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Abstract. We present an approach to figure/ground organization using mirror symmetry as a general purpose
and biologically motivated prior. Psychophysical evidence suggests that the human visual system makes use of
symmetry in producing three-dimensional (3-D) percepts of objects. 3-D symmetry aids in scene organization
because (i) almost all objects exhibit symmetry, and (ii) configurations of objects are not likely to be symmetric
unless they share some additional relationship. No general purpose approach is known for solving 3-D symmetry
correspondence in two-dimensional (2-D) camera images, because few invariants exist. Therefore, we present
a general purpose method for finding 3-D symmetry correspondence by pairing the problem with the two-view
geometry of the binocular correspondence problem. Mirror symmetry is a spatially global property that is not
likely to be lost in the spatially local noise of binocular depth maps. We tested our approach on a corpus of
180 images collected indoors with a stereo camera system. K -means clustering was used as a baseline
for comparison. The informative nature of the symmetry prior makes it possible to cluster data without a priori
knowledge of which objects may appear in the scene, and without knowing how many objects there are in
the scene. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
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1 Introduction
According to most studies of human vision, the first step in
visual perception is determining whether there are objects in
front of the observer: where they are and how many there are.
This step (visual function) is called figure-ground organiza-
tion (FGO).1 The computer vision community refers to
this problem as object discovery. As with all natural visual
functions of human observers, FGO operates in three-dimen-
sional (3-D) space, as opposed to the two-dimensional (2-D)
retinal image. It follows that it is natural to think about visual
mechanisms underlying FGO as based on 3-D operations.
However, the fact that the input to the visual system is
one or more 2-D retinal images encouraged previous
researchers to look for a theory of FGO based on 2-D oper-
ations. This is how the human vision community studied
FGO. Consider the prototypical example of Edgar Rubin’s
vase-faces stimulus.2 In this 2-D stimulus, there are two
possible interpretations depending on which region is per-
ceived as a “figure” as opposed to the “ground.” Similar
bistable stimuli have been used during the last several
dozen years of FGO research in human vision.3,4 This
research provided a large body of results, but few theories
and computational models. Furthermore, the proposed
models are usually not suitable for real retinal or camera
images representing 3-D scenes. This paper breaks with
this tradition and looks for 3-D operations that can establish
the correct 3-D FGO.

Once we assume that FGO refers to the 3-D percept, we
have to decide how the transition from the 2-D image to
the 3-D percept is made. Here, we follow the paradigm of
inverse problems introduced to vision by Poggio et al.5

According to this paradigm, inferences about 3-D scenes,
based on one or more 2-D images, must involve a priori con-
straints (aka priors). Without constraints, the 3-D inference
problem is ill-posed, because there are infinitely many pos-
sible 3-D interpretations that are consistent with any given
2-D input. The a priori constraints are imposed on the family
of possible interpretations resulting in a unique and accurate
solution. We have already shown how this works with 3-D
shape perception.6 Specifically, in 3-D shape recovery, 3-D
symmetry is the natural prior. This makes sense because
most, if not all, natural objects are symmetrical. There is
empirical evidence showing that the human visual system
relies on the 3-D symmetry constraint.7 The symmetry con-
straint is responsible for our veridical perception of 3-D
shapes. By “veridical,” we mean that we see shapes the
way they are out there. In this paper, we attempt to extend
the operation of a 3-D symmetry prior to FGO. Specifically,
our theory of FGO is based on the following observation:
almost all natural 3-D objects are characterized by one or
more types of symmetry, whereas a 3-D configuration of
unrelated objects is, itself, almost never symmetrical. In
our theory, the detection of symmetries in the 3-D scene is
equivalent to the detection of objects. There are as many
objects in the scene as there are symmetries. Furthermore,
the parameters of the symmetries (positions and orienta-
tions of the symmetry planes) provide information about
the position and orientation of the objects in the 3-D scene.
Section 1.1 presents a brief overview of the symmetry prior.
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1.1 The Generality of the Symmetry Prior
Assuming that objects are mirror symmetric may, at first,
seem overly restrictive. Most real-world scenes, however,
are composed of 3-D symmetric objects standing upright
on a perceptually flat surface, such as the floor or simply
the ground.6,8

Mirror-symmetric objects themselves tend to have a natu-
ral Cartesian coordinate system: front, back, left, right, top,
and bottom. In a systematic treatment of spatial terms in lan-
guage, Levinson referred to these types of object-centric
directions as the “intrinsic reference frame.”9 Cross-cultural
linguistic analysis by Talmy further suggests that these
object-centric directions are represented in “mentalese”—
the native representation of mental information.10 One of
us argued that such a coordinate system exists as a conse-
quence of purely physical properties of the world that we
evolved in Ref. 6. For example, it would be very hard for
an animal to be physically stable and to move around if it
were not bilaterally symmetric. DNA evidence in the field
of molecular phylogenetics suggests that the first mirror
symmetric organisms—the so called “bilateria”—evolved
more than half a billion years ago,11 and now constitute
the vast majority of animal phyla, including the arthropods
(e.g., insects and arachnids) and the chordates: animals with
a hollow nerve chord running down their backs, e.g., sharks,
birds, cats, fish, and humans. The few animals that are not
bilateria, such as sponges and jellyfish, still show other forms
of symmetry, such as radial symmetry. Symmetry is, there-
fore, a natural and general prior and it should be used in 3-D
vision. The symmetry plane is usually orthogonal to the
ground because that provides the best support against grav-
ity. The cross product of the ground–normal, up–down,
(approximating the direction of gravity) and the normal of
the symmetry plane, left–right gives the third intrinsic direc-
tion: front-back.

Psychophysical evidence clearly shows that the human
visual system makes use of the symmetry prior in 3-D shape
recovery.7 Symmetry is also important in “shape constancy.”
Shape constancy refers to the phenomenon in which the
perceived shape of an object is constant despite changes in
the shape of the retinal image caused by changes in the 3-D
viewing direction. Experimental results on the role of sym-
metry in shape constancy and shape recovery in humans sug-
gest that symmetry is an essential characteristic of shape.8,12

1.2 Related Research
Symmetry has already played an important role in computer
vision research. This goes back at least to a landmark 1978
publication by Marr and Nishihara,13 who emphasized the
importance of 3-D symmetrical shape parts based on
Binford’s14 generalized cones. The presence of symmetry
in a 3-D object allows derivation of invariants of a 3-D to
2-D projection (e.g., Refs. 15–17). 3-D symmetries also
facilitate 3-D recovery from a single 2-D image using multi-
view geometry.18 There have been some attempts to use 2-D,
as opposed to 3-D symmetries in image segmentation,19 and
image understanding.20 However, the use of 2-D symmetries
in computer vision faces fundamental difficulties simply
because a 2-D camera image of a 3-D symmetrical object
is, itself, almost never symmetrical.

Before a 3-D symmetry prior is used to recover 3-D
shapes, 3-D symmetry correspondence must be solved in

the camera image, which itself is 2-D and almost never sym-
metrical. Solving for symmetry correspondence has been
tried for surfaces of revolution, which are characterized
by rotational symmetry21–23 as well as for mirror-symmetri-
cal polyhedral objects, where edge features are compared
with respect to 2-D affine similarities (Refs. 24–26). The
inherent difficulty of the 3-D symmetry correspondence
problem in 2-D images has resulted in incremental successes,
where the proposed methods work only for special cases
such as nearly degenerate views (e.g., Ref. 25). The fact
that the projection of a 3-D mirror symmetric object into
2-D rarely produces a symmetric image is only one part
of the difficulty in solving for symmetry correspondence.
An additional problem is that a camera image usually con-
tains multiple objects. So, one must solve FGO before sym-
metry is applied to individual objects.

As pointed out in the beginning of this paper, FGO goes
by the name of object discovery in the computer vision com-
munity. The state of the art of object discovery in real images
makes extensive use of machine learning, and relies exclu-
sively on 2-D features (for review, see Ref. 27). The much
harder problem of unsupervised object discovery has
received comparatively little attention. In unsupervised
object discovery, an algorithm analyzes an image to locate
and label previously unseen objects. One approach is to dis-
cover the general characteristics of object categories from
regularities in large sets of unlabeled training data. Those
categories are then utilized to discover and locate objects
in a set of testing images (e.g., see Refs. 28–32). This prob-
lem is typically considered so hard that most methods rely on
at least some form of weak supervision. For example, Kim
and Torralba33 attempted to locate objects [regions of interest
(ROI)] without training data; however, a small set of initial
exemplar ROIs must still be supplied.

While certainly acceptable in the computer vision com-
munity, the use of testing and training data is probably unim-
portant in human vision.6 Human observers can detect and
recover unfamiliar 3-D shapes from a single 2-D image,
and recognize a 3-D shape from a novel viewing direction.6

Surely some learning can occur in human vision; an individ-
ual can learn and remember what an object looks like, but
learning does not seem to be necessary for detecting 3-D
objects and recovering their shapes. Our approach aims at
emulating what human observers do: our model does not
use any training data, and there is no attempt to learn any
category information, or regularities between exemplars. The
present approach is not only unsupervised, but also uses an
informative and generally applicable prior, 3-D symmetry, in
establishing FGO.

Object discovery is more effective when 3-D points are
available (e.g., from stereo images). In such cases, a typical
approach for object discovery is cluster analysis. K-means
remains one of the most widely used clustering algorithms
even though roughly 50 years have passed since it was
independently discovered in various scientific fields (for a
historical review, see Ref. 34). Most clustering algorithms
require, however, a priori knowledge of the number of
clusters (i.e., objects in the scene), and these algorithms
rely on some form of distance metric. Automatically deter-
mining the number of clusters is itself ill-posed, and often
requires separate criteria for what is the “most meaningful”
number of clusters. Specifying what is meaningful in a given
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application is a key problem, which comes in addition to an
over-reliance on uninformative priors, such as density and
distance metrics. Our approach is to approximate the ill-
posed clustering problem with a well-posed formulation
based on 3-D symmetry. Our algorithm uses 3-D data from
a binocular camera; however, it is the incorporation of a 3-D
symmetry prior that transforms clustering (object discovery)
from an ill-posed problem into a well-posed one. The use of
3-D symmetry can, at least in principle, lead to near perfect
performance in FGO—the level of performance that charac-
terizes human vision in everyday life.

2 Problem Formulation
There is no known way to achieve near-human performance
in unsupervised object detection. Some definition of “object”
and “background” is required for such an algorithm. In pre-
vious research, this definition usually is implicit in the clus-
tering of low-level 2-D features, such as interest points, in a
training set. In this work, we use the following psychologi-
cally motivated operational definition of an object to formu-
late the object detection problem:

Definition 2.1 An object’s defining quality is its 3-D
shape, where shape is defined as a set of mirror symmetric
curves with respect to a common symmetry plane.

Under this definition, polyhedral objects can be detected
from a scene by locating one or more symmetry planes and
then finding pairs of points that are mirror symmetric with
respect to a particular symmetry plane. There is no known
general purpose algorithm for finding 3-D mirror symmetric
curves in single 2-D camera images; however, it is possible
to simplify the symmetry correspondence problem by pairing
it with the binocular correspondence problem, because the
epipolar geometry of each provides nonoverlapping con-
straints on the solution space. In effect, we simultaneously
disambiguate each correspondence problem by using the
epipolar geometry of the other.

We further simplify the problem by assuming that the
objects’ symmetry planes are orthogonal to the ground.
This is typical for most objects, which must resist gravity
when standing on a flat surface. This additional assumption
can, however, be removed without changing how the algo-
rithm works.

2.1 Notation
We use upper-case bold letters, e.g., X, to denote the coor-
dinates of 3-D points. Lower-case bold letters, e.g., x, denote
the projection of a 3-D point onto the image plane of a cam-
era. Subscripts are added to lower-case bold letters to iden-
tify a particular camera. For example, the projection of X in
the first camera is x1, and in the second camera, x2. A star
superscript is used to denote the homogeneous versions of
these points. Therefore, X� ∈ P3 is the homogeneous repre-
sentation of the 3-D point X, and x� ∈ P2 is the homo-
geneous representation of the 2-D point x.

2.2 Stereo Correspondence
We use a pinhole camera model for each of a pair of cali-
brated cameras with identical intrinsic parameters, and with
neither skew nor radial distortion. The center of camera 1 is
located at the origin of the world coordinate system,
C1 ¼ ð0;0; 0ÞT, and the center of camera 2 lies on the

x-axis at C2 ¼ ðδx; 0;0ÞT, where δx is the distance between
the two cameras. The principal rays of the cameras are par-
allel and pointing down the negative z-axis. Stereo rectifica-
tion is unnecessary under these assumptions, and we can
define the epipolar geometry for the two-view camera system
according to the following definition:

Definition 2.2.1 Let the ideal point e�1 ¼ ð1;0; 0Þ be the
image of C2 in camera 1, and the ideal point e�2 ¼ ð−1;0; 0Þ
be the image of C1 in camera 2. Then, the corresponding
lines between the two images are the horizontal scan-lines
with identical y-coordinates. Thus for all 3-D points Z,
we have z1y ¼ z2y .

2.3 Symmetry Correspondence
A pair of 3-D points, P and Q are mirror symmetric about
a “plane of symmetry,” π ¼ ðnx; ny; nz; dÞT ¼ ðnT; dÞT, if
the plane of symmetry bisects a line segment connecting
these two points. This, in turn, implies the following two
equations: (1) the two points are equidistant from the sym-
metry plane and (2) the line joining the two points is parallel
to the normal of the symmetry plane

EQ-TARGET;temp:intralink-;e001;326;505

PþQ
2

· nþ d ¼ 0; (1)

EQ-TARGET;temp:intralink-;e002;326;463ðP −QÞ × n ¼ 0: (2)

We refer to the normal of the symmetry plane n as the “direc-
tion of symmetry.” Without loss of generality, assume that n
is a unit normal. In this case, d is scaled to the units of the
coordinate system.

The plane of symmetry π defines its own epipolar geom-
etry as given in Definition 2.3.1.

Definition 2.3.1 The vanishing point of the 3-D sym-
metry lines is isomorphic with the direction of symmetry.
Let n be a direction of symmetry for an object. When
extended to infinity, the projection of all 3-D lines parallel
to n meet at a vanishing point vn.

The vanishing point in Definition 2.3.1 is commonly
referred to as the epipole of the symmetry plane, and the
lines passing through the epipole as the epipolar lines.
To avoid a conflict of terminology between the binocular
and mirror-symmetric epipolar geometries, we simply refer
to the symmetry plane’s epipole as the vanishing point,
and the epipolar lines as the pencil of lines through the
vanishing point. This pencil of lines is used to constrain sym-
metry correspondence in a single image, as described in
Property 2.3.1.

Property 2.3.1 If p and q are images of 3-D points P and
Q symmetric about π ¼ ðnT; dÞT with direction of symmetry
n, then p and q are colinear with the vanishing point vn,
which is defined by the direction of symmetry.35

2.4 Combined Correspondences
Each of the two correspondence problems involves a pair of
image points that must obey the geometrical constraints of
the specified problem. In the binocular correspondence
problem, according to Definition 2.2.1, pairs of points,
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one from each image, must have the same y-coordinate.
In the symmetry correspondence problem, according to
Definition 2.3.1, pairs of points from a single image must
be colinear with the vanishing point vn defined by the direc-
tion of symmetry. These two problems are combined by
choosing two points, p1 and q1 from the first image, and
two points p2 and q2 from the second image. A set of
four such points is called a “two-view mirror-symmetric
quadruple,” or simply quadruple for short. Figure 1 shows
such a quadruple and the constraints that they obey. All
objects under Definition 2.1 are composed of these
quadruples.

Note that because there is no rotation between the two
cameras in our simplified two-view geometry, the direction
of symmetry is identical with respect to both cameras, and
thus so is the vanishing point.

2.5 3-D Reconstruction Based on Symmetry
Given a vanishing point vn, it is possible to reconstruct the
3-D locations of points P and Q from their images p and q.
Figure 2 shows the geometry of this situation. The vanishing
point resides on the image plane and has 3-D coordinates
ðvx; vy; fÞ. Without loss of generality, assume that the cam-
era center C is at the origin (0,0,0). In this case, ðvx; vy; fÞ is,
itself, the direction of symmetry. This means that the camera
image of all the points on 3-D rays parallel to ðvx; vy; fÞ will
form lines that intersect at vn.

36

The vector ðvx; vy; fÞ is also the normal to the plane of
symmetry that divides points P and Q at midpoint M.
Therefore, the plane of symmetry can be written as
π ¼ ðvx; vy; f; dÞT, where d is a free parameter that locates
the plane of symmetry and scales the size of the recon-
structed object.

By construction, the points P andQmust lie on rays ema-
nating from the camera center C through the imaged points p
and q. Given the intrinsic camera matrix K, let p̂ ¼
ðK−1p�Þ∕kK−1p�k, and q̂ ¼ ðK−1q�Þ∕kK−1q�k be unit vec-
tors in R3 that intersect the image plane at the desired points.
We can then rewrite P and Q according to the following
equation:

EQ-TARGET;temp:intralink-;e003;63;99P ¼ kPkp̂ and Q ¼ kQkq̂: (3)

Let v̂ ¼ ðK−1v�nÞ∕kK−1v�nk be the unit vector that intersects
the image plane at the vanishing point vn. Now, let
θ ¼ cos−1ðv̂Tp̂Þ be the angle between v̂ and p̂, and
ϕ ¼ cos−1ðv̂Tq̂Þ be the angle between v̂ and q̂. Then, the
ratio of kPk to kQk is given by the following equation:

EQ-TARGET;temp:intralink-;e004;326;485

kPk
kQk ¼ sin ϕ

sin θ
: (4)

This can be seen by construction. Referring to Fig. 2, let λ be
the distance from the origin, to the line through P and Q.
Then by definition, sin θ ¼ λ∕kPk, and sin ϕ ¼ λ∕kQk.
Taking the ratio gives Eq. (4).

To solve for P and Q, all that remains is to find the dis-
tance to one of the two points, and then substitute into Eq. (4)
for the other. Note that P and Q are equidistant to the sym-
metry plane, giving PTvn þQTvn ¼ 2d. Substituting into
Eqs. (3) and (4) gives the following equation:

Fig. 1 A two-view mirror-symmetric quadruple is a set of four 2-D points that obey four constraints. Pairs
of points ðp1;p2Þ and ðq1;q2Þ obey the epipolar constraint in Definition 2.2.1: their y -coordinates are
the same. Points ðp1;q1Þ from image 1 and ðp2;q2Þ from image 2 obey Definition 2.3.1: they are colinear
with the vanishing point. Note that the vanishing point is view-invariant across both images, and implied
by the quadruple. It is not part of the quadruple.

Fig. 2 The imaged points p and q, along with the vanishing point v
define the location of 3-D points P and Q up to scale. The symmetry
plane can be written as π ¼ ðvx ; vy ; f ; dÞT, where d locates the plane,
and thus the point M ¼ ð1∕2ÞðPþQÞ, which lies on the plane. The
vector ðP −QÞ is parallel to the direction of symmetry, creating a tri-
angle that constrains the ratio of the lengths of the vectors kPk and
kQk, allowing for 3-D reconstruction, as specified by Eqs. (3)–(5).
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EQ-TARGET;temp:intralink-;e005;63;752kPk ¼ 2d

p̂Tvn þ sin θ
sin ϕ q̂

Tvn
: (5)

2.6 Using the Floor Prior
Every quadruple is consistent with a vanishing point as
follows: find the point of intersection between the line going
through p1 q1, and the line going through p2 q2. By defini-
tion, this point is colinear with both pairs of points, and,
therefore, can be chosen provisionally as a vanishing point.
Noting that, in homogeneous coordinates, the cross product
of two points is the line going through them, and the cross
product of two lines is the point of intersection, we have the
equation for the vanishing point

EQ-TARGET;temp:intralink-;e006;63;600v� ¼ ðp�1 × q�1Þ × ðp�2 × q�2Þ: (6)

As shown in Eq. (5), a vanishing point and a pair of
points from one image are sufficient for reconstruction.
Although subject to more error from image quantization,
triangulation36 can also be used to locate 3-D points P
and Q.

The floor prior can be used to define a restricted set of
consistent quadruples. As previously pointed out, if symmet-
rical objects are standing on a flat surface, or floor, then
the direction of symmetry will be in the one-dimensional
complementary subspace orthogonal to the floor normal.
The projection of this subspace is the “horizon line” and
it is isomorphic to the floor plane’s normal.

With this prior, it is possible to determine the vanishing
point for a pair of mirror symmetric points p and q in a single
image. Let g be the normal to the floor, which is suggestive
of the direction of gravity. g defines a line in homogeneous
coordinates in the standard way (the intersection of the image
plane with the plane parallel to the floor, which passes
through the camera center), and is called the horizon line.
The vanishing point must be the point of intersection
between the horizon line and the line passing through points
p and q

EQ-TARGET;temp:intralink-;e007;63;326v� ¼ g × p� × q�: (7)

Note that there is a degenerate case when P, Q, and the
camera center C lie on a plane parallel to the floor plane.
In this situation, g ¼ p� × q�, and the vanishing point is
underdetermined.

We can now determine if a two-view mirror-symmetric
quadruple has a vanishing point that is consistent with
an object standing on the floor. The estimate of v from
Eq. (6) can entail substantial quantization error if pixels
p1 and q1, or p2 and q2 are close to each other. For this
reason, the vanishing point is estimated from the image,
where p and q are most distant, and a colinearity test is
used to determine if the quadruple is consistent with the
horizon defined by the floor normal.

Definition 2.6.1 A two-view mirror symmetric quadru-
ple is consistent with the floor prior if there exists a vanishing
point on the horizon line (defined by the normal to the floor)
that is colinear both with p1, q1, and with p2, q2. A pair of
points is considered colinear with the vanishing point if a line
through the vanishing point exists such that the minimum
point-line distance for both points is less than a threshold.

3 System Architecture
Input is a pair of stereo gray-scale images captured from
a Point Grey Bumbleebee2® two-view camera system.
A disparity map is calculated using the “sum of absolute
differences,” according to a propriety algorithm in the
Triclops® 2.5 SDK, as published by Point Grey. The right
image is used as the reference image for the disparity map.

The input images are smoothed with a Gaussian kernel
before applying the canny operator with an adaptive thresh-
old for hysteresis. The high threshold is automatically set to
the average of the orientation magnitude at each pixel, as
produced by the Sobel operators. The low threshold is auto-
matically set to be 0.4 times the high threshold. A sparse
disparity map is then produced by taking those disparity val-
ues from the disparity map, which also register an edge in
the edge maps for both images—within a pixel of error to
account for quantization effects. The sparse disparity map
gives corresponding pairs according to texture in the input
image, but along identified edges in the image.

3.1 Estimating the Floor
Triangulation36 is used to generate a point cloud from the
disparity values. RANSAC is applied to find a 3-D plane
hypothesis that covers the maximal number of points, fol-
lowing a procedure outlined in Ref. 37. The normal to this
plane is the estimate for g. The floor points are then removed
from analysis. The remaining sections below consider only
nonfloor points that are on identified edges in the image.

3.2 Finding Object Hypotheses
Two-view mirror-symmetric quadruples are defined as
pairs of disparity map values from the sparse disparity
map. A region of interest for symmetry correspondence
is used to avoid searching through Oðn2Þ pairs of disparity
values. The set of floor-consistent quadruples, as per
Definition 2.6.1, is calculated from all pairs of disparity
map values within the region of interest. All detected objects
are subsets of these floor-consistent quadruples.

Segmentation of the scene proceeds by finding symmetry
planes that produce spatially local clusters of quadruples—or
objects according to Definition 2.1. A single quadruple can
be used to estimate all parameters of an object’s symmetry
plane, π ¼ ðnTdÞT. n the direction of symmetry is calculated
as per Eq. (7). A point on the symmetry plane is required to
estimate d. In this case, P and Q are estimated using triangu-
lation, and d is obtained as

EQ-TARGET;temp:intralink-;e008;326;236d ¼ −
1

2
ðPþQÞTn: (8)

3.3 Finding Inliers for a Hypothesis
It is possible to find all quadruple “inliers” for a given sym-
metry plane hypothesis π ¼ ðnTdÞT by examining the repro-
jection error of the four points in each quadruple as follows.
First reconstruct 3-D points P andQ from p1 and q1 by using
the symmetry prior [Eq. (5)]. These 3-D points are then
reprojected into both image planes, as per Eqs. (9) and
(10), where δ is the distance between the two camera centers,
and p̂1 is the reprojection of P in the first image plane and p̂2
in the second image plane

Journal of Electronic Imaging 061606-5 Nov∕Dec 2016 • Vol. 25(6)

Michaux et al.: Figure-ground organization based on three-dimensional symmetry



EQ-TARGET;temp:intralink-;e009;63;752p̂1 ¼
f
Pz

ðPx; PyÞT; (9)

EQ-TARGET;temp:intralink-;e010;63;719p̂2 ¼
f
Pz

ðPx þ δ; PyÞT: (10)

The reprojection error of both reconstructed 3-D points is
then given by the following equation:

EQ-TARGET;temp:intralink-;e011;63;658reprojectionerrorP ¼ kp̂1 − p1k þ kp̂2 − p2k: (11)

If the reprojection error of both P and Q is below a speci-
fied threshold, then the quadruple is considered an inlier to
the object hypothesis.

An additional parameter, the “maximum object size” is
used to alleviate noise from spatially distant quadruples
that happen to be inliers to the object hypothesis. Recall
that a point on the symmetry plane is calculated to get
the d parameter in Eq. (8). A quadruple is considered an
inlier only if both P and Q are within a specified distance
to this initial point on the symmetry plane. This specified
distance sets the expected maximum size of an object.

Note that if the symmetric reconstruction [Eq. (5)] is per-
formed on p1 and q1, then p̂1 ¼ p1, and q̂1 ¼ q1, and the
reprojection error for these points is zero. However, points
P and Q will be different from those computed from binocu-
lar disparities via triangulation. In particular, the distances
among P,Q, and the camera center are noisy in triangulation
because of a combination of pixelation and the large ratio of
the reconstructed depth to the distance between the camera
centers. Equation (5) does not have this defect, and corrects
the binocular reconstruction. Put differently, 3-D symmetry
allows for subpixel binocular reconstruction.

3.4 Nonlinear Optimization of Hypotheses
Each symmetry plane has four parameters π ¼ ðnTdÞT, but
only two degrees of freedom. The direction of symmetry n is
a unit normal, but it has only one degree of freedom because
it must be orthogonal to the floor normal, as specified in
Eq. (7). Nelder–Mead38 is then used over this 2-D subspace
to find the symmetry plane parameters that maximize the
number of quadruple inliers.

3.5 Choosing Nonoverlapping Hypotheses
The steps outlined above generate a single object hypothesis.
In a procedure similar to RANSAC, we can create an arbi-
trary number of hypotheses. (The precise number is given in
Sec. 3.6.) Many of these hypotheses overlap spatially and
must be discarded; however, choosing a maximal nonover-
lapping subset of object hypotheses is NP-hard. “Branch and
bound”39 was used to accomplish this step.

Let S be the set of initial object hypotheses generated
according to the steps outlined above. Let jsj be the number
of quadruples in a given object hypothesis s ∈ S. Then,
branch and bound is used to find the optimal set of hypoth-
eses S 0 ⊆ S as described by
EQ-TARGET;temp:intralink-;e012;63;123

S 0 ¼ argmax
S 0⊆S

X

s∈S 0
jsj;

where intersectðsi; sjÞ ¼ 0 ∀ si; sj ∈ S 0; i ≠ j: (12)

An important detail is calculating the spatial intersection
between two object hypotheses: intersectðsi; sjÞ. Using the
normal to the floor plane, we calculated the orthographic
projection of each hypothesis onto the floor, and then found
the 2-D convex hull for the projected points. This convex
hull is a 2-D polygon representing the image of the object
hypothesis on the floor. Two object hypotheses were consid-
ered overlapping if their 2-D hulls overlapped.

3.6 Algorithm Parameters
Table 1 lists the parameters used in the clustering algorithm.
Object size was set to be about 50% larger than the expected
size of the largest object in clustering. Changing the number
of object hypotheses gives a speed-accuracy trade-off, as
described further in Sec. 4.4. Other parameters were chosen
based on the algorithm’s features. The results are not sensi-
tive to the particular choices.

4 Experimental Results
The novelty of our approach makes it difficult to compare
our algorithm to existing techniques. Unsupervised object
localization is a form of unsupervised clustering, which our
algorithm performs using symmetry as an informative prior.
Therefore, we considered it appropriate to compare our
results to K-means because of its long history, and the typical
usage of distance metrics for most data clustering techniques.
Thus, we tested mirror symmetry clustering—as an inform-
ative prior for object localization—against K-means, a
benchmark method based solely on spatial clustering.

A corpus was acquired to perform a comparison. One hun-
dred and eighty pairs of 1024 × 768 grayscale images were
captured under normal indoor lighting conditions using a
Point Grey Bumblebee2® stereo camera with a 12-cm base-
line, and a 66-deg horizontal field of view. Five to ten objects
were featured in each scene (a room), where the objects were
mostly polyhedral: toys, childrens furniture, a pram, a vacuum
cleaner, and a tripod. Seventy five images featured a person.
The floor was covered by uniformly colored carpet.

As described in Sec. 3.1, our symmetry-based approach to
object localization relies on estimating the plane of the floor.
For this estimate to be reliable, there must be sufficient
samples of floor patches available in the images. Since the
points on the floor are removed from further analysis, the
type of texture on the floor is unimportant. Furthermore,
our approach relies on binocular disparity information to
solve the symmetry correspondence problem, as discussed in

Table 1 Algorithm Parameters.

Gaussian smoothing σ ¼ 2.0

ROI in search for quadruples 150 pixels

Colinearity test threshold 1.5 pixels

Quadruple inlier test 1.5 pixels

Maximum size of object 1.0 m

Number of object hypotheses 80
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Sec. 2.4. When the objects are too far from the camera, then
the stereo system degenerates to single view geometry. For
example, an object 0.3-m deep, placed 4 m from our stereo
camera setup, has only 2 pixels of disparity difference
between front and back. Therefore, when constructing the
corpus, objects were placed between 1.5 and 4.5 m from
the stereo camera.

2-D ground truth was specified as a set of bounding rec-
tangles in the left-camera-image of each pair of images. Each
bounding rectangle was drawn by hand around the regions
containing the individual exemplars. The rectangles were
axis-aligned such that they have horizontal and vertical edges.

4.1 K -Means
Since mirror symmetry is calculated in 3-D, we applied
K-means clustering to an unstructured 3-D point-cloud.
A disparity map was calculated as per Sec. 3. The

symmetry-based algorithm considered only binocular corre-
spondences that coincided with the canny edge maps gener-
ated from each image. This sparse point cloud was used to
reduce the search space for symmetrical correspondences;
however, it also reduces noise from texture-based
artifacts typical in stereo reconstructions. In order to do a
fair comparison, we restricted the “K-means” point cloud to
the same set of 3-D points that were used to generate two-
view mirror symmetry quadruples. The method described by
Caliński and Harabasz40 was used to automatically determine
the value of K: the number of objects in the image. Once
clusters were determined, the 3-D points were projected
back to the image plane of the left camera, and bounding
rectangles with horizontal and vertical sides were calculated.

4.2 Comparison Function
Bounding rectangles were compared as follows. Intersection-
over-union41 [Eq. (13)] was used to calculate the best matches

Fig. 3 Representative results comparing K -means (left column) to symmetry-based object localization
(right column).

Journal of Electronic Imaging 061606-7 Nov∕Dec 2016 • Vol. 25(6)

Michaux et al.: Figure-ground organization based on three-dimensional symmetry



between all rectangles representing an algorithm’s output and
all ground truth rectangles. The best matching pair of rectan-
gles was paired together first, and then removed from analy-
sis. This procedure was repeated recursively until all ground
truth rectangles were matched

EQ-TARGET;temp:intralink-;e013;63;697intersectionoverunionðA; BÞ ¼ areaðA ∩ BÞ
areaðA ∪ BÞ : (13)

We averaged the scores for each image. Our method for
scoring each image does not produce a penalty for estimating
too many objects; however, if the algorithm estimated that
there were too few objects, then some ground truth rectangles
were scored as zero. As will be seen below, this fact favored,
on average, K-means clustering. It follows that the observed
superiority of our method in this analysis is a conservative
estimate.

We also calculated F1 statistics using the following label-
ing procedure. All rectangles were labeled as either true pos-
itives (TP) or false positives (FP), where a TP was recorded if
intersection-over-union with a ground-truth rectangle was
greater than 0.5. If a ground truth rectangle was not paired
with a TP object hypothesis, then it was labeled as a false
negative (FN). F1 is then calculated according to the follow-
ing equation:

EQ-TARGET;temp:intralink-;e014;63;477F1 ¼
2TP

2TPþ FNþ FP
: (14)

4.3 K -Means Versus Symmetry-Based Object
Localization

Bounding rectangles for three representative examples are
shown in Fig. 3. In Fig. 4, we show a histogram of the ratios
of mean scores, as defined by Eq. (13), for our algorithm and
for K-means across all 180 scenes. Ratios greater than 1
imply that our algorithm performed better.

Most ratios are greater than 1 indicating that our algorithm
did perform better. We want to point out, however, that
K-means also performed reasonably well. This good perfor-
mance is partly the result of eliminating spurious 3-D
points in the front-end of our method, where we reconstruct
only those 3-D points that represent binocular correspond-
ences for both texture patches and edges (see Sec. 4.1).
However, since the K-means method relies solely on a dis-
tance metric, it seems to produce localizations that bleed over
multiple scene objects when the objects are close together in
3-D. The symmetry-based method is much more robust in
this circumstance. Both methods work well if the objects
are far apart from each other in 3-D, even if one occludes
the other in the camera images.

The symmetry-based clustering (SBC) also performed
better than Caliński and Harabasz’s method for determining
the number of clusters. A comparison of the number of clus-
ters detected between the two methods is given in Fig. 5. In
this figure, we see that the Caliński and Harabasz heuristic
tends to overestimate the numbers of objects (clusters) in the
scenes. In contrast, SBC tends to be more accurate, and to
slightly underestimate the numbers of objects in the scenes.

Note that, as described in Sec. 4, the corpus was designed
with mostly polyhedral objects placed close enough to the
stereo camera such that symmetry correspondence could
be solved from disparity information. Furthermore, as
described in Sec. 3.1, we constrained the symmetry plane
to be orthogonal to the estimated floor plane—and the
floor was clearly visible in every corpus image. The results
reflect these controlled experimental conditions. In the con-
clusion section, we discuss how to relax these constraints to
develop a general purpose approach to symmetry-based
object localization.
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Fig. 4 Histogram of the ratio of mean intersection-over-union of
bounding rectangles for each image. A ratio of 1.0 implies that SBC
and K -means performed equally well. Greater than 1.0 implies that
SBC performed better.
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Fig. 5 The difference between the number of clusters detected by
SBC, or by Caliński and Harabasz’s method for determining K in
K -means, and the actual number of objects. Zero error implies that a
method detected the correct number of clusters (objects). Positive
error means that a method detected more clusters than there were
objects in the scene. Caliński and Harabasz show a bias toward
reporting too many objects under the experimental conditions. SBC
is both more accurate, and slightly conservative, in its estimates of
numbers of objects.
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4.4 Runtime Performance of Symmetry-Based Object
Localization

Runtime performance for the symmetry-based technique
was dominated by the final branch and bound step. After
generating multiple overlapping object hypotheses, branch
and bound was used to find a maximal set of nonoverlapping
objects, as described in Sec. 3.5. The speed of this step is
determined by the ability of branch and bound to quickly
find a good upper bound to Eq. (12), thereby allowing it to
splice away exponentially sized chunks of the search space.
As such, it is crucial to test the most promising hypotheses
first, where object hypotheses are ordered according to the
number of quadruples they contained. This approach was
usually good enough to find an optimal set of nonoverlap-
ping objects without recourse to some form of nonmaximal
suppression.

In our initial experiments, however, we found that the
branch and bound step would occasionally run for hours
on cluttered input images. Thus, we experimented with a
simple mechanism that returned the best (suboptimal) result
after 30 min, about double the median time for the exhaustive
search, in order to assess its effect on accuracy. Table 2
shows the F1 score for the testing corpus, with and without
timeout. We see that when the timeout was not used, both
runtime and performance (as measured by F1 score) increase
as more hypotheses are generated. There is little effect of
timeout, except for when the number of input hypotheses
is large. Under the given experimental conditions, 80 hypoth-
eses with 30 min timeout gives near best performance for
this method (F1 ¼ 0.83), with median runtime 6.55 min,
and runtime bounded to 30 min.

There is another way to speed-up the processing time. In
our experiment, the scene contained images of multiple
objects, each object occupying only a fraction of the camera
image. It follows that the entire image could be divided into
several smaller regions and our algorithm could then be
applied to individual regions, one by one. Considering the
NP-hard nature of our algorithm, the sum of processing
times of smaller problems (regions) is likely to be less than
the processing time of solving the entire problem (analyzing
the entire image). What we are describing is the essence of

a divide and concur approach that has been used in many
applications in the past. In order to evaluate how well this
approach would work in our application, we looked at our
results separately for the scenes containing five objects,
six objects, and so on. For five objects in the scene, 40
hypotheses led to precision F1 ¼ 0.87 with the median
runtime 0.6 min and max runtime 1.3 min (see Table 3).
Compare this to 10 objects in the scene. Ten objects required
320 hypotheses to produce F1 ¼ 0.88, but the resulting
median time was 31 min and max runtime almost 12 h.
Clearly, detecting five objects at a time in a scene containing
10 objects would lead to substantially smaller runtime, com-
pared to the case of detecting all 10 objects at once. This
observation is not surprising, but it does suggest that our
algorithm could use what is referred to in human vision liter-
ature as visual attention.42 Directing visual attention toward
particular regions in the image requires additional computa-
tional tools, such as saliency measures. There are a number
of saliency measures in the literature, as well as models of
visual search using eye movements. Our future work will
examine these aspects of vision with the purpose of bringing
our model of FGO closer to real-time performance—the
kind of performance that characterizes human vision.

5 Conclusions and Future Work
Our results suggest that the biologically motivated symmetry
prior is useful in FGO (object localization). In a sense, these

Table 2 F 1 with and without timeout. Timeout means that the algo-
rithm returned the best result after 30 min of computation. Optimal
means that the branch and bound step ran to completion, giving
the optimal result. The given runtimes are for the optimal condition.
The timeout did affect the performance when the number of input
hypotheses was large.

# Hypotheses Timeout Optimal
Runtime (min, median,

max) minutes

10 0.33 0.30 0.09 0.29 0.83

20 0.58 0.58 0.16 0.47 1.46

40 0.75 0.76 0.40 1.08 2.96

80 0.83 0.83 1.89 6.55 1986.35

160 0.87 0.89 3.74 11.12 613.52

320 0.60 0.90 4.76 16.29 2111.52

Table 3 F 1 and runtime as a function of the number of objects in a
scene, for 40 and 320 input hypotheses, and with branch and bound
running until completion. We see that runtime is much faster for fewer
objects, suggesting that overall performance can be improved by
adopting a divide and conquer approach.

# Objects F 1 Runtime (min, median, max) minutes

F 1 and runtime for 40 input hypotheses

5 0.87 0.40 0.61 1.34

6 0.81 0.46 0.83 1.83

7 0.82 0.55 1.09 2.16

8 0.70 0.91 1.26 2.58

9 0.74 0.86 1.42 2.87

10 0.65 0.83 1.40 2.96

F 1 and runtime for 320 input hypotheses

5 0.90 4.76 7.40 18.52

6 0.91 5.06 10.80 22.25

7 0.91 8.01 14.94 1117.42

8 0.93 10.86 16.63 308.10

9 0.89 13.89 25.24 2111.52

10 0.88 17.14 31.04 713.11
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results are not surprising because our new method is based
on a straightforward rational argument, namely, that 3-D
symmetries uniquely identify 3-D objects. Intuitively, this
argument makes a lot of sense, and insofar as there is a method
for detecting 3-D symmetries in a scene then the resulting
FGO should be reliable. Our results support this claim; how-
ever, we believe that progress can be made by improving the
front end of our model, where 3-D symmetry is detected.
A few suggestions for future research are listed below.

First, this experiment uses a rudimentary definition of
shape: Definition 2.1. If an object’s symmetries provide
the informed prior that makes accurate FGO possible,
then it stands to reason that a richer definition of an object’s
symmetries would produce even better results. In particular,
individual object hypotheses would become more con-
strained, and more likely to appeal to the human intuition
for shape. This, in turn, would prune the search space that
the branch and bound step must traverse to find the optimal
set of nonoverlapping objects, thus improving the speed of
the algorithm as well. Any heuristical method for finding
nonoverlapping objects should also benefit from a richer
definition of shape as well.

Second, humans are able to solve the 3-D symmetry cor-
respondence problem from single 2-D images, but how this
occurs is currently a topic of active research.43 Solving for
object localization from single images would widen the prac-
tical applications of this approach. This is especially so for
uncalibrated cameras, since a 3-D aware approach to object
localization could be used in general image databases, pre-
senting a significant advance over the state of the art.

Third, the procedure presented was designed and tested
on mostly polyhedral objects, but this approach should be
extended to smoothly curved surfaces. Polyhedral objects
tend to have well-defined edges in the binary edge maps pro-
duced by the canny operator. Importantly, these edges are
sufficient for recovering the symmetry of the object. This
simplifies the symmetry correspondence problem to search
for pairs of points on a binary edge map; however, such an
approach may not work well with smooth surfaces. Our
results show that “round” structures, such as people, can be
localized using symmetry applied to binary edgemaps;
however, this is a preliminary result, and it is unknown, e.g.,
how well individual people can be localized in a crowd.

Note that once FGO is solved, the individual objects
can be used as a saliency map to direct the “attention” of
further processing steps. The topic of saliency maps was
started 30 years ago44 and remains an active field today.
Symmetry-based FGO should be useful to researchers
who are interested in finding relationships between objects,
and building event models for scenes, which is sometimes
considered part of the vision problem.42 In turn, higher level
reasoning about a scene could disambiguate a symmetry-
based FGO approach. For example, a symmetrical collection
of tables and chairs in a classroom could be considered as
one object or many, depending on how the information
needs to be used by an event model for the scene. Thus, we
are proposing that attention and saliency could work on two
levels: as the front end to divide the image into subregions
for solving FGO and later, after FGO is solved, to focus sub-
sequent analyses on particular objects and groups of objects.
This double status of attention may correspond to the “what”
and “where” pathways in the human visual system.45

We believe that detecting and using 3-D symmetry is an
essential step in visual processing, because psychophysical
experiments have already shown that symmetry is a powerful
prior used by the human vision system in a variety of
unsolved vision applications, such as FGO, 3-D shape recov-
ery, and shape constancy.6 Although the present work is pre-
liminary, our experiment suggests an avenue toward bridging
the divide between human and computer performance on
object localization.
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