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Abstract. We present a software tool called a stereovision egomotion sequence generator that was developed
for testing visual odometry (VO) algorithms. Various approaches to single and multicamera VO algorithms are
reviewed first, and then a reference VO algorithm that has served to demonstrate the program’s features is
described. The program offers simple tools for defining virtual static three-dimensional scenes and arbitrary
six degrees of freedom motion paths within such scenes and output sequences of stereovision images, disparity
ground-truth maps, and segmented scene images. A simple script language is proposed that simplifies tests of
VO algorithms for user-defined scenarios. The program’s capabilities are demonstrated by testing a reference
VO technique that employs stereoscopy and feature tracking. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
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1 Introduction
Motion parameters of an object (further termed egomotion
parameters) are given by a set of kinematic quantities defin-
ing the object’s movement in relation to its environment.
Robust estimation of egomotion parameters is an important
problem in robotics, automatic navigation, and computer
vision systems.1 Egomotion parameters are essential in
planning movement paths in obstacle avoidance systems,2

structure frommotion methods,3,4 and in simultaneous locali-
zation and mapping.5 Although there are various dead-reck-
oning techniques available for estimating egomotion
parameters, e.g., odometry, inertial, and laser sensing, the
vision-based techniques termed visual odometry (VO)6 are
continuously gaining in importance.7 This is because
imaging sensors (including stereo imaging) offer passive
data acquisition techniques that work in natural lighting con-
ditions, and are inexpensive and are miniatured. Furthermore,
efficient algorithms have been worked out for calibrating
camera systems,8 tracking image objects,9,10 three-dimen-
sional (3-D) scene reconstruction,11 and recognition.12

Video imaging also becomes an important modality in multi-
sensor navigation systems incorporating inertial sensors13

and the global positioning system.14

VO systems can be divided into two major groups: single
camera systems (also termed monocular VO) and multica-
mera systems.

Monocular VO algorithms primarily use feature tracking
methods. In Ref. 15, a 1-point-random sample consensus
(RANSAC) algorithm was employed for estimating vehicle
motion from single camera image sequences. In Ref. 16,
real-time tracking of camera position is estimated by apply-
ing the particle filter combined with the unscented Kalman
filter. In Refs. 17 and 18, approaches to estimating rotation,
scale, and focal length parameters were presented for

motions devoid of translational movements. On the other
hand, in Ref. 19, a method based on optical flow for estimat-
ing only the translational motion vector was proposed. In
Ref. 20, a special, omnidirectional camera for maximizing
the field of view (FOV) was used, which allowed a more
flexible choice of the tracked keypoints. An algorithm for
estimating six degrees of freedom (6 DoF) motion vector
was proposed in Ref. 13; however, the image scale informa-
tion was derived from an altimeter.

Most of the VO-based egomotion estimation algorithms
are dedicated to multi camera systems.6,7,21 These methods
incorporate depth maps that allow for significant simplifica-
tion of computations involved in egomotion estimation. In
Ref. 21, to obtain an accurate global position and to achieve
robustness to motion blur, multilevel quadtrees and true scale
scale-invariant feature transform descriptors were used. In
Ref. 7, an iterative closest point algorithm was implemented
in real time for 6DoF egomotion estimation by tracking key-
points detected by the Shi–Thomasi feature detector. In
Ref. 6, the RANSAC algorithm was used to estimate the
motion of a stereovision unit (720 × 240 pixels image reso-
lution and baseline 28 cm) mounted on an autonomous
ground vehicle. Also, in Ref. 22, a stereovision system
with a wider baseline (approximately 40 cm) was mounted
on a vehicle and the employed algorithm allowed for estimat-
ing the vehicle’s motion path in rough terrain.

Although many efficient vision-based egomotion estima-
tion algorithms were developed (for single or multicamera
systems), objective verification and comparison of their per-
formance is a difficult task. Building a robot-like device that
would generate arbitrary 6DoF motion trajectories is expen-
sive and would offer limited precision, repeatability, and
range of movements. One possible solution for verification
of egomotion estimation algorithms, as proposed in Refs. 15,
21, and 23, is to use predefined image sequences. In Ref. 21,
a sequence of 50 stereo frames was captured by a stereovi-
sion unit moving along a straight path. Location of the*Address all correspondence to: Piotr Skulimowski, E-mail: pskul@p.lodz.pl
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system was advanced by 20 cm with each image recording.
The accuracy of the system was verified by comparing con-
secutive locations that were estimated by VO techniques to
ground-truth values. The obvious shortcoming of such a veri-
fication method is the path shape that is constrained to line
segments. In Ref. 15, vehicle movement in virtual urban ter-
rain is simulated to test the RANSAC-based structure from
motion algorithms. Facades of buildings were modeled by
surfaces spanned on 1600 uniformly scattered keypoints.
Image sequences of the simulated scene were captured by
rotating a stereovision system with one camera located at
the center of rotation. Again, the movement path of the sys-
tem is limited to a simple rotational motion. In Ref. 23, a
method for detecting objects in stereoscopic images of
scenes was proposed. For testing the accuracy of the algo-
rithm, a 600-frame simulated image sequence of an urban
scene was rendered and the corresponding ground-truth dis-
parity maps were generated.

There have also been special image databases built (see
Ref. 24) that contain depth maps and the corresponding ster-
eovison images; however, the number and type of imaged
scenes are limited.25 Moreover, the offered databases contain
a small number of short, few seconds long sequences of
image pairs, and they do not contain the ground-truth
depth maps and the segmented images.

Although it is possible to generate synthetic data by using
3-D modeling software, the resulting models are not suitable
for direct and straightforward generation of the depth maps
and the segmented image. Such a procedure requires
advanced programming skills from the user.

In this paper, a software tool for verification of VO algo-
rithms is proposed. The software enables generation of user-
defined 3-D scenes with sequences of egomotion parameters
of a freely moving stereovision camera in custom defined
scenes and recording of the corresponding stereoscopic
and ground-truth disparity maps. An additional feature of
the program is the availability of image sequences in
which the scene objects are segmented out and labeled,
which allows testing the segmentation algorithms. The pro-
gram is written in C++ with the use of open graphics library
(OpenGL). The tool, that is made freely available on a web-
page,26 features a simple interpreter for defining scene
objects and the motion parameters of the user selected per-
spective camera model. Our software tool enables the gen-
eration of much longer image sequences than the existing
databases and contains the ground-truth maps and the corre-
sponding segmentation images. Test sequences and scripts
used for their generation are available from the webpage
of the project.

The paper is organized as follows. In Sec. 2, a very brief
introduction to stereovision is given. In Sec. 3, a basic algo-
rithm for egomotion estimation from stereoscopic VO is pre-
sented. This algorithm will serve as a reference method
tested by the proposed software tool presented in Sec. 4,
in which the main features of the developed program are
described. In Sec. 5, the test results are outlined and
Sec. 6 summarizes the advantages of the proposed software
tool and its possible applications.

2 Stereovision Basics
Viewing the environment from more than a single spatial
location allows for recovering 3-D relationships of imaged

scenes that facilitate computation of egomotion parameters
of a moving camera system. In computational stereo, two
or more planar projections are recorded and the obtained
images are compared to reconstruct 3-D scene geometry.
Due to the difficulties in precise alignment of relative orien-
tations of the cameras and the limited precision of their
optics, the scene reconstruction task needs to be preceded
by appropriate camera calibration procedures, see Ref. 27.
Once internal camera geometries are corrected and external
geometries rectified, the stereovision system is termed to be
calibrated.27

For a calibrated, nonverged two-camera system, a scene
point PðX; Y; ZÞ placed within the FoVof the cameras is pro-
jected onto image points pLðxL; yÞ and prðx; yÞ in the left
and right cameras correspondingly. Note that y coordinates
of the scan lines of these two points are the same for a cali-
brated stereovision system. Hence, the depth of a scene point
P can be estimated from the shift d ¼ xL − x termed dispar-
ity. If frontal pinhole camera models are adopted, origins of
the image coordinate systems oxy are located in image cen-
ters and the origin of the space coordinate system OXYZ is
positioned in the focal point of the right camera (see Fig. 1),
the relation between the coordinates of a space point
PðX; Y; ZÞ and the coordinates of its projection onto the
right camera image plane is given by27

x ¼ f
X
Z
; y ¼ f

Y
Z
; Z ¼ Bf

d
; (1)

where f is the focal length of the camera, B is the baseline of
the stereovision system (i.e., distance between the cameras’
optical axis), and Z is the depth of point P.

Determining disparity for a given scene point is termed
the correspondence problem and it can be solved by applying
various methods as reviewed in Ref. 11. From local methods,
the block matching techniques are frequently used because
they lend themselves well to parallel computations, e.g., on
GPU platforms.28 By computing disparities for all imaged
scene points within the FOV, a so-called disparity map
can be obtained, see Fig. 2. Then the depth of scene points
can be directly computed from the right hand side of Eq. (1).
However, due to quantized values of disparities (for digital
cameras), the corresponding depths are also quantized with a
resolution that decreases with increasing depths. Access to
the ground-truth depth map allows for verification of the
algorithms for computing the depth maps. It should be

Fig. 1 The OXYZ frame of reference and the image coordinate sys-
tem oxy with the indicated translation motion parameters ðU;V ;W Þ
and rotation motion parameters ðα; β; γÞ.
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noted, however, that estimation of the precision of the depth
map calculated for real scenes (e.g., as shown in Fig. 2) is, in
practice, impossible without the knowledge of the scene
model and precise coordinates of the cameras in that scene.

3 Estimation of Egomotion Parameters from
Stereovision Sequences

Consider a coordinate frame of reference OXYZ whose ori-
gin is located at a focal point of the right camera of a stereo-
vision system (Fig. 1). Assume the system moves freely in a
space in which there are no moving objects. Translational
movement of the system in the defined coordinate frame
is described by a vector of translation velocities ½U;V;W�
and a vector of angle velocities ½α; β; γ� as shown in
Fig. 1. Hence, the system can be defined as a rigid object
with 6DoF.

The objective is to estimate the motion parameters of the
stereovision system from the optical flow of the scene points
projected onto the pair of images. Assume ½u; v� denotes the
velocity vector of point pðx; yÞ in the right camera image.
The relationship between the velocity vector ½u; v� and the
system motion parameters is given by (see derivation in
Refs. 4, 29, and 30)

u ¼ −Uf þ xW
Z

þ α
xy
f

− β

�
x2

f
þ f

�
þ γy;

v ¼ −Vf þ yW
Z

þ α

�
y2

f
þ f

�
− β

xy
f
− γx: (2)

Assuming a sufficiently high video frame rate, the optical
flow of image points can be assumed to be linear and
approximated by the following difference equation:

x 0 ¼ xþ u; y 0 ¼ yþ v; (3)

where pðx; yÞ is a coordinate of point p at frame t and
ðx 0; y 0Þ is the new coordinate of this point in frame tþ 1.

By determining the optical flow for P (P ≥ 3) image
points, the six-element motion vector of the stereovision sys-
tem can be computed by finding the minimum of the follow-
ing cost equation:

E ¼
XP
i¼1

½ðui þ xi − x 0
i Þ2 þ ðvi þ yi − y 0

i Þ2�: (4)

By substituting appropriate expressions from Eqs. (1) and
(2)

a1i ¼ −f
Zi

a2i ¼ 0 a3i ¼ xi
Zi

a4i ¼ xiyi
f a5i ¼ −

�
x2i
f þ f

�
a6i ¼ yi

b1i ¼ 0 b2i ¼ −f
Zi

b3i ¼ yi
Zi

b4i ¼
�

y2i
f þ f

�
b5i ¼ − xiyi

f b6i ¼ −xi

one gets

E ¼
XP
i¼1

½ða1iU þ a3iW þ a4iαþ a5iβ þ a6iγ þ xi − x 0
i Þ2

þ ðb2iV þ b3iW þ b4iαþ b5iβ þ b6iγ þ yi − y 0
i Þ2�: (5)

The following matrix equation is obtained after partial
derivative equations with respect to the searched parameters
of the motion vector XT ¼ ½U;V;W; α; β; γ� are evaluated
and equated to zero:

HX ¼ K; (6)

where elements hmn and km of matrices H6×6 and K6×1 are
defined as follows:

hmn ¼
XP
i¼1

ðami
ani þ bmi

bniÞ

km ¼
XP
i¼1

½ami
ðx 0

i − xiÞ þ bmq
ðy 0

i − yiÞ�:

Matrix Eq. (6) needs to be solved for X for each new
incoming stereoscopic image frame.

Fig. 2 (a) Image taken by the right camera of a stereovision system after compensation of geometric
distortions and (b) the corresponding disparity map displayed in pseudocolors. Black regions denote
areas of the map for which disparity could not be calculated with sufficient confidence.
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3.1 Selection of Image Keypoints for Egomotion
Estimation

Estimation of six egomotion parameters requires the deter-
mination of the optical flows of at least P ¼ 3 image points
(further termed keypoints). However, for a robust estimation
of the egomotion parameters, the following conditions need
to be fulfilled:

• the keypoints should be selected according to the
adopted stereo-matching algorithms, e.g., for the
block methods the keypoints should correspond to cor-
ners, edges, characteristic local color regions, or
textures;31

• the number of the tracked keypoints should be suffi-
ciently large to minimize the quantization effect of
their coordinates;

• the depth of the keypoints should be computed with
sufficient precision (gross mistakes should be elimi-
nated), hence, due to a hyperbolic relation between
the disparity and depth [see Eq. (1)], the keypoints fea-
turing a small depth are preferred.

The Shi–Tomashi algorithm, derived from the Harris
detector32 and implemented in the OpenCV library, was
applied for detecting the keypoints.33 For tracking the key-
points in consecutive video frames, a full block search
matching method, similar to the one used in MPEG compres-
sion standard, was used. The optical flow ½u; v� of a given
keypoint is thus determined by searching for a coordinate
of a block of size M ×M in current frame tþ 1 that best
matches the block corresponding to a keypoint pðx; yÞ in
frame t. The minimum of the sum of absolute difference
(SAD) of the blocks’ pixels is used as the block matching
criterion. In Fig. 3, a single video frame is shown with
the highlighted optical flow vectors of the keypoints.

4 Generating Stereovision Sequences Using
OpenGL

Here, we propose a software tool for generating user-defined
arbitrary motion paths that can be used for testing user VO
algorithms. Because the tool employs OpenGL depth buffer-
ing, a short introduction to its role in rendering 3-D scenes
is given.

4.1 Z-Buffer
OpenGL is a universal programming library used for gener-
ating and rendering 2-D and 3-D scenes.34 The basic tools
used for generating 3-D graphics are the two buffers: the
color buffer which stores an image array for display and
the depth buffer (termed the Z-buffer) which stores each pix-
el’s depth.35 The Z-buffer stores the depth of a scene point
from a pool of candidate scene points that has the smallest
depth and picks it up for rendering. This process, termed
Z-culling, eliminates the need for rendering hidden scene
elements. If the depth values in the Z-buffer are stored
withN-bit precision, the depth is quantized to ½0; 2N − 1� lev-
els. The values zb stored in the Z-buffer are related to
metric depth values Z of the scene points by the following
equation:36,37

zb ¼ ð2N − 1Þ ·
�
aþ b

Z

�
; (7)

where

a ¼ z Far
z Far − zNear

; (8)

b ¼ z Far · zNear
zNear − z Far

; (9)

and zNear, z Far are the depths of the near and far clipping
planes correspondingly. These clipping planes define the
scene depth range selected for rendering (see Fig. 4).34

Taking into account Eqs. (1) and (7), one can derive the
following equation for disparity:

d ¼ B · f
Z

¼
B · f ·

�
zb

2N−1 − a

�

b
: (10)

This value is defined as the subpixel disparity.

4.2 Program for Generating Stereovision Sequences
The motivation for writing the program was the need to
develop a tool for verifying visual odometry egomotion esti-
mation algorithms. The proposed program allows the user to
define a static 3-D scene and the movement path of the cam-
era. For the definedmovement trajectory in the defined scene,
the program generates: sequences of 6DoF egomotion param-
eters of the camera, corresponding stereovision images, and
ground-truth disparity maps of the explored scene.

The scenes can be built from quadrangles and three types
of 3-D solid objects: cuboids, spheres, and cylinders. An

Fig. 3 Scene image and optical flow vectors of the keypoints indi-
cated by white line segments.

Fig. 4 A viewing frustum defining the field and depth of view for a
perspective camera model.
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object’s parameters, i.e., size, texture, color as well as its
location and orientation can be defined by the user.

The program outputs the following data:

• a sequence of left and right camera images in Windows
bitmap format (bmp) with an option to corrupt the
images with an additive Gaussian noise of user-speci-
fied standard deviation;

• a sequence of disparity maps for the left and right cam-
eras with pixel or subpixel accuracy;

• a sequence of matrices containing disparity maps with
16-bit resolution;

• a sequence of segmented scene images.

In Fig. 5, a flow diagram explaining the generation of data
sequences comprising camera motion vectors, stereovision
images, depth, and segmentation maps is shown. First, the
scene model is built as defined by the user in the stereovision
egomotion sequence generator (SESGen) script. Then the
stereovision camera is moved in that scene along the path
specified by a sequence of camera motion vectors. For
each new camera position, left and right camera images
are captured and the corresponding ground-truth depth
and segmentation maps are calculated and stored. The seg-
mented scene images are derived as follows. For each of the
defined scene objects, a disparity map is computed with
the object of interest being removed. Simple comparison
of the so obtained disparity map to a disparity map contain-
ing the scene object allows one to identify image regions cor-
responding to the scene object under question. Then the
region corresponding to the rendered object is labeled
with a unique ID number which can be further used for
indexing a color from a predefined color palette [see an
example of a segmented scene image in Fig. 6(b)]. It is
worth noting that the disparity map is a reference map
obtained from the depth buffer, so that the disparity for
each point of the image is determined with subpixel accu-
racy. Note also that Eq. (2) includes translational and angular
velocities, whereas OpenGL methods define frame-by-frame
translational motions and rotations. In order to increase the
precision of the camera movement, the frame-to-frame
motion is subdivided into an arbitrarily selected number
of in-between frames (e.g., S ¼ 256). Code implementation
of this procedure is explained in the SESGen user guide.26

The program was written in C++ using OpenGL and is made
available free of charge on the website.26 Sample sequences

with disparity maps can also be downloaded from the
website.

4.3 Scene and Motion Description Language
In order to facilitate building arbitrary 3-D scenes and defin-
ing 6DoF camera motions, a simple script language is pro-
posed. The scripts are stored as plain text, which allows for
convenient editing and reusing of previously defined scripts
in new projects. The custom built script language features
keywords that define the following simple scene objects,
i.e., QUAD—quadrangle, CUBOID—cuboid, SPHERE—
sphere, and CYLINDER—cylinder. Each object keyword
should be followed by a sequence of object properties.
For the quadrangles, the user should take care of defining
coordinates of the vertices to be coplanar. The keyword
EGO is used for defining frame-to-frame egomotion param-
eters. Inserting comments into the script is possible by start-
ing the script line with “//” (i.e., double slash). A graphical
user interface of a program designed for scene and egomo-
tion editing is shown in Fig. 7. The text window lists the
script defining a 3-D scene shown in Fig. 6 and a sequence
of translation and rotation egomotion parameters individu-
ally defined for consecutive frames.

5 Application of SESGen Software Tool for
Verifying Egomotion Estimation Algorithms
from Visual Odometry

In order to show the capabilities of the proposed SESGen
tool, an example 3-D scene and stereovision system egomo-
tion path were defined by the script listed in Fig. 7. These
data served as ground-truth reference for verifying scene
reconstruction and egomotion estimation algorithms as
described in Sec. 3. The disparity maps were computed
with pixel accuracy by applying a block matching method
in which the SAD criterion was used.11 Depth values
were calculated from Eq. (1) for a predefined focal length
of the cameras and the baseline of the stereovision system.

Estimation results of the egomotion parameters computed
by means of the visual odometry technique defined in Sec. 3
are summarized in Table 1. The generated sequence consists
of 40 stereovision images. The maximum absolute values for
each motion vector component are: Umax ¼ 0.030,
Vmax ¼ 0.039, Zmax ¼ 0.044, αmax ¼ 0.8, βmax ¼ 0.8, and
γmax ¼ 0.5. The root-mean-square errors (RMSEs) for
each of the estimated motion components are the following:
RMSEX ¼ 0.0049, RMSEY ¼ 0.0101, RMSEZ ¼ 0.0062,

Fig. 5 Block diagram illustrating generation of motion vectors, images, depth, and segmentation maps in
the stereovision egomotion sequence generator (SESGen) software tool.
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Fig. 6 A 3-D test scene defined by the script listed in Fig. 5: (a) 3-D test scene, (b) ground-truth disparity
map computed with subpixel accuracy, (c) disparity map obtained using sum of absolute difference
(SAD) (block matching) criterion, (d) scene segmented into 3-D objects and flat quadrangles positioned
in 3-D space.

Fig. 7 View of the program window for defining and editing three-dimensional (3-D) scenes and ego-
motion paths (see the SESGen User Guide26 for a complete explanation of the script keywords and
parameters).
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RMSEα ¼ 0.101, RMSEβ ¼ 0.091, and RMSEγ ¼ 0.057,
where the distance RMSEs are given in arbitrary OpenGL
units and the angle RMSEs are given in degrees. The
ground-truth values are obtained from the SESGen software
tool. Note, however, that the table lists the egomotion param-
eters computed for six consecutive frames that were selected
from a longer sequence of camera movements as shown
in Fig. 8.

It was identified that the major contribution to egomotion
estimation inaccuracies comes from two sources. First, there
are errors in estimating motion vectors of the keypoints.
Second, errors occur due to calculations of the disparity val-
ues with pixel accuracy resulting in inaccurate estimation of
depth values for the keypoints. Plots of the defined motion
path and the estimated paths computed from the VO algo-
rithm are shown in Fig. 8. Note a successive diversion of
path trajectories due to the incremental nature of the applied
VO algorithm described in Sec. 3. Improvements on the
results presented in Table 1 can be achieved by applying sub-
pixel methods for computing the motion vectors of the key-
points in consecutive images.

Table 1 The ground-truth egomotion six degrees of freedom (6DoF) parameters and the estimated parameters obtained from the tested visual
odometry technique (distances are given in arbitrary OpenGL units and angles are given in degrees).

Frame number

Ground-truth values Estimated values

Translational movement Rotational movement Translational movement Rotational movement

U V W α β γ U V W α β γ

1 0.020 0.020 0.025 −0.400 0.325 0.200 0.013 0.009 0.019 −0.197 0.327 0.157

2 0.023 0.011 0.026 −0.340 0.326 0.210 0.013 0.004 0.021 −0.184 0.277 0.144

3 0.025 0.017 0.027 −0.310 0.327 0.100 0.012 0.007 0.028 −0.137 0.268 0.014

4 0.020 0.021 0.028 −0.720 0.328 0.000 0.012 0.005 0.033 −0.482 0.325 0.114

5 0.023 0.000 0.029 −0.600 0.329 0.000 0.015 0.004 0.025 −0.486 0.291 0,054

6 0.020 0.000 0.030 −0.700 0.530 0.500 0.009 0.011 0.037 −0.502 0.489 0.444

Fig. 8 Visualization of 3-D egomotion paths of the stereovision sys-
tem: green dots (on the left) indicate a sequence of camera positions
defined from the SESGen tool and the red dots (on the right) denote a
sequence of camera positions computed from the tested visual odom-
etry (VO) algorithm.

Fig. 9 Example of a realistic scene with its segmentation map: (a) the “Hall” test sequence, and (b) seg-
mentation map for the “Hall” test sequence.
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6 Summary
A software tool, named SESGen, for testing the performance
of visual odometry algorithms was proposed. The program
allows the user to define virtual 3-D static scenes and specify
6DoF motion paths of a camera (monocular or binocular)
within a defined static scene. The SESGen outputs are:
scene projection images, disparity maps (with pixel and sub-
pixel accuracy), the sequence of camera motion vectors, and
images with scene objects segmented out. SESGen uses the
OpenGL depth-buffer (Z-buffer) to manage depth coordi-
nates for the rendered 3-D scenes. A simple script language
simplifies the task of defining 3-D scenes and motion paths
that the user can apply for testing various VO techniques for
unconstrained motion trajectories.

We hope that SESGen can serve as a useful tool for
benchmarking different VO and image segmentation algo-
rithms and can help in better identification of error sources
in the tested algorithms. The tool can also be useful in veri-
fying segmentation algorithms of user-defined 3-D scene
images. Another foreseen application of the SESGen tool
is to use it for validation of algorithms integrating stereovi-
sion sequences and signals from inertial sensors in egomo-
tion estimation tasks.38 This line of research has been
initiated within an international project aimed at developing
assistive devices aiding visually impaired people in indepen-
dent mobility and travel. Compared to the existing databases
of images, e.g., as reported in Ref. 1, our software tool ena-
bles the generation of much longer image sequences, with
the corresponding ground-truth maps and the segmented
images. It is possible to add user-defined textures of
scene objects. Also, altering the parameters of the stereovi-
sion rig along with adding special effects such as distance
fog has been made possible. Additionally, it is possible to
corrupt the generated scene images with an additive
Gaussian noise of user-defined standard deviation and verify
noise robustness of potential visual odometry algorithms. An
example of a realistic scene with its segmentation map gen-
erated with the use of our software is shown in Fig. 9. Test
sequences and the scripts used for their generation are avail-
able from the webpage of the project. The authors would like
to invite other users to contribute to a richer collection of 3-D
scenes and motion paths for benchmarking.
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