
rectness that satisfies the following properties: 1. it does not
yield high values in cases where there is significant discre-
pancy between an automatically generated (or test) segmen-
tation result and the ones partitioned by human observers,
2. it does not make any label assignment and region size
assumptions within the data being evaluated, 3. it accommo-
dates lesser penalty for disagreement between a test seg-
mentation outcome and its multiple manually generated
counterparts in perceptually ambiguous regions, while it
effects a heavy penalty for nonconformity in perceptually
distinct regions, and 4. it yields intelligible comparisons
between segmentations of different images and different
segmentations of the same image.

The NPR index is a normalized version of the probabil-
istic rand (PR) index, which in turn is formulated from the
rand index (R).247 If S and S 0 are two segmentations being
compared (test versus ground truth), then R is defined as
the ratio of number of pixel-pairs that share the same
label relationship between them, represented as:

RðS; S 0Þ ¼ 1�
N
2

� X
i; j
i ≠ j

½Iðli ¼ lj l 0i ¼ l 0jÞ þ Iðli ≠ ljl̂ 0i ≠ l 0jÞ�:

(11)

In Eq. (11) i ¼ 1; 2; : : : ; N denotes the number of pixels
in S and S 0 with corresponding label assignments flig and
fl 0ig respectively, I symbolizes an identity function, ‘^’
represents a logical conjunction, while the denominator
represents all possible unique pixel pair combinations with
N pixels. From the definition of R, it can be seen that the
metric is capable of performing only one-to-one test versus
ground truth segmentation comparisons. On the other hand,
the probabilistic rand (PR) index allows comparison of one-
test segmentation (Stest) to many ground truths (S1; S2; : : :
SK) via a nonuniform pixel pair weighting scheme hinged
on the variability in the ground-truth set. Thus if flStesti g,
flSKi g, respectively represent the label assignment of a
pixel i (where i ¼ 1; 2; : : : ; N) in Stest and the k’th manual
segmentation (SK), while l̂i denote the set of “true labels” for
i, then PR is defined as:

Fig. 22 Results of the algorithm in Hoang et al.222
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PRðStest; fSKgÞ ¼
1�
N

2

� X
i; j

i ≠ j

½IðlStesti ¼ lStestj ÞPðl̂i ¼ l̂jÞ

þ IðlStesti ≠ lStestj ÞPðl̂i ≠ l̂jÞ�; (12)

where Pðl̂i ¼ l̂jÞ and Pðl̂i ≠ l̂jÞ signify the respective prob-
abilities of an identical or distinct label relationship between
a pixel pair ði; jÞ, obtained as:

Pðl̂i ¼ l̂jÞ ¼
1

K

XK
k¼1

IðlSki ¼ lSkj Þ (13)

Pðl̂i ≠ l̂jÞ ¼
1

K

XK
k¼1

IðlSki ≠ lSkj Þ ¼ 1 − Pðl̂i ¼ l̂jÞ: (14)

It is imperative to note that both the R and PR indices
range from 0 to 1, where 0 signifies complete dissimilarity,
and 1 represents a perfect match with single/multiple ground
truths. However this range (½0; 1�) has often been found to be
too narrow for comparison of a large set of images and also
does not facilitate comparison of segmentations of different
images. To this effect, Unnikrishnan et al.246 proposed the
normalized probabilistic rand (NPR) index, which is refer-
enced with respect to expected value of the PR index E½PR�,
defined as:

NPR ¼ PR − E½PR�
max½PR� − E½PR� ; (15)

where max½PR� ¼ 1, while E½PR� is computed as:

E½PRðStest;fSKgÞ� ¼
1�
N

2

� X
i; j

i ≠ j

½E½IðlStesti ¼ lStestj Þ�Pðl̂i ¼ l̂jÞ

þE½IðlStesti ≠ lStestj Þ�Pðl̂i ≠ l̂jÞ�: (16)

If an arbitrary test database comprises of Φ images each
possessing KΦ number of ground truths, then E½IðlStesti ¼
lStestj Þ� and E½IðlStesti ≠ lStestj Þ� are computed as:

E½IðlStesti ¼ lStestj Þ� ¼ 1

Φ

X
Φ

1

KΦ

Xk¼KΦ

k¼1

IðlSΦki ¼ l
SΦk
j Þ (17)

E½IðlStesti ≠ lStestj Þ� ¼ 1 −
1

Φ

X
Φ

1

KΦ

Xk¼KΦ

k¼1

IðlSΦki ¼ l
SΦk
j Þ: (18)

From Eqs. (16) to (17), it can be observed that E½IðlStesti ¼
lStestj Þ� and E½IðlStesti ≠ lStestj Þ� are procured from all unordered
pixel pairs ði; jÞ across the entire set of ground truth segmen-
tations of the test database, yielding a meaningful calculation
of E½PR�. Furthermore, from Eq. (15) it can be inferred that a
segmentation output that possesses a PR value less than
E½PR� will yield a negative NPR value indicating a poor out-
come, while segmentations associated with positive NPR
values that are notably greater than zero (0.7 ≤ NPR ≤ 1) are
considered useful. This negative to positive range of NPR

Fig. 23 Distributional comparison of NPR scores for 300 images of the Berkeley database.
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values renders the index to be a significantly more sensitive
and robust metric in comparison to PR.

Figure 23 illustrates a distributional comparison of NPR
scores for 11 different segmentation algorithms (see Fig. 23
legend) discussed earlier. These were tested on an open
source database provided by the University of California
at Berkeley comprising of 300 images cumulatively asso-
ciated with 1,633 ground truth segmentations.1 It should be
noted that the calculated value of the expected index E½PR�
[see Eqs. (16) to (18)] that was utilized to compute the NPR
index [see Eq. (15)] was found to be equal to 0.6064.
Additionally, a summary of our evaluation results for the
aforementioned algorithms can be found in Table 1.

From Fig. 23 it can be observed that among the various
methodologies that were evaluated, the distributions of the
UCM, GSEG, MAPGSEG, and GRF methods are weighted
more toward the right half of the bar graph in comparison to
others, indicating superior performance. This observation
can be corroborated by the results in Table 1 that depicts
that the four aforementioned algorithms have the highest
average NPR indices (0.507, 0.496, 0.495, 0.488, respec-
tively) with the lowest deviation in NPR scores (0.322,
0.306, 0.312, 0.309), as well as the largest number of images
in the range 0.7 ≤ NPR ≤ 1 (105, 91, 85, 83) all of which
indicate that these algorithms have the best segmentation
performance with high consistency.

4 Conclusions
In this paper, we present an extensive review of recent color
segmentation methodologies and highlight prominent contri-
butions in the gray scale realm. Our classification of seg-
mentation approaches fundamentally involves two dominant
groups: 1. spatially blind methods that entirely disregard
spatial information, and 2. spatially guided techniques that
employ information derived from the spatial distribution
of pixels. Furthermore, the aforesaid classification is not
“hard,” owing to the fact that there are a numerous techni-
ques that, in some respect, integrate spatially blind proces-
sing with information that is spatially derived or vice versa,
consequently fuzzifying the demarcation between them. This
fuzzy nature may also be observed within subgroups of the
segmentation hierarchy described in Fig. 3. Nonetheless, we
have ensured that all algorithms have been placed in a group/
subgroup to which they are most relevant. Overall, our per-
spective of the field, based on methods discussed in this
paper, have led us to make the following observations: 1. seg-
mentation continues to be at the forefront of many commer-
cial and research endeavors, and the need for algorithms that
perform this task efficiently is exponentially increasing with
no sign of subsiding in the near future, 2. among various
procedures developed within the last decade, energy-driven

schemes involving active contours, Bayesian principles and
graph partitioning techniques have received considerable
attention relative to other mechanisms, and 3. in contrast
to the 1990s, modern segmentation approaches have success-
fully managed to achieve higher levels of sophistication and
quality, due to increased efforts to develop algorithms that
combine the strengths of multiple processes to overcome
existing drawbacks. While all our observations allude to
advances that have been made in the area of image segmen-
tation, we believe there are still significant contributions that
have yet to be made.

First, the bounty of segmentation methods has resulted in
an increased requirement of supervised/unsupervised perfor-
mance evaluation methodologies. Although the development
of evaluation strategies has been the focus of several research
undertakings, it has not been proportionate to the number of
algorithms established to perform the task itself. This pro-
vides an opportunity for improvement as well as opens
new avenues of research such as integration of segmentation
and evaluation. It is our conviction that since segmentation is
an ill-posed problem with no perfect solution, the ultimate
algorithm will be one that eventually performs segmentation
and evaluation in an adaptive feedback mechanism, in order
to define an optimal or a generally acceptable solution.

Second, enormous technological strides have been made
in simultaneous capture/representation of data derived from
multiple modalities of imaging (such as a co-registered
RGB-hyperspectral-LIDAR (light detection and ranging)
dataset of a scene or CT-MRI-PET data of a medical study),
as different modalities provide different levels and type of
information. However, segmentation techniques that suc-
cessfully leverage information manifested in these enhanced
formats are relatively few in comparison. To this effect, we
believe that the next generation of segmentation algorithms
should be developed with a multi-modal perspective to
simultaneously cater to the requirements of sophisticated
applications that employ such data sets whilst being back-
ward compatible with applications using gray scale or color
imagery.
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