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Abstract. Image fusion combines several images of the same
scene into a fused image, which contains all important information.
Multiscale transform and sparse representation can solve this prob-
lem effectively. However, due to the limited number of dictionary
atoms, it is difficult to provide an accurate description for image details
in the sparse representation–based image fusion method, and
it needs a great deal of calculations. In addition, for the multiscale
transform–based method, the low-pass subband coefficients are so
hard to represent sparsely that they cannot extract significant features
from images. In this paper, a nonsubsampled contourlet transform
(NSCT) and sparse representation–based image fusion method
(NSCTSR) is proposed. NSCT is used to perform a multiscale decom-
position of source images to express the details of images, and we
present a dictionary learning scheme in NSCT domain, based on
which we can represent low-frequency information of the image
sparsely in order to extract the salient features of images. Further-
more, it can reduce the calculation cost of the fusion algorithm with
sparse representation by the way of nonoverlapping blocking. The
experimental results show that the proposed method outperforms
both the fusion method based on single sparse representation and

multiscale decompositon. © The Authors. Published by SPIE under
a Creative Commons Attribution 3.0 Unported License. Distribution
or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JEI.22.4
.043019]

1 Introduction
Image fusion is a process of combining several source
images that are captured by multiple sensors or by a single
sensor at different times. Those source images contain
more comprehensive and accurate information than a single
image. Image fusion is widely used in the field of military,
medical imaging, remote sensing imaging, machine vision,
and security surveillance.1,2

In recent decades, many fusion algorithms have been
proposed. Most of these methods can be classified into two
categories: multiscale transform and sparse representation–
based approach. The basic idea of multiscale transform–
based fusion method is that the salient information of images
is closely related to the multiscale decomposition coefficient.
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These methods usually consist of three steps, including
decomposing source image into multiscale coefficients, fus-
ing these coefficients with a certain rule, and reconstructing
a fused image with inverse transformation. Multiscale trans-
form-based fusion methods include the gradient pyramid,3

Laplacian pyramid,4 discrete wavelet transform (DWT),5

stationary wavelet transform (SWT),6 and nonsubsampled
contourlet transform (NSCT).7 Image fusion by these meth-
ods is a multiscale approach for image representation and
has fast implementation.

Image fusion with sparse representation method is based
on the idea that image signals can be represented as a linear
combination of a “few” atoms from learned dictionary, and
the sparse coefficients are treated as the salient features of
the source images. The main steps include (1) dictionary
learning, (2) sparse representation of the source image,
(3) fusion of this sparse representation by the fusion rule,
(4) reconstruction of the fused image. Among them, steps
(1) and (3) are the most critical factors in successful fusion.
The fusion results among overcomplete discrete cosine trans-
form (DCT) dictionary, the hybrid dictionary, and the trained
dictionary are compared and studied in Refs. 8 and 9. The
fusion results demonstrate that the trained method provides
the best performances. Fusion rules of sparse representation–
based methods are researched in Refs. 10 and 11. The former
one pursues the sparse vector for the fused image by optimiz-
ing the Euclidean distances between fused image and source
image. The latter one represents source image with the
common and innovation sparse coefficients and combines
them by the mean absolute values of the innovation
coefficients. In Ref. 12, steps (1) and (3) are both studied.
During dictionary learning stage, it is implemented by joint
sparse coding and singular value decomposition (SVD). And
for the new fusion rule, it combines the weighted average
with the choose-max rule.

Both of the above fusion methods have their special
advantages as well as some disadvantages. The multiscale
transform–based methods are multiscale approaches for
image representation and have fast implementation. How-
ever, the sparsity of coefficients that represent the image
could be increased significantly in the low-pass subbands,
where approximate zero coefficients are very few, i.e.,
they are unable to express low-frequency information of
images sparsely, while sparse representation can effectively
extract the underlying information of source images.9 If low-
frequency coefficients are integrated directly, it will degrade
the performance of the fused result because the low-
frequency coefficients contain the main energy of the
image.

In contrast, the second method allows for more meaningful
representations from source images by learned dictionary,
which are more finely fitted to the data,13 thus producing
better performance. However, due to the limited number of
atoms in a dictionary, it is difficult to provide the accurate rep-
resentation of image details, such as edges and textures.
Moreover, complexity constraints the atom size in the learned
dictionary (a typical size is of the order of 64)14. This
limitation is the reason why patch-based processing is so
often practiced when using such dictionaries. To avoid block-
ing-artifact, the step size usually is 1.8–13 However, along with
the increase of image size, the number of image blocks grows
exponentially, and a great deal of calculation is needed.

In this paper, we attempt to merge the advantages of the
above two methods. An NSCT and sparse representation–
based image fusion method is proposed, namely NSCTSR.
We decompose the source images by NSCT to obtain the
near sparseness of high-pass subband at multiscale and mul-
tidirection to represent image details. For the problem of

Fig. 1 Nonsubsampled contourlet transform (NSCT).

Fig. 2 Three-stage pyramid decomposition directional.

Fig. 3 Four-channel nonsubsampled filter bank constructed with
two-channel fan filter banks.
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nonsparseness of low-frequency subband in the NSCT
domain, we train the dictionary for the low-pass coefficients
of the NSCT to obtain more sparse and salient feature of
source images in NSCT domain. Then the low-pass and
high-pass subbands are integrated according to different
fusion rules, respectively. Moreover, the proposed method
can reduce the calculation cost by nonoverlapping blocking.

The rest of the paper is organized as follows: Sec. 2
reviews the theory of the NSCT in brief. Section 3 presents
dictionary learning in NSCT domain. In Sec. 4, we propose
the fusion scheme, whereas Sec. 5 contains experimental
results obtained by using the proposed method and a com-
parison with the state-of-the-art methods. Section 6 con-
cludes this paper.

2 Nonsubsampled Contourlet Transform
NSCT is proposed on the grounds of contourlet conception,
which discards the sampling step during the image decom-
position and reconstruction stages.15 Furthermore, NSCT
presents the features of shift-invariance, multiresolution,
and multidimensionality for image presentation by using a
nonsampled filter bank iteratively. When the NSCT is intro-
duced to image fusion, more information for fusion can be
obtained and the impacts of misregistration on the fused
results can also be reduced effectively. Therefore, the NSCT
is more suitable for image fusion.16

The structure of NSCT consists of two parts: nonsub-
sampled pyramid (NSP) and nonsubsampled directional
filter banks (NSDFB).17 First, image is decomposed by NSP
with different scales to obtain subband coefficients at different
scales.And then thosecoefficientsaredecomposedbyNSDFB
and thereby subband coefficients are obtained at different
scales and different directions. Figure 1 shows NSCT.

In NSCT, the multiscale property is accomplished by
using two-channel nonsubsampled two-dimensional filter
banks, which can achieve a subband decomposition similar
to Laplacian pyramid. Figure 2 shows the NSP decomposi-
tion with J ¼ 3. Such expansion is conceptually similar
to the one-dimensional nonsubsampled wavelet transform,
which is applied in the à trous algorithm.17 The directional
filter bank in NSCT is constructed by combining critically
sampled two-channel fan filter banks and resampling oper-
ations asH0ðZÞ andH1ðZÞ shown in Fig. 2. A shift-invariant
directional expansion is obtained with an NSDFB, which is
constructed by eliminating the downsamplers and upsam-
plers in the DFB.18 Figure 3 illustrates the four-channel

decomposition. There is a low-pass subband and
P

J−1
j¼0 2

lj

high-pass subband when image is decomposed by NSCT
decomposition, where lj denotes the number of levels in
the NSDFB at the j’th scale.

3 Sparse Representation in NSCT Domain

3.1 Sparse Representation for Image Fusion
Sparse representation is based on the assumption that a
signal can be expressed as a sparse combination of atoms
from dictionary. Formally, for a signal y ∈ Rn×1, its sparse
representation is solved by the following optimization
problem:

min
x
kxk00 s:t ky − Dxk2 ≤ ϵ; (1)

where D ∈ Rn×K is a dictionary that contains the atoms as its
columns, x ∈ RK×1 is a vector, the expression kαk00 is a count
of the number of nonzeroes in the vector α, and ε is error
tolerance. The process of solving the above optimization
problem is commonly referred to as sparse-coding.

Theoretically, the sparse representation globally expresses
an image, but it cannot directly deal with image fusion. On
one hand, computational complexity limits the atom size that
can be learned;19 on the other hand, image fusion depends on

Fig. 4 Dictionary learning in low-pass sub-band of NSCT.

Fig. 5 Procedure of image fusion based NSCT and sparse
representation.
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the local information of source images. Thus, patch-based
processing is adopted to make the sparse representation.20

A sliding window is used to divide source image, from
left-top to right-bottom, into patches. Then, these patches
are transformed into vectors via lexicographic ordering.

3.2 Dictionary Learning with K-SVD in NSCT Domain
One of the fundamental questions in sparse representation
model is the choice of dictionary. The K-SVD algorithm

has been widely used to obtain such dictionary via approxi-
mating the following problem:21

argmin
D;X

kY − DXk2F s:t: kxik00 ≤ T ∀i; (2)

where Y ¼ ½y1y2: : : yN � ∈ Rn×N denotes the set of training
examples, X ∈ RK×N is the sparse coefficient matrix (xi are
the columns of X), and T stands for sparsity.

Based on the theory above, we should learn a low-pass
overcomplete dictionary Dl in order to sparsely represent
images in NSCT domain. We begin our derivation by the
following modification of Eq. (2):

argmin
D;X

kCS − DXk2F s:t: kxik00 ≤ T ∀i: (3)

Here, we decompose the training image I by NSCT.
Assuming that WS is the NSCT analysis operator,
WSI ¼ CS, and CS is the decomposition coefficient of
NSCT.

Substituting WSI ¼ CS into Eq. (3), we can equivalently
write

Fig. 6 Original medical source images.

Fig. 7 Medical image fusion results using (a) discrete wavelet transform (DWT), (b) stationary wavelet transform (SWT), (c) NSCT, (d) LPSSIM,
(e) SR, (f) SOMP, (g) JSR, (h) MODJSR, and (i)NSCTSR.
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argmin
D;X

kWsI − DXk2F s:t: kxik00 ≤ T ∀i: (4)

The above formulation suggests that we can learn our
dictionary in the analysis domain. A natural way to view
the NSCT analysis domain is not as a single vector of coef-
ficients, but rather as a collection of coefficient images
or bands. Consider that the different subband images of
NSCT contain information at different scales and orienta-
tions. We achieve this by training subdictionaries separately
for each band.

∀b; argmin
Db;Xb

kðWSIÞb − DbXbk2F s:t: kxi;bk00 ≤ T ∀i;

(5)

where subscript b ¼ 1; 2; : : : ; B denotes the different NSCT
coefficient bands and B is the total number of subband.
However, the distribution of NSCT subband coefficients is
that the low-pass subband coefficients have large amplitude
and contain more information, whereas high-pass coeffi-
cients have small amplitude, usually fluctuate around 0, con-
tain less information, and are likely to produce overfitting.22

Therefore, in this paper, we learn dictionary in low-
frequency subband only and the complete learning algorithm
is described as follows:

1. Decompose each of the training-set images using
NSCT and extract one low-pass and B − 1 high-pass
subbands;

2. Set the dictionary matrices to initial the low-pass dic-
tionary Dl ∈ Rn×K;

3. Extract maximally overlapping patches of size
ffiffiffi
n

p
×ffiffiffi

n
p

from the low-pass band Lkfk ¼ 1; 2; : : : ; Kg
of all training images, and each patch is ordered
lexicographically as vector. Then, all the vectors in
image Lk are constituted into one matrix Vk and
V ¼ ½V1V2: : :VK�;

4. The overcomplete dictionary Dl is trained by solving
the following approximation problem:

argmin
Dl ;Xb

kV − DlXlk2F s:t: kxi;lk00 ≤ T ∀i: (6)

The above procedure is shown in Fig. 4.

4 Proposed Image Fusion Scheme
Low-frequency information of images are reflected by the
low-frequency subband, which includes the main image
energy. If we integrate them directly, the important informa-
tion is not easy to extract due to the low sparsity of the
low-pass subband, whereas high-frequency information of
images are sparse approximately. Consequently, we will
design different rules for these subbands.

Fig. 8 Local amplification of (a) DWT, (b) SWT, (c) NSCT, (d) LPSSIM, (e) SR, (f) SOMP, (g) JSR, (h) MODJSR, and (i) NSCTSR.

Table 1 The objective evaluation of various methods for medical
images.

Methods Q0 QW QE QAB∕F QG

DWT 0.5674 0.6933 0.4301 0.637 0.7198

SWT 0.6257 0.7943 0.5159 0.7043 0.7557

NSCT 0.6256 0.7701 0.5368 0.6861 0.7691

LPSSIM 0.6352 0.8104 0.5565 0.6996 0.8141

SR 0.6526 0.7829 0.5469 0.7255 0.8004

SOMP 0.6676 0.7953 0.5486 0.7379 0.8140

JSR 0.6043 0.7784 0.5128 0.6667 0.7662

MODJSR 0.6681 0.8110 0.5606 0.7247 0.8117

NSCTSR 0.6896 0.8209 0.5598 0.7298 0.8247

Note: DWT, discrete wavelet transform; SWT, stationary wavelet
transform; NSCT, nonsubsampled contourlet transform.
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Fig. 9 Original “input094” multisensor source images.

Fig. 10 The “input094” multisensor source image fusion results using (a) DWT, (b) SWT, (c) NSCT, (d) LPSSIM, (e) SR, (f) SOMP, (g) JSR, (h)
MODJSR, and (i) NSCTSR.
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4.1 Low-Pass Subband Coefficients Fusion
The sparse vector of low-pass subband can be obtained by
solving the following problem with Dl, which was trained in
Sec. 3.2:

min
x
kxi;lk00 s:t:

����V − DlXl

����
2

F
≤ ϵ; (7)

where V is composed of the low-pass subband of NSCT
decomposition of source images. The above optimization
problem is generally nondeterministic polynomial (NP)-
hard; approximate solutions can be found. In this paper,
we use orthogonal matching pursuit (OMP) to obtain the
sparse representation due to its simplicity and fast execution.

Then, the activity level of the i’th block in low-pass sub-
band is kxi;lk1, which represents salient features of an image.
The purpose of image fusion is to transform all the important
information from input source images into fused image, so
we use the following fusion rule:

1. By sliding window technique, each low-pass sub-
band coefficient of source image Lk is divided intoffiffiffi
n

p
×

ffiffiffi
n

p
patches with step ∈ ½1; ffiffiffi

n
p �. Then, all the

patches are transformed into vectors via lexicog-

Fig. 11 Local amplification of (a) DWT, (b) SWT, (c) NSCT, (d) LPSSIM, (e) SR, (f) SOMP, (g) JSR, (h) MODJSR, and (i) NSCTSR.

Table 2 The objective evaluation of various methods for “input094”
multisensor images.

Methods Q0 QW QE QAB∕F QG

DWT 0.5742 0.7236 0.462 0.5155 0.7696

SWT 0.6370 0.7733 0.5303 0.5654 0.7940

NSCT 0.6546 0.7853 0.5621 0.5958 0.8189

LPSSIM 0.6647 0.7838 0.5723 0.6067 0.7800

SR 0.6568 0.7888 0.5701 0.6007 0.8208

SOMP 0.6528 0.7923 0.5703 0.6059 0.8245

JSR 0.6432 0.7715 0.5442 0.5883 0.7969

MODJSR 0.6700 0.7967 0.5625 0.5962 0.8250

NSCTSR 0.6707 0.7975 0.5739 0.6067 0.8279

Note: The bold values are the best results of individual evaluation
criteria.
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raphic ordering and fVk
i g½ðM−

ffiffi
n

p Þ∕stepþ1�½ðN−
ffiffi
n

p Þ∕stepþ1�
i¼1

are obtained.
2. Sparsely represent the vectors at each position,

i, with different Vk
i , using OMP and obtain

fx1i;l; x2i;l; : : : ; xKi;lg.
3. Combine the sparse coefficient vectors using the max-

activity level rule.

xfi;l ¼ xk�;l; k� ¼ argmax
k¼1;2;: : : ;K

ðkxki;lk1Þ: (8)

4. Steps 2 and 3 are applied to all the subband blocks.
Thus, we can get ensemble of all fused coeffi-
cients XF

l ¼ fxfi;lg½ðM−
ffiffi
n

p Þ∕stepþ1�½ðN−
ffiffi
n

p Þ∕stepþ1�
i¼1

. Then,
the vector of low-pass subband of the fused image

can be calculated by VF
l ¼ Dl × XF

l , where VF
l ∈

Rn×f½ðM−
ffiffi
n

p Þ∕stepþ1�½ðN−
ffiffi
n

p Þ∕stepþ1�g.
5. The low-pass subband of fused image LF is recon-

structed using VF
l . Each vector vFi;l in VF

l is reshaped
into a block of size

ffiffiffi
n

p
×

ffiffiffi
n

p
; then the block is added

to LF at its responding position. Thus, for each pixel
position, the pixel value is the sum of several block
values, which is divided by the adding times at its
position to obtain the final reconstructed result.

4.2 High-Pass Subband Coefficients Fusion
NSCT not only provides multiscale analysis for images, but
also captures minutiae features, such as the edge, linear
features, and regional boundaries in high-pass subband of
source images. We find out that there are several

Fig. 12 Fused images of several fusion algorithms and with the nonoverlapping block method. (a) and (b) Multisensor images. (c) DWT. (d) SWT.
(e) NSCT. (f) LPSSIM. (g) SR. (h) SOMP. (i) JSR. (j). MODJSR. (k) NSCTSR. (l) SR_S8. (m) SOMP_S8. (n) JSR_S8. (o) MODJSR_S8. (p)
NSCTSR_S8.
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characteristics in the high-frequency coefficients: first, near
sparsity. The detail components of the source image are usu-
ally expressed in all directions of same scale with large val-
ues, while the values of nondetails of images are practically
nil. Second, the larger the absolute value of the subband
coefficients is, the more edges and texture information
it contains. The coefficients of an image are meaningful
to emphasize and detect salient features. Besides, we notice
that the strong edges have large coefficients on the same
scale in all directions. Considering above factors, high-pass
subband coefficients are integrated by the following steps:

The information of source images in the directional sub-
bands with 2−l scale is defined by

Hlðn;mÞ ¼
X

1≤h≤gl

jHl;hðn;mÞj: (9)

Fuse the high-pass subband coefficients to generate
HF

l;hðn;mÞ according to their information of directional sub-
bands. The fused coefficients of 2−l scale in ðn;mÞ pixel
position is obtained as

HF
l;hðn;mÞ ¼ Hk�

l;hðn;mÞ; k� ¼ argmax
k¼1;: : : ;K

jHlðn;mÞj; (10)

where 0 ≤ l ≤ J − 1; 1 ≤ h ≤ gl, and gl denotes the number
of high-pass subband coefficients in the 2−l scale.

4.3 Fusion Scheme
The proposed image fusion method is illustrated in Fig. 5,
and the whole fusion scheme is as follows:

1. Dictionary learning in NSCT domain in accordance
with Sec. 3.2 and low-frequency dictionary Dl is
obtained.

2. Decompose the source images into one low-pass sub-
band and a series of high-pass subbands, respectively.

3. Fuse low-pass subband by the process described in
Sec. 4.1 with trained dictionary in step 1 and obtain
the low-pass subband coefficients of fused image
LF.

4. Select fusion NSCT coefficients for each high-pass
subband from source images according to Sec. 4.2,
that is HF

l;h; ðl ∈ ½1; J�; h ∈ ½1; gl�Þ.
5. Reconstruct the fused image IF based on the LF and

HF
l;h; ðl ∈ ½1; J�; h ∈ ½1; gl�Þ by taking an inverse

NSCT transform.

5 Experiments
In this section, the proposed fusion algorithm is compared
with four multiscale transform–based methods, including
DWT, SWT, NSCT,7 and LPSSIM [LPSSIM is an image
fusion method proposed by Ref. 4, which fuses Laplacian
Pyramid coefficients of source images by using structural
similarity metric (SSIM). So we abbreviate it as LPSSIM
for simplicity], and four sparse representation-based meth-
ods, i.e., SR8 (tradition sparse representation), simultaneous
orthogonal matching pursuit (SOMP),9 joint sparse represen-
tation (JSR),11 and method of optimal directions for joint
sparse representation (MODJSR)-based fusion algorithms.12

The parameters for different methods and evaluation metrics

are first presented. Second, the performance of the NSCTSR-
based method is demonstrated in comparison with the eight
fusion algorithms. Then, in order to reduce the calculation
amount of sparse representation–based methods, the sliding
step with sliding window is also discussed. Finally, an
experiment on larger image sets is presented to demonstrate
the universality of the proposed method.

5.1 Experimental Setup
In this experiment, for DWT- and SWT-based methods, the
most popular setting, the max-abs fusion rule, is selected,
and the wavelet basis is “db4” with three levels decomposi-
tion. We use “9-7” and “c-d” as the pyramid filter and the
directional filter for NSCT,7 and the decomposition level
is set to f22; 22; 23; 24g, all these parameters same as the pro-
posed based method. The parameter α ¼ 1, and LP decom-
position is three in LPSSIM-based method. For the four
sparse representation–based methods, the training set for
the learned dictionary is constructed by 100,000 patches
randomly selected from 50 images in Image Fusion
Server;23 the patch size and dictionary size are set as 8 × 8
and 64 × 256, which are widely used in image fusion meth-
ods.8–12 We set the error tolerance ε ¼ 0.001 at sparse coding
and sparsity T ¼ 10 at dictionary learning.

We use five evaluation criteria: local importance quality
index Q0,

24 weighted fusion quality index QW ,
25 edge-de-

pendent fusion quality index QE,
25 local similarity quality

index QG
4 and QAB∕F,

26 which evaluates the fusion algo-
rithm in transferring input gradient information into the

Table 3 The objective evaluation of various methods and some
methods with the nonoverlapping block method. Two top results
are indicated in bold.

Methods Q0 QW QE QAB∕F QG

DWT 0.6319 0.7300 0.4915 0.5323 0.7431

SWT 0.6797 0.7623 0.5488 0.5838 0.7740

NSCT 0.6915 0.7958 0.5977 0.6119 0.8152

LPSSIM 0.6691 0.7903 0.585 0.6231 0.8032

SR 0.7098 0.7961 0.6092 0.6112 0.7933

SOMP 0.7049 0.7927 0.6047 0.6297 0.7941

JSR 0.6861 0.7683 0.5538 0.5937 0.7629

MODJSR 0.6915 0.7746 0.5475 0.6034 0.8073

NSCTSR 0.7121 0.8079 0.6119 0.6373 0.8192

SR_S8 0.6818 0.7878 0.5817 0.5771 0.7839

SOMP_S8 0.6752 0.7649 0.5541 0.5948 0.7702

JSR_S8 0.5429 0.5889 0.233 0.4143 0.6003

MODJSR_S8 0.5526 0.609097 0.2449 0.4089 0.6209

NSCTSR_S8 0.7119 0.8078 0.6117 0.6371 0.8091
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Fig. 13 Fusion performance of several fusion methods with different sliding step. (a) Q0. (b) QW . (c) QE . (d) QAB∕F . (e) QG .

Journal of Electronic Imaging 043019-10 Oct–Dec 2013/Vol. 22(4)

Wang et al.: Image fusion with nonsubsampled contourlet transform and sparse representation



fusion result. All of these should be as close to 1 as possible.
All the experiments are completed in the environment of
a Pentium dual-core CPU 2.79 GHz PC with 2-GB RAM,
operating under MATLAB R2012b.

5.2 Fusion Results
Image fusion experiments were carried out on different
images. Figure 6 depicts a pair of medical images; the
left image is computed tomography (CT) image, and the
right one is magnetic resonance imaging (MRI) image.
The CT image shows structures of bone, while the MRI
image shows the areas of soft tissue details. Figure 7
shows the fused images by various tested methods, and the
local amplification of these results is shown in Fig. 8 for
easy observation. Figures 7(a) and 8(a) reveal that the

DWT-based method produces more artificial images. From
the right image in each set of Fig. 8, we can see that, motivated
by the multiscale transform, the SWT-, NSCT-, and LPSSIM-
based methods reserve the details more completely than SR-,
SOMP-, and JSR-basedmethods. However, from the left side,
it can be seen that SR-, SOMP-, and JSR-based methods have
much clearer skeletal features than SWT,NSCT, and LPSSIM
fused images, due to the sparse representation, which can
extract the salient features of source images. What is more,
the NSCTSR fused image exhibits better visual quality
with much clearer soft tissues and bone structures than com-
paredmethods. Second is themethod of optimal directions for
joint sparse representation-based image fusion (MODJSR)
fused image, which loses only some soft tissue details as
can be seen in the left image in Fig. 8(h), while the details
are also important for diagnosing. Table 1 reports the

Fig. 14 Fused images of several fusion algorithms and with the nonoverlapping block method. (a) and (b) Navigation source images. (c) DWT.
(d) SWT. (e) NSCT. (f) LPSSIM. (g) SR. (h) SOMP. (i) JSR. (j) MODJSR. (k) NSCTSR. (l) SR_S8. (m) SOMP_S8. (n) JSR_S8. (o) MODJSR_S8. (p)
NSCTSR_S8.
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objective evaluation of various methods and the best results
are indicated in bold. We can see that the NSCTSR-based
method achieved the best results in four of the five evaluation
metrics, i.e., Q0, QW , QAB∕F, QG. As for QE, the MODJSR
method performed slightly better than our method.

A pair of multisensor images is considered. The left image
in Fig. 9 shows buildings and the right one provides roads
and chimney more salient and obviously. Different fusion
methods are shown in Fig. 10; the local amplification of
these results are in Fig. 11, in which it will be convenient
to observe roofs, roads, lanes, chimney, and the contrast
of fused images. Careful inspection of Figs. 10(a) and 11(a)
shows that the DWT fused image has Gibbs effect in some
degree. In Figs. 10(b) to 10(i) and 11(b) to 11(i), it can be
seen that the NSCTSR fused images have better contrast than
NSCT fused images, are more smooth than SWT and
LPSSM fused images, and, furthermore, have more clearer
lanes and edges of chimney than SR, SOMP, JSR, and
MODJSR fused images. Intuitively, more detailed infor-
mation and significant features of the source images are
transferred into the fused image by NSCTSR-based method
than others. To evaluate this visual inspection objectively,
the values of five evaluation criteria are listed in Table 2.
Obviously, our proposed method is superior to others for
all five criteria, which is consistent with the results of sub-
jective evaluation.

Analyzing the above results of subjective visual evalu-
ation and objective indicators, we can see that the
NSCTSR indicates image details more effectively than the
sparse representation–based fusion method. The reason is
the NSCT can extract high-frequency details of source
images in multiscale and multidirectional ways. At the
same time, compared with the multiscale transform–based
image fusion, the NSCTSR can also extract the salient fea-
tures of source images more sparsely and effectively.
Consequently, the NSCTSR has better fusion performance.

5.3 Discussion on the Sliding Step
As already mentioned in Sec. 3.2, the fusion methods based
on sparse representation with trained dictionary are all
accomplished by sliding window scheme. In order to
avoid blocking artifacts, the sliding step is set as 1. If
the size of the source image is 256 × 256 and the block is
8 × 8 as usual, the patches for each source image is 62,001.
Sparse coding for all of these patches is time-consuming.9,20

In the same way, when the input image is 512 × 512, the
block number is 255,025. If the step value is increased,
the number of blocks can be reduced dramatically, thus
increasing the speed. For instance, by tiling the nonoverlap-
ping blocks, the step is 8, the number of patches is 1,024 for
image of 256 × 256 and 4,096 for image of 512 × 512, and
the calculation cost of nonoverlapping is only ∼1∕60 of
the max-overlapping methods. Therefore, we discuss the
sliding step with several sparse representation methods in
this section.

The images are fused by DWT-, SWT-, NSCT-, and
LPSSIM-based fusion methods and do not need sliding
technology, and the results of SR, SOMP, JSR, MODJSR,
and the NSCTSR-based method with moving step ¼
1; 2; 4; 8 are compared. Figures 12(c) to 12(k) show the
fused outputs using the eight methods and the proposed
method. It can be seen that the NSCTSR method has

much better visibility than other methods whether on the
overall visual effect of the image or image fine details
(the building edge), which is consistent with previous sec-
tion. Due to limited space, Figs. 12(l) to 12(p) exhibit only
the effects of several sparse representation–based fusion
methods with nonoverlapping, i.e., sliding step is 8, signed
as NSCTSR_S8. From the figures, it is clear that fused
results with SR-, SOMP-, JSR-, and MODJSR-based meth-
ods have obvious blocking artifacts, while the proposed
method performs no blocking effect visually, which is
because the fused image is reconstructed by NSCT inverse
transform and the low-pass subband block effect has been
progressively weakened.

From the objective evaluation of analysis in Table 3, the
two top results are indicated in bold. We conclude that single
methods based on sparse representation are usually better
than the single transform methods based on multiscale, but
the former methods perform best with the smallest moving
step, which needs large calculation. The quantitative assess-
ments of the proposed method are almost constant with the
distinct window, which is more effective than traditional
sparse representation–based methods.

The quantitative assessments of several fusion methods
with different sliding steps are shown in Fig. 13. We can
see that the quantitative assessments of JSR and MODJSR
are most affected by sliding step, which is followed by
SOMP and SR; the proposed method is almost unaffected
and has the best fusion result in terms of evaluation criteria

Table 4 The objective evaluation of various methods and some
method with the nonoverlapping block method.

Methods Q0 QW QE QAB∕F QG

DWT 0.4945 0.6004 0.5271 0.5015 0.6948

SWT 0.5300 0.6473 0.5823 0.5325 0.7450

NSCT 0.5780 0.7235 0.6344 0.5806 0.7778

LPSSIM 0.5487 0.7106 0.6358 0.5614 0.7838

SR 0.5558 0.6554 0.6052 0.5692 0.7596

SOMP 0.5578 0.6622 0.6188 0.5677 0.7625

JSR 0.5515 0.6070 0.5647 0.4824 0.6498

MODJSR 0.5798 0.7056 0.5995 0.5760 0.7774

NSCTSR 0.5870 0.7431 0.6721 0.5961 0.7860

SR_S8 0.5333 0.6310 0.5518 0.5307 0.7322

SOMP_S8 0.5291 0.6277 0.5793 0.5449 0.7596

JSR_S8 0.4101 0.3587 0.2941 0.3350 0.5198

MODJSR_S8 0.4201 0.4359 0.3844 0.3727 0.5103

NSCTSR_S8 0.5792 0.7327 0.6694 0.5897 0.7784

Note: The bold values are the two best results of individual evaluation
criteria.
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Fig. 15 Twenty pairs of test images from Image Fusion Server.

Fig. 16 Fused results of the proposed method with one and eight moving steps.
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including Q0, QW , QE, and QAB∕F. As for QG, the NSCT-
based method is somewhat better than NSCTSR_8.

Similar observations are noted for the test case in Fig. 14.
In this case, NSCTSR and NSCTSR_S8 are again able
to provide the most visually pleasing fusion results. In
Figs. 14(g) to 14(i), we can see that it is difficult for the sin-
gle traditional fusion method based on sparse representation
to reserve fusion detail features. The multiscale transform
image fusion result in Figs. 14(c) to 14(f) has reduced con-
trast; it is useless without effective salient features. The fused
image by NSCTSR can reserve the details and lines com-
pletely, and also highlight the significant information
[Fig. 14(a) is bright and Fig. 14(b) is dark]. In the nonover-
lapping block versions in Figs. 14(l) to 14(p), we also find
that the proposed method is less affected by the block step
than other sparse representation methods. From Table 4, it
can be seen that the proposed method is still best on com-
prehensive comparison.

In addition, the complexity of training dictionary in
NSCTSR is almost the same as SR, SOMP, and JSR fusion
methods, because they all use classical K-SVD dictionary
learning method. Although the dictionary of NSCTSR is
trained in NSCT domain, the low-pass subband image (coef-
ficients) in NSCT domain is the same size as the source
image and the complexity of NSCT decomposition is
much smaller than K-SVD algorithm. The dictionary of

MODJSR has lower complexity by joint sparse coding
and dictionary update stage. The CPU time of the K-SVD
and training dictionary in MODJSR and NSCTSR are
108.61, 74.59, and 124.27 s, respectively. However, the dic-
tionary in sparse representation–based fusion method is usu-
ally pretrained by using a lot of samples as the number of
source images is limited.9 Therefore, the complexity of
fusion stage in Fig. 5 is more concerned. From the above
experiments, it can be seen that the NSCTSR fusion methods
with nonoverlapping step exactly decrease the calculation
cost of fusion stage.

5.4 More Results on 20 Pairs of Images
In order to confirm the effectiveness of the proposed method,
an experiment on larger image sets is presented. Twenty pairs
of multisensor images 001 to 020 from Image Fusion Server
are fused by the eight compared methods and NSCTSR, as
shown in Fig. 15. Figure 16 illustrates the fused results by
NSCTSR, and the step of former image in each set is 1, and
the latter one is 8, which is nonoverlapping block approach.
We can see that the two kinds of fused results are nearly the
same in visual sensation. The objective evaluation of each
pairs is calculated, and the average results are shown in
Table 5. From Table 5, we observe that the NSCTSR and
NSCTSR_S8 method are more effective and superior than
other methods. The statistical values demonstrate the supe-
riority of the proposed method.

Table 6 reports the average computation (CPU) time of
the above methods. The average CPU time of NSCT and
LPSSIM are longer than that of DWT and SWT. The sparse
representation–based image fusion methods are much slower
than the multiscale transform–based methods because the
sliding window scheme with max-overlapping blocks is
time-consuming. However, the NSCTSR with nonoverlap-
ping step only takes 15.91 s, without blocking artifacts,
which is much faster than other traditional sparse represen-
tation–based methods. Although the proposed method takes
more time than the muliscale transform-based methods, it
gets better results as described above.

6 Conclusion
In this paper, we have proposed a fusion method (NSCTSR)
based on NSCT and sparse representation. The major contri-
butions of this paper are twofold. First, the salient features of
the low-pass subband coefficients in NSCT can be effec-
tively separated through trained dictionary with K-SVD.
Meanwhile, the property of multiscale analysis is introduced
in sparse representation–based fusion method to improve
integrated details. Second, the proposed method with nono-
verlapping step can largely decrease the calculation costs
than traditional sparse representation methods, without
blocking artifacts. The experimental results show that the
proposed method has better performance than both multi-
scale transform–based methods and sparse representation–
based methods in the visual effects and quantitative fusion
evaluation measures. Furthermore, the NSCTSR is easy to
be extended to the existing state-of-the-art NSCT-based
image fusion algorithms.
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