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1 Introduction
With the development of communications, the security prob-
lem for confidential information has emerged. Also, there is
theft or damage to data repositories to which there is no free
access. Therefore, there have appeared several encryption
procedures for information, in particular, images.1 There are
some new methods using the Hilbert transform,2 chaos,3 the
hyper-chaos,4 or even the advanced encryption standard
(AES) cryptosystem5 with the CBC encryption mode,6

although this way is a sequential encryption. The first two
are fast, but they have a robustness problem,6 in that it is
not specifically mentioned what the number of elements
in the key set is. The hyper-chaos method4 is a key size
of 2167 and they only speak of brute force attacks and no
other type of analysis, for example, differential7 and linear8

attacks. By the way, the AES cryptosystem has no problem
with any of them yet.9 Moreover, the AES key set can reach
2256 elements. It is also important to note that the AES algo-
rithm uses the substitution operation through a box. The sub-
stitution operation gives nonlinearity to the encryption
process,10 and none of the aforementioned algorithms. In
fact, the nonlinearity of the AES box is superior to data
encryption standard (DES) and triple-DES boxes.11 Also,
there are encryptions for color images using the transformed
Fourier,12 the gyrator and Arnold transforms.13 However, in

these two latest investigations, the specific algorithm com-
plexity is not shown. On the other hand, there are some
color image encryption investigations14 where they do not
specify the set key size. Other optical papers15–17 demon-
srrate cipher images in an original way, but they do not
clearly show the key set size. There is also an important
paper in image encryption,18 although this alters the original
image when it is decrypted, and this is important because in
some countries it is not allowed. There is an interesting
investigation using a chaotic map to encrypt images,19 but
that paper does not employ a test of NIST Special
Publication 800-22 to measure the randomness of the
encrypted images.

We decided to use the AES algorithm for images encryp-
tion for the following reasons: it is a recent symmetric
encryption system, and it is also the International Standard
at this time.5 This makes the AES algorithm one of the most
studied worldwide. However, an efficient method for break-
ing it has not yet been found.20 The encryption “quality” of a
figure concerns the randomness degree in the image bits dis-
tribution. Several methods have been utilized to measure the
randomness degree.21 In this work, the following are used:
correlation coefficients; horizontal, vertical, and diagonal,22

entropy and discrete Fourier transform (DFT). The latter
measures the periodicity degree of the zeroes and ones string,
i.e., whether or not a pattern is followed. Furthermore, a dif-
ferent way is proposed to measure the randomness degree of
the encrypted figure bits using a “goodness-of-fit test.”22*Address all correspondence to: Victor Manuel Silva-García, E-mail: vsilvag@

ipn.mx
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This investigation does not use compression on images
because there are some countries whose security areas do
not allow compression in the encryption image.23 In other
words, it does not utilize the process: compression–encryp-
tion → decryption–decompression. It is only employs
encryption → decryption. Five images as prototypes to be
encrypted are used, of which four are in most papers on
encryption figures; these images are the following: baboon,
Barbara, Lena, and peppers. A criterion to select the fifth
figure to be encrypted is proposed. All the images have a
different difficulty degree to be encrypted when a symmetric
cryptosystem is used. This difficulty depends on the random-
ness degree of the figure bits to be encrypted, since an image
with a high randomness degree in its bits distribution is eas-
ier to encrypt than a figure that has low randomness, when
ECB encryption mode is used. This paper is organized as
follows: this section presents a very synthetic state of art
and Sec. 2 shows the basic concepts to be used in this inves-
tigation. The bijective function is addressed in Sec. 3, and is
also demonstrated. Section 4 approaches the AES algorithm
with variable permutations, and constructs a permutation in
the whole image. Ways to measure the randomness degree
are presented in Sec. 5. Section 6 shows the encrypted fig-
ures analysis with damage, and the outcome of the random-
ness degree in the encrypted figures is shown in Sec. 7.
Section 8 discusses the results. Finally, the conclusions
are given in Sec. 9.

2 Preliminary Concept
Even though the AES algorithm is the most studied in the
world, an efficient way to solve it is not known. Another
important issue to clarify is that AES is a symmetric algo-
rithm, which makes it a very fast method with which to
encrypt data. However, if a figure with a low randomness
degree in its bits distribution is encrypted using the AES
algorithm without any modification, perhaps the image
encrypted could provide information, i.e., the distribution
of the different shades of basic colors follow a certain pat-
tern. So, it is necessary to employ an additional element in
the algorithm. Thus, this paper proposes applying a different
permutation in each 128 bits block. This permutation is
applied in the first round after the x-or operation. The reason
why the permutation is not used at the first round entrance as
is triple-DES11 is because some images have areas with the
same color, such as black or white. In this situation, whatever
permutation applied to a zeroes or ones string would not
make any change in the chain. If the permutation is used
after the x-or operation, then it allows for changing some
string bits. Another question is why in the first round?
Well, it is understood that the information is mixed in
each round, so any change carried out by the permutation
at the first round will have more opportunity to mix the infor-
mation. Therefore, at the end of the encryption process the
zeroes and ones string will be random.

As is known, the transcendental numbers are not the
solution for any polynomial whose form is anxn þ
aðn−1Þxðn−1Þ þ : : : þ a0 with ai ϵ Z, and besides, all the
numbers after the decimal point have the property of not
following any periodicity,24 making them good candidates
to be used as pseudorandom numbers.25 In fact, for this fea-
ture, the irrational numbers are employed in Has-Sha func-
tions.26 The transcendent number used in this investigation is

pi, because it has been studied for a long time.27 On the other
hand, the permutations generated depend on the AES key in
accordance with the following procedure: denoted as l the
integer which represents the 128 bits chain AES key. Then
the product ðpiÞl is also a transcendental number. Thus,
using this last number it is possible to get the constants to
build the permutations.

The entropy is measured according to the formula:
−
P

xεXPrðxÞlog2PrðxÞ. When working with each basic
color of the images—red, green, or blue—each one can
be described as 1 byte, i.e., 256 levels are sufficient for
each. So, if each basic color has a uniform distribution,
all points are equally likely, and the entropy value is 8.28

This means the information is completely random.
However, in practice, this is not so. Then values are sought
as close to 8 as possible, in the basic colors’ distribution
red, green, and blue of the encrypted figure. If the image is
mono-colored, the procedure is basically the same, since
only 1 byte is used to describe the gray color, i.e., 256 differ-
ent gray levels, following the same reasoning as the color
images.

A statistic test to evaluate the chain bits randomness is
formulated by means of a null hypothesis H0 versus an alter-
native Ha. The null hypothesis establishes that the bits
sequence is random and the alternative hypothesis is the
opposite. To accept or reject the null hypothesis, a statisti-
cand a threshold are used. If the statistic based on the
data has a value bigger than the threshold, it implies that
the null hypothesis is accepted, otherwise H0 is rejected.
In any hypothesis test scheme there are two errors, namely,
type I and type II errors. The type I error is committed when
H0 is rejected when this hypothesis is true and the type II
error is committed when H0 is accepted and it is false.
The type I error can be controlled, because it is supposed
that H0 is the more important of the two hypotheses. The
amount used in this research for type I error is α ¼ 0.01,
although the value α ¼ 0.001 can be used.21 The error α
is also called the significance level.

The probability distributions used in the randomness tests
are: Chi-square χ2 and complementary error function
erfcðzÞ ¼ ð2∕ ffiffiffiffiffi

pi
p Þ ∫ ∞

z e
−u2du.29 It is possible to express

the erfcðzÞ function in terms of a normal standard cumulative
distribution according to the following reasoning:

ΦðzÞ ¼
�

1ffiffiffiffiffiffiffi
2pi

p
�Z

z

−∞
e−

u2
2 du: (1)

The normal standard cumulative distribution, and

erfcðzÞ ¼
�

2ffiffiffiffiffi
pi

p
�Z

∞

z
e−u

2

du (2)

the complementary error function.
The next variable change is proposed for Eq. (2),

u ¼ v∕
ffiffiffi
2

p
and du ¼ dv∕

ffiffiffi
2

p
.

Therefore, erfcðzÞ ¼ ð2∕ ffiffiffiffiffi
pi

p Þ∫ ∞ffiffi
2

p
z
e−v

2∕2dv then, this

last expression is written thus: erfcðz ¼ w∕
ffiffiffi
2

p Þ ¼
2∕

ffiffiffiffiffiffiffi
2pi

p ð∫ ∞
w e

−v2∕2dvÞ, thus

Journal of Electronic Imaging 013012-2 Jan∕Feb 2015 • Vol. 24(1)

Silva-García et al.: Cipher image damage and decisions in real time



erfc

�
z ¼ wffiffiffi

2
p

�
¼ 2

�
1 −

1ffiffiffiffiffiffiffi
2pi

p
Z

w

−∞
e−

v2
2 dv

�

¼ 2ð1 −ΦðwÞÞ: (3)

Regarding the concept of a real-time decision relates to
the following: it is known that there are important decisions
for which there is a short time to make them, therefore,
the procedure expressed here contributes to the process of
making a timely decision.

3 Bijective Function
Let us have the following considerations: given a natural
m ≥ 2 the sets Nm ¼ fnεNj0 ≤ n ≤ m! − 1g and Πm ¼
fπg can be defined, such that π is a permutation of the
0; 1; : : : ; m − 1 array. According to the Euclid division
algorithm,30 ∀ nεNm, this one can be written in a unique
way as follows:

n ¼ C0ðm − 1Þ!þ C1ðm − 2Þ!þ : : : þ Cm−2ð1Þ!
þ Cm−1ð0Þ!: (4)

Note that for a given m, ðm − 1Þ!; ðm − 2Þ!; : : : 1!; 0! are
fixed. It will be seen in the algorithm description that the
constant Cm−1 ¼ 0. Also, it is easy to prove that

0 ≤ Ci < ðm − iÞ with 0 ≤ i ≤ ðm − 2Þ: (5)

When the constants C0; C1: : : Cm−2 are calculated, the
following algorithm can be constructed:

Step 0.
An array in ascending order can be defined as follows:
X½0� ¼ 0, X½1� ¼ 1: : : X½m − 1� ¼ m − 1.

Step 1.
According to Eq. (5), C0 < m; so X½C0� is an element
from the step 0 array. X½C0� is removed from the step 0
arrangement and instead is replaced by X½m − 1�, i.e.,
the last element of the array. Note that only two oper-
ations are performed, removal and replacement, in fact,
the other array elements remain unchanged.

Step 2.
Again using Eq. (5), C1 < m − 1; thus X½C1� is an
array element from step 1. In the same way as in
the previous step, X½C1� is removed and is replaced
by the last element step 1 array.

Step m − 1.
If this process is repeated at the end, the result will
have the following: X½Cm−2� and X½Cm−1� ¼ k with
0 ≤ k ≤ m − 1. The number X½Cm−1� automatically
appears as it is the last element, i.e., Cm−1 ¼ 0 because
it has position zero.

The arrangement of positive integers X½C0�;
X½C1�: : : X½Cm−2� and X½Cm−1� is a permutation of the
0;1: : : m − 1 array. This procedure is made in m − 1 steps.
Regarding the complexity to implement this algorithm is
OðmÞ because at every step a removal and replacement of
an item is made. The remainder is unchanged.

Clearly, in the case of images with 250,000 pixel files or
more the algorithm with a OðmÞ complexity represents an
important advantage. It is clear that the algorithm presented

above defines a function that goes from Nm to Πm; denoted
as Im. Next Im: Nm → Πm is demonstrated as a bijective
function.

Theorem 1 Let us have the sets Nm ¼
fnεNj0 ≤ n ≤ m! − 1g and Πm ¼ fπg, such that m ≥ 2
and π is a permutation of 0; 1; 2: : : m − 1 array. Then the
function Im: Nm → Πm is bijective.

Proof. First, it is shown that Im is a one to one function.
It is used reductio ad absurdum as a demonstration method.
In this vein, suppose that n1 ≠ n2 εNm ⇒ Imðn1Þ ¼ Imðn2Þ;
but according to Eq. (4) the positive integers n1, n2 can be
written as follows:

n1 ¼ C0;1ðm − 1Þ!þ C1;1ðm − 2Þ!þ : : : þ Cm−2;1ð1Þ!
n2 ¼ C0;2ðm − 1Þ!þ C1;2ðm − 2Þ!þ : : : þ Cm−2;2ð1Þ!

But it is supposed that Imðn1Þ ¼ Imðn2Þ, which means that
the elements of both permutations were selected in the
same way, therefore, it must be true that C0;1 ¼ C0;2;
C1;1 ¼ C1;2 · · · Cm−2;1 ¼ Cm−2;2. If this is so, then
n1 ¼ n2. So, the latter contradicts the hypothesis and con-
cludes that if n1 ≠ n2 εNm ⇒ Imðn1Þ ≠ Imðn2Þ. At the
moment, this proves that Im is a one to one function. The
test that Im function is surjective is simple, since the number
of elements in the sets Nm and Πm is equal. ▯

4 Advanced Encryption Standard with Variable
Permutations

At this point, the way to use the algorithm presented above to
construct a pseudorandom permutation over m positions
array and then how to apply this tool in image encryption
is shown. In this vein, it proceeds as follows: If the algorithm
developed in the previous section is observed, knowing the
values Ci for i ¼ 0; 1; : : : ; m − 1 a permutation can be con-
structed. Note that it is not important to know the n number
with all its digits, fortunately, because it is impossible to
work with integers around 250;000! − 1 or higher since
they are huge.

In this sense, the quantities ðm − 1Þ!, ðm − 2Þ!: : : are
used only as marks, so it is not important to write all the
digits. Then, the next question to address is how to choose
pseudorandom values Ci for i ¼ 0; 1; : : : m − 1. First, the
permutations are built on 128 position arrangements using
the pi number thus:

1. The symmetric cryptosystem key AES is a string of
zeroes and ones, which in turn represents a positive
integer, that is, if the key is 128 bits length, then
the integer associated to the bits string has the form
ðcm−1Þ2m þ ðcm−1Þ2m−1þ · · · þc0, where cm−i ¼
0; 1 for m ¼ 127 and i ¼ 0; 1; : : : ; 127. So this integer
can be denoted as l, then this paper proposes that
l multiplies pi, such that the product is itself a tran-
scendent number.

Particularly, in this research, the AES-128 sym-
metric cryptosystem is used, although there is the
possibility of using keys up to 256 bits.
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2. After making the multiplication l � pi, it is taken to the
right of the decimal point in 8-bit blocks. These blocks
are also positive integers and they are denoted as
a0; a1; : : : ; a126. Ci can be defined as Ci ¼ ai mod.
128 − i, for i ¼ 0; 1; : : : ; 126 and C127 ¼ 0. If in
the above procedure each 127-bytes block is taken
one after the other, the required number of bytes
can be very large. For example, for an image of
7,372,800 bits, 57,600 128-bit blocks are required.
Then the necessary bytes are 57; 600 � 127 ¼
7; 315; 200. This amount may be reduced if the pro-
cedure is as follows: the first permutation can be
built from byte 0 to 126, the second permutation
from byte 1 to 127, the third from 2 to 128, and so
on until the required number of permutations is
reached. If this procedure is made in this way, the
bytes number used for the above example is
126þ 57; 600 − 1 ¼ 57; 725; as can be seen, this is
a significant reduction.

For the whole image, the number of items to permute, m,
can have 250,000 or more elements. For a situation like this,
the procedure is the same as when m ¼ 128. There are some
differences, namely, the size of the blocks in this case ai is
24 bits. This is because many of the current images do not
exceed 224 bits in the spatial resolution.

Clearly, these blocks also represent positive integers.
So, the Ci can be defined as Ci ¼ ai mod. m − i, for
i ¼ 0; 1; : : : ; m − 2 and Cm−1 ¼ 0.

Sometimes, some bytes can be subtracted from the image
to be encrypted according to the next criterion: if 24ðmÞ
mod. 128≢0 where m is the pixels number of the image,
then the minimum amount of bytes required is subtracted,
say n, such that 24ðmÞ − 8ðnÞ mod.128 ≡ 0. It is important
to point out that 8n < 128 and this number of bits, 8n, is
not encrypted. Once the values C0; C1; : : : ; Cm−2 are
known, the πm permutations on m elements array can be
calculated according to the procedure described in Sec. 3.
In the case of AES with variable permutations the constant
sets that are necessary according to the image size are
calculated.

In a particular situation such as: a secure communication
scheme such as public key infrastructure (PKI),31 where the
AES-128 and Elgamal32 cryptosystems are used, the pro-
cedure is as follows:

1. In a random way, the AES-128 cryptosystem key is
chosen, that is, a chain of 128 bits.

2. The bits string is converted into a positive integer,
which is denoted as l, and later the multiplication
l � pi is performed.

3. The C0; C1; : : : ; Cm−2 values are calculated as
described above to get the πm permutations; one
over m ¼ 128 positions and another for the whole
picture.

4. The πm permutation to the entire image is applied and
the image permutated is encrypted with an AES-128
system with variable permutations.

5. The sender encrypts the AES-128 key with the
addressee’s public key using the asymmetric crypto-
system Elgamal. Subsequently, the receptor can find
the AES-128 key using its private key.

In this research, the signature and nonrepudiation as part
of the structure of PKI secure communication are not men-
tioned33 since they are not within the scope of this work.

Figures 1 and 2 flowcharts are shown; namely, the first
illustrates how the permutation for the entire image is
obtained. The second exemplifies how the variable permuta-
tions of 128 positions are developed.

Regarding the security of this cryptosystem, the following
can be mentioned: the worst that can happen is that the AES
key could be known, because if this encryption scheme is
used, the permutation over the whole image and the variable
permutations applied in each block can be calculated. So, in
this situation, the maximum security is 2128. However, if we
want to find the key, taking as a plaintext the permuted image
using the brute force attack, then this could be a problem
with a complexity of 2843; because in a previous work34 a
strong evidence was given that the DES algorithm with var-
iable permutation has a complexity of 256 × ð64!Þ, where the
Monte Carlo method was used. Clearly, if the problem is to
find the key from the initial image, the solution to the prob-
lem would be more complex. Cases of plaintext are chosen
as differential and linear attacks, which are not applicable to
the AES cryptosystem due to the way the substitution box is
constructed.6

5 Randomness Analysis

5.1 Correlation Coefficient, Entropy, and DFT
In this section, randomness using the following tests will be
analyzed: correlation coefficient of horizontal, vertical, and
diagonal directions, entropy, and DFT. It is also pointed out
that the image encryption process is performed without com-
pression, specifically, loss-less of information. In any image
encryption process, it is important that the bits distribution be
random in order to avoid bias that could lead to attacks for
finding the key or plaintext.

Adjacent pixels are considered in three directions,
namely, horizontal, vertical, and diagonal. Furthermore, it
is said that a picture is “well encrypted,” if the correlation
coefficient between adjacent pixels is a number close to
zero.35 The process of calculating the correlation coefficient
between two random variables X; Y is carried out as follows:
in a random way a pixel of the encrypted image is chosen.
This pixel has a level of red, green, and blue which is denoted
as xr, xg, and xb, i.e., the analysis is performed for each pri-
mary color. After selecting a pixel in a random way, the next
pixel in the adjacent directions, horizontal, vertical, or diago-
nal, is taken. The adjacent pixel has a level of red, green, and
blue. These levels are denoted as follows: yr, yg, and yb.

Now, suppose that M pairs of pixels x; y are chosen ran-
domly. It is possible to calculate the correlation coefficients
in the three directions for the three basic colors. The equatio
for calculating the correlation coefficient in the horizontal
direction and a basic color c is thus

rh;xc;yc ¼
P

M
i¼1ðxh;i;c − xh;cÞðyh;i;c − yh;cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½PM
i¼1 ðxh;i;c − xh;cÞ2�½

P
M
i¼1 ðyh;i;c − yh;cÞ2�

q ;

(6)

where xh;c and yh;c are presented next:
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x̄h;c ¼
1

M

XM
i¼1

xh;i;c and yh;c ¼
1

M

XM
i¼1

yh;i;c: (7)

Clearly, the vertical and diagonal expressions are the same.
In case of a mono-color image, the method is only for 256

gray levels.
The entropy analysis of the image pixels is performed for

each basic color apart. In this sense, any basic color, red,
green, or blue, requires only 1 byte to express the entropy,
i.e., 256 levels. In this vein, it is said that if the distribution of
the pixels is completely random then the entropy of any of
the basic colors is 8. Measuring the randomness in practical
cases to strings of zeroes and ones has the following reason-
ing: when it is close to 8 this means that the string of zeroes
and ones is random, otherwise it would mean the opposite.

The pixels are separated in their primary colors to calcu-
late the entropy. Assume that the bits string has the basic
color c, which is divided into blocks of 8 bits. It follows
that there are 256 possible values. The frequencies are
recorded in a table of 256 classes according to their

order of appearance. Then, each class has a frequency
fi for i ¼ 0; 1; : : : ; 225, so that an estimate of the probabil-
ities of each of the classes is P½xi� ¼ 1∕fi. Therefore,
the entropy for basic color c is calculated as follows:
Hc ¼ −

P
xiεXPcðxiÞlog2½PcðxiÞ�.

The DFT measures the randomness degree of a string of
zeroes and ones i.e., there is no periodicity—repetitive pat-
terns—one after another in the string of zeroes and ones. In
addition, the following elements in the calculation of the sta-
tistic test are shown:

N0 is the theoretical amount expected; ð0.95Þðn∕2Þ,
where n is the chain length.

N1 is the number of values less than a threshold h, which
depends on the length n in the string.

The value fj ¼
P

n
k¼1 xke

2ðpiÞjðk−1Þi
n , where i ¼ ffiffiffiffiffiffi

−1
p

and j ¼ 1; 2; : : : ; n
2
− 1.

If n is odd, the last chain bit is suppressed. Clearly, fj has
real and complex parts. Then, the module kfjk is calculated,
which is real, and is compared with h. If kfjk < h, a
one is added to the value of N1. Otherwise, N1 stays at

Fig. 1 Permutation for the entire image. The n is the number of pixels. The product ðlÞ � ðπÞ, where l is the
integer associated to the key. The aðiÞ is the block number i of 24 bits, after the decimal point of product
ðlÞ � ðπÞ. The constant cðiÞ is the number i to obtain the permutation Y ðiÞ. The W ðiÞ is the element
number i of the permuted image.
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its previous value. With this data, the quantities d ¼
N1 − N0∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð0.95Þð0.05Þ

4

q
; the statistic P-value ¼ erfcðd∕ ffiffiffi

2
p Þ

and erfcð dffiffi
2

p Þ ¼ 2ð1 −ΦðdÞÞ are calculated. The decision
rule is: if the P-value is less than 0.01, the null hypothesis
is rejected, otherwise, it is accepted. The null and alterna-
tive hypotheses were defined in Sec. 2. The three tests
are illustrated in Sec. 7 with the particular value k ¼
2F9A68D501CB 57F3A4E80B9A417AD254 key of
128 bits.

5.2 Proposed Test
Working with images, a test of randomness based on the way
the bits are arranged in an encrypted figure is proposed and
the statistical, Chi-square, χ2 ¼ P

k
i¼1½ðoi − eiÞ2∕ei� is used

for each of the basic colors. The amounts oi and ei are the
observed and expected values number i, respectively. Using
statistical χ2 it is possible to quantify the freedom degree that
has the distribution of the primary colors: red, green, and

blue. All the NIST 800-22 tests do not have this type of
proof, that is, the randomness of the basic color distribution
of an encrypted image is not measured. As in some of the
NIST 800-22 standard tests, in this proposal the good-
ness-of-fit test is applied, using the statistical, χ2, which
has a probability distribution Chi-square with n − 1 freedom
degrees.22 The freedom degrees are obtained in the following
way: the shades of each color of an image can be displayed
as a histogram whose abscissa has 256 divisions. Then,
the degrees of freedom are 255. Moreover, the random var-
iable χ2 can be approximated to the normal distribution
according to the central limit theorem.36 Thus, the mean
and standard deviation of the statistical χ2 are: μ ¼ 255
and σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð255Þp ¼ 22.5831. With this information, it is
simple to calculate the thresholds for significance levels α ¼
0.01 and α ¼ 0.001, considering that both boundaries are on
the right side of the normal distribution. The threshold for the
level of significance α ¼ 0.01 is 307.61 and when α ¼ 0.001
it is 324.78. Therefore, the process for making the decision to
accept or reject the null hypothesis according to a specific
bits chain is as follows:

a. The statistical χ2 ¼ P
k
i¼1½ðoi − eiÞ2∕ei� is calculated

for specific values, considering that oi and ei are the
observed and expected values number i.

b. The probability after the χ2 value is computed, i.e.,
the area down the normal curve after χ2 is calculated.
If this probability is greater than or equal to 0.01 the
null hypothesis is accepted, otherwise it is rejected.
If the significance level is 0.001 the procedure is
the same.

Of note, consider that an encrypted figure is rejected when
some of the basic colors do not pass the proposed random-
ness test. Also, the size of the type I error used in this test is
α ¼ 0.01. Then, taking into account that rejecting an
encrypted image happens when at least one of the primary
colors fails the randomness test and considering that the
probability of rejecting any of them is p ¼ 0.01, it follows
that this situation can be described using the binomial
model;36 that is, PðX ¼ xÞ ¼ ð3xÞpxð1 − pÞ3−x where x is
the number of primary colors that do not pass the hypothesis
test. So, the rejection happens when x ¼ 1; 2; 3. Therefore,
the probability of acceptance is approximately ð0.99Þ3 ¼
0.9703, and the probability of rejecting the encrypted
image is about p1 ¼ 0.0297.

However, the probability of rejection can be reduced if the
procedure is as follows: suppose that five keys are chosen in
a pseudorandom way, independent of each other, then the
probability that an encrypted image does not fulfil the
randomness requirement is rejected as mentioned above,
as happens when none of the five figures encrypted fulfill
the randomness test for all the primary colors. This type
of problem can also be solved using the binomial model,
taking into account that p1 ¼ 0.0297. So, PðX ¼ xÞ ¼
ð5xÞpx

1ð1 − p1Þ5−x where x is the number of encrypted images
that are rejected because they do not fulfill the proposal test
randomness criteria. Then, a setting rejection happens when
x ¼ 5, i.e., none of the figures encrypted have a randomness
quality. In this case, the probability of not accepting any of
them is ð0.0297Þ5 ¼ 0.000000023, which means that for
every 1000 millions that the latter process makes, about
23 are rejected. Another comment:

Fig. 2 Permutations of 128 positions in the cipher of the image. The n
is the number of blocks of 128 bits of the permutated image. The a�j ðiÞ
is the byte number i of the product ðlÞ � ðπÞ, after the decimal point.
The Z j ðiÞ is the bit of position i of block j of 128 bits to be ciphered.
The k1 is the first key of the schedule of keys. The Ej is the block
number j of 128 bits ciphered. The Z �

j ðiÞ is the result of the operation
x-or between Z j and k1. The Wj is the block that results after the
application of permutation Y j .
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1. The probability of rejection can be decreased as much
as you want by simply increasing the number of
encryption figures.

2. The encryption time is not incremented much if par-
allel programming is used.37

Now try another question: assume that 100,000 different
keys are taken and the image (c) of Fig. 6 is encrypted. Also
assume that the figures encrypted with these keys pass the
hypothesis test using the criterion given above. Then, in
Sec. 7, the following results will be presented: the average
entropy for each of the basic colors using these 100,000
encrypted figures. Regarding the correlation coefficient,
the averages are also considered in three directions: horizon-
tal, vertical, and diagonal, and for each of the three primary
colors: red, green, and blue. Moreover, the furthest value of 8
for each of the basic colors in the case of entropy is reported,
and the largest absolute value of the correlation coefficient is
also shown in the three directions and the three basic colors.

5.3 Criteria of Image Selection
In Sec. 1, it was mentioned that a criterion would be pre-
sented to choose a fifth figure to be encrypted. This criterion
is based on a characteristic of the goodness-of-fit test that
tells us the following: if the tone distribution in each
basic color was completely random, then χ2 ¼ 0. In fact,
this means that the color histogram follows a uniform distri-
bution. However, if χ2 has a large value for each basic color,
it means they have a defined order. So the authors propose
choosing an image that has a χ2 as large as possible for
each primary color. In this paper, a figure with the values
of χ2: χ2r ¼ 106361059.17, χ2g ¼ 106647915.51 and χ2b ¼
107366956.56, for the red, green, and blue colors, respec-
tively, is proposed. This image is a simulation of Latin
text that is usually used in graphic design typographic dem-
onstrations or drafts.38 This image is shown in Fig. 3.

On the other hand, there is another reason for making the
χ2 very large since there are many images with relatively
small values for each statistical χ2 of the basic color, say
less than half a million; in these cases the AES cryptosystem
can be applied directly, i.e., it is not necessary to use variable

permutations to encrypt an image and the result passes the
above tests and even the proposal. For example, image (b)
of Fig. 6—Barbara—has the quantities of χ2 for the primary
colors red, green, and blue: χ2r ¼ 95086.89, χ2g ¼ 95086.89,
and χ2b ¼ 95086.89; these values are equal because it is a
mono-colored image. In Fig. 4, Barbara and her encrypted
image are presented without using variable permutations.
By the way, Fig. 4(a) is ciphered considering the same
gray level of each pixel in the three planes and is later
encrypted in blocks of 128 bits.

For figures with a very large χ2 for each different basic
color, say more than 100 million, the variable permutations
must be applied so that the encryption process is effective.
Figure 5 shows when the encryption process can be ineffec-
tive in a simple way, since the χ2 for the primary colors are:
χ2r ¼ 5691872.24, χ2g ¼ 5714519.25, and χ2b ¼ 5706278.92
for red, green, and blue, respectively. Remember, it was
noted above that the rejection region threshold is 324.78
for α ¼ 0.001 as maximum. Furthermore, the χ2 values men-
tioned above are much higher, in fact, about 6 million.

Basically this is the reason why an image with an χ2 as
large as possible is proposed in order to verify that the cryp-
tosystem presented is efficient. This section is suitable to
show the five figures to be encrypted. The first one is pre-
sented in Fig. 3; the other four are shown in Fig. 6.

Fig. 3 Type image to be encrypted.

Fig. 4 Comparing the original (a) and encrypted (b) images without
variable permutation.

Fig. 5 Type image encrypted without variable permutation.
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6 Damage in the Encrypted Images
In this section, the figures ciphered with damage are treated,
either accidentally or voluntarily. It is clear that the damage
in the encrypted images is an attack because the message
receiver cannot know what is it, therefore, the receiver
does not make a decision or decisions that may be important.
Time is a factor, too, because there are decisions that cannot
wait. So, the decisions that concern us have the following
characteristics: first, they are important for a state or
corporation, and second, they have a very short time to
make a decision, say less time that is required to again
ask for the original message. In this research, a way to
solve such problems is presented with some restrictions,
of course. On the other hand, this investigation only analyzed
occlusion ¼ type damage, and did not take into account
additive or multiplicative noise.

It starts by showing an original image, which is encrypted
without applying a permutation over the whole figure before
being encrypted. Later, the encrypted image is damaged and
at the end is deciphered, see Fig. 7.

In Sec. 3, the way to generate a permutation for the whole
image was presented. So it is possible to apply a permutation
to an array of 250,000 or more positions; in this particular
case, the pixels number of the original figure. The purpose of
using a permutation in the original image before being
encrypted has the objective to disperse the information,
thus, when the figure encrypted with damage is decrypted,
the damage is dispersed and it is possible to perceive the
original picture. Of course, it also depends on the size of
the damage. This paper proposes that the size damage is
not greater than 40% of the cypher image. It is easy to realize
that this amount may be higher or lower depending on the
“sharpness” degree that is required in the decoded image.
The Chi-square statistic for a basic color c of an encrypted
image with damage is denoted as χ2x%;c considering x% is the

size of the failure. In this sense, the Chi-square of the original
image to the same color c can be written as follows: χ20%;c.
Then, the ratio τ ¼ χ2x%;c∕χ20%;c is the information percentage
that is known of color c, with respect to the same original
figure color pi. It will be noted in Sec. 7 that a failure
less or equal to 40% has a ratio, as minimum, of about
34%. That is τ ≥ 34% for images of about 512 × 512 or
higher. It is easy to see that this quantity depends on the
size of the damage.

With regard to the manner by which the failure of the
encrypted figure is made, it is carried out by means of con-
centric rectangles, see Fig. 8. The k key of 128 bits for the
AES cryptosystem was written in Sec. 5.1. Figure 8 also
presents an encrypted image with 40% damage and later
the figure is decrypted. The image (b) of Fig. 6 is used to
illustrate the point.

7 Results Presentation

7.1 Randomness Results of the Encrypted Images
Without Damage

In this section, the correlation coefficient, entropy, DFT, and
the proposed test are applied to five images, corresponding to
Figs. 3 and 6. Furthermore, the results of this procedure are
presented. The k key of 128 bits was written in Sec. 5.1, and as
noted earlier, the k key is associated with a positive integer,
and it is: l¼ 63275455764858117084829320942584517204.
Then, if l is multiplied by pi, that is, the product l � pi, the
result is also a transcendental number.

Taken to the right of the decimal point, the bits amount
needed to calculate all the constant sets are used to encrypt
the image, in addition, the permutation used for the whole
image. Table 1 shows the results of the randomness test
using DFT for the encrypted images of Figs. 3
and 6. This encryption is performed in two steps: in the

Fig. 6 The four type images to be encrypted, (a) baboon, (b) Barbara,
(c) Lena, and (d) peppers.

Fig. 7 (a) Original image, (b) image (a) encrypted without initial per-
mutation, (c) image (b) with damage, and (d) image (c) deciphered.
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first, a permutation is applied over the whole original image;
the second uses the AES cryptosystem with variable
permutations.

The results for the proposed test are presented in Table 2.
Note that the analysis for each primary color is included;
it is also important to mention that for all the cases, the
null hypothesis is accepted. Regarding entropy, analysis
of randomness for the three basic colors of the images
encrypted with the key k is performed. Again, the images
that are encrypted correspond to Figs. 3 and 6.
Furthermore, it is considered that for a figure that has
been “well encrypted,” entropy must be very close to 8.
The results are presented in Table 3.

To calculate the correlation coefficient, a random sample
of 3000 pixel pairs is taken in both original and encrypted
images. The horizontal correlation coefficient of a basic
color c is denoted as rh;c then, the vertical correlation coef-
ficient and the diagonal for the primary color c are expressed
as rv;c and rd;c.

The correlation coefficient results for the images of the
Figs. 3 and 6 are shown in Table 4, and the coefficients
for the same images encrypted by k are shown in Table 5.
The average values of the entropy and the furthest number
from 8 are presented in Table 6, regarding number 8 as per-
fect randomness. Table 7 shows the average amounts of the
correlation coefficient and the biggest absolute value or fur-
thest from zero for the same coefficient in the three directions
and for each basic color. The absolute value of the correlation
coefficient furthest from zero means that it is the worst case.

7.2 Randomness Results for the Encrypted Images
with Damage

The aspect of analyzing encrypted figures with failure, either
voluntarily or not, is pending. In this sense, it is important to
mention some aspects before proceeding. The first is with
respect to the damage size. In this investigation, failures
of 40% with respect to whole encrypted images are handled.
The second point concerns how to make the damage. In this
paper, the concentric rectangles are used, as presented
in Fig. 8.

When an encrypted figure with damage is decrypted, such
as that illustrated in Fig. 6, the decoded image with failure
has a higher degree of disorder in its bits than the original
image, that is, the Fig. 8 clause (c) has a higher randomness
degree in its bits than the Fig. 8 clause (a). To measure the
randomness degree, χ2 is used. In this vein, the τ value ful-
fills the following inequality: 0 ≤ τ ≤ 1. Thus, if the pixels’
randomness increases then χ2 decreases, in fact, if the bits
distribution was totally random, then χ2 ¼ 0. So, the τ
value for each basic color of the encrypted image with failure
measures how much these colors are separated from the
original image colors. In other words, how much information

Fig. 8 Image (b) of Fig. 6 encrypted with prior permutation and
decrypted with 40% of damage.

Table 1 The DFT test results applied to encrypted images of Figs. 3
and 6 (

p
accepted and χ rejected).

Test
name

Significance
label

P-value∕decision

Figure 3

Figure 6

α ¼ 0.01 (a) (b) (c) (d)

Spectral
DTF

Red 0.33∕
p

0.37∕
p

0.54∕
p

0.90∕
p

0.95∕
p

Green 0.14∕
p

0.56∕
p

0.99∕
p

0.95∕
p

0.89∕
p

Blue 0.66∕
p

0.41∕
p

0.75∕
p

0.93∕
p

0.49∕
p

Table 2 The proposal test results applying to encrypt images of
Figs. 3 and 6 (

p
accepted and χ rejected).

Test
name

Significance
label

P-value∕decision

Figure 3

Figure 6

α ¼ 0.01 (a) (b) (c) (d)

Proposal
test

Red 0.33∕
p

0.53∕
p

0.18∕
p

0.12∕
p

0.52∕
p

Green 0.37∕
p

0.91∕
p

0.37∕
p

0.08∕
p

0.33∕
p

Blue 0.59∕
p

0.38∕
p

0.15∕
p

0.61∕
p

0.67∕
p

Table 3 Entropy of encrypted images using the k key for Figs. 3
and 6.

Entropy Figure 3

Figure 6

(a) (b) (c) (d)

Red 7.99958 7.99930 7.99924 7.99922 7.99930

Green 7.99963 7.99938 7.99928 7.99920 7.99927

Blue 7.99965 7.99927 7.99923 7.99931 7.99932
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has the decrypted image with damage lost with respect to the
original image.

Table 8 presents the results with 40% failure for the five
images of Figs. 3 and 6. Moreover, the τ value of each basic
color is reported. The correlation graphs, or linear relation-
ships, in three directions are shown: horizontal, vertical, and
diagonal for each primary color and for both the original
image and the decoded image with damage. The latter is per-
formed for Fig. 6 clause (c). In Fig. 9, these linear relation-
ships are illustrated for original image and in Fig. 10, for
decipher image with 40% damage.

Now, it is convenient to show what happens if as in the
original image in Fig. 7, a permutation over whole image is

applied before it is encrypted. Then, it is ciphered and later is
damaged as shown in Fig. 7; at the end, it is decrypted with
the failure. The result is illustrated in Fig. 11.

8 Results Discussion
This section carried out the results analysis, separated them
into two parts, namely, in the first part, the encrypted images
randomness used the two-steps procedure in question. That
is, in the first, a permutation was applied to the whole image
and in the second, the figure permuted image was encrypted
with AES cryptosystem with variable permutations. The sec-
ond part will address the results’ analysis when the encrypted
figures are damaged. In this vein, the discussion is started
with the encrypted image randomness for a particular key
proposal, which passed all the tests suggested in this
paper. However, the results of 100,000 keys that approved
the proposed test were observed. Picture (c) of Fig. 6 is
used for this purpose.

Subsequently, for these keys, the average entropy for each
basic color was calculated and the furthest value of 8 for each
primary color is also reported, i.e., the furthest amount from
the perfect randomness. The averages for the basic colors
were presented in Table 6 and, as can be seen, these quan-
tities are very close to 8. Likewise, the furthest values from 8
for the primary colors are very close to 8. This means that the

Table 4 Correlation coefficients; horizontal, vertical, and diagonal of
the three basic colors for images of Figs. 3 and 6.

Color
Correlation
coefficient Figure 3

Figure 6

(a) (b) (c) (d)

Red Horizontal 0.63 0.86 0.89 0.97 0.99

Vertical 0.73 0.77 0.95 0.98 0.99

Diagonal 0.55 0.74 0.88 0.96 0.98

Green Horizontal 0.63 0.91 0.89 0.97 0.97

Vertical 0.73 0.85 0.95 0.98 0.97

Diagonal 0.54 0.84 0.88 0.96 0.96

Blue Horizontal 0.54 0.91 0.89 0.95 0.97

Vertical 0.73 0.87 0.95 0.97 0.97

Diagonal 0.56 0.85 0.88 0.92 0.96

Table 5 Correlation coefficients for horizontal, vertical, and diagonal
of the three basic colors for encrypted images using k key for Figs. 3
and 6.

Color
Correlation
coefficient Figure 3

Figure 6

(a) (b) (c) (d)

Red Horizontal 0.013 0.006 0.003 0.029 0.008

Vertical 0.001 0.021 0.043 0.013 0.037

Diagonal 0.023 0.016 0.038 0.024 0.013

Green Horizontal 0.001 0.004 0.021 0.029 0.050

Vertical 0.019 0.019 0.026 0.014 0.018

Diagonal 0.031 0.002 0.013 0.006 0.012

Blue Horizontal 0.019 0.015 0.018 0.014 0.016

Vertical 0.028 0.001 0.011 0.019 0.002

Diagonal 0.027 0.006 0.011 0.013 0.003

Table 6 Average and the furthest value from 8 for the entropy using
image (c) of Fig. 6.

Entropy Average value The furthest value of 8

Red 7.99929 7.99915

Green 7.99929 7.99914

Blue 7.99929 7.99914

Table 7 Average and the furthest value from 0 for the correlation
coefficient using image (c) of Fig. 6.

Color
Correlation
coefficient Average

The
furthest

value of 0

Red Horizontal 0.0154 0.0832

Vertical 0.0154 0.0830

Diagonal 0.0153 0.0876

Green Horizontal 0.0153 0.0894

Vertical 0.0153 0.0833

Diagonal 0.0153 0.0838

Blue Horizontal 0.0153 0.0875

Vertical 0.0153 0.0948

Diagonal 0.0153 0.0931
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encrypted figures have a random distribution in their bits for
each of the basic colors.

In regard to the analysis of the correlation coefficient
between adjacent pixels in the horizontal, vertical, or
diagonal directions, it is expected that in a “good encrypted”
image, adjacent pixels have a correlation coefficient close to
zero.4 For the 100,000 images encrypted in Fig. 6 clause (c),
the average values of the correlation coefficient in the three
directions and for each of the primary colors were reported in
Table 7. The amounts found were close to zero.

The biggest amounts looked for the correlation coeffi-
cients, whose absolute values were the largest, taking
into account the 100,000 observations reported in Table 7
for the three directions and the three basic colors. These
amounts are the furthest from zero, which means that
even in the worst cases, these images have correlation coef-
ficients near to zero.

With regard to figures decrypted with damage, the
τ ¼ χ2x%;c∕χ20%;c parameter was used, which gives us an
idea of the percentage of information that remains of the
original image. Taking into account that a figure deciphered
with damage has more noise than the original, this makes
the distribution of the bits of each of the primary colors
more random than those in the original image. Therefore,
χ2x%;c < χ20%;c. Then, if τ is close to zero, this means that
all information of the original image is lost, but if it is
close to 1 it would mean the opposite. The size of the damage
is 40% in this investigation, but it may be higher or lower
depending on the “sharpness” desired in the figure decrypted
with failure. The τ value is around 35% when the damage
is 40%.

Table 8 τ ratio for images in Figs. 3 and 6 with 40% damage.

Color Figure 3

Figure 6

(a) (b) (c) (d)

Red 0.35 0.35 0.35 0.34 0.35

Green 0.35 0.35 0.34 0.35 0.35

Blue 0.35 0.36 0.35 0.35 0.35

Fig. 9 The correlations: horizontal (a), (b), (c); vertical (d), (e), (f); and diagonal (g), (h), (i) for original
image of Fig. 6 clause (c). The columns correspond to red, green, and blue colors.
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9 Conclusions
This paper has built an algorithm which defines a bijective
function between the nonnegative integer and permutation
sets. Using the transcendental number pi and this algorithm,
it is possible to construct a pseudorandom permutation over
250,000 array positions or more in less than 10 ms. The per-
mutation on the whole original image before the encryption
stage is intended to disperse the pixels, thus, when the
encrypted file is damaged and later is decrypted, the result
does not present the failure in a focalized way as shown in
Fig. 7. This is important, because sometimes decisions have
to be made quickly, that is, there is no time to wait for an
answer later or what is called in real time.39

The encrypted images pass the entire randomness test
applied for a particular key proposal and reported in
Sec. 7.1. These randomness tests are: DFT, entropy, corre-
lation coefficient in: horizontal, vertical, and diagonal direc-
tions and the proposal test. Indeed, for entropy, the results are
better than other studies.4

One hundred thousand keys were chosen and applied to
Fig. 6 clause (c), whose only requirement was to pass the

Fig. 10 The correlations: horizontal (a), (b), (c); vertical (d), (e), (f); and diagonal (g), (h), (i) for decrypted
image of Fig. 6 clause (c) with 40% of damage. The columns correspond to red, green, and blue colors.

Fig. 11 Cipher image with initial permutation and decipher with
damage.
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proposed test. It showed the average entropy for each basic
color for these keys, and also the correlation coefficients in
three directions and for the three primary colors. The results
confirmed the randomness of the encrypted images.

Section 7.2 carried out the analysis of encrypted images
with damage, noting that the size of the encrypted images
failure is 40%, see Fig. 8. This analysis uses the ratio τ
for each of the primary colors. In fact, the τ value measures
the amount of information lost with respect to the original
image for each basic color.

Finally, it is reported that the images’ encryption times of
Fig. 6 are about 85 ms. The software was developed in C++
language and an intel core i7 was used.
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