
Analysis of retinal and cortical
components of Retinex algorithms

Jihyun Yeonan-Kim
Marcelo Bertalmío

Jihyun Yeonan-Kim, Marcelo Bertalmío, “Analysis of retinal and cortical components of
Retinex algorithms,” J. Electron. Imaging 26(3), 031208 (2017),
doi: 10.1117/1.JEI.26.3.031208.



Analysis of retinal and cortical components of
Retinex algorithms

Jihyun Yeonan-Kim* and Marcelo Bertalmío
Universitat Pompeu Fabra, Departament de Tecnologies de l’Informació i les Comunicacions, Barcelona, Spain

Abstract. Following Land and McCann’s first proposal of the Retinex theory, numerous Retinex algorithms that
differ considerably both algorithmically and functionally have been developed. We clarify the relationships
among various Retinex families by associating their spatial processing structures to the neural organizations
in the retina and the primary visual cortex in the brain. Some of the Retinex algorithms have a retina-like process-
ing structure (Land’s designator idea and NASA Retinex), and some show a close connection with the cortical
structures in the primary visual area of the brain (two-dimensional L&M Retinex). A third group of Retinexes
(the variational Retinex) manifests an explicit algorithmic relation to Wilson–Cowan’s physiological model.
We intend to overview these three groups of Retinexes with the frame of reference in the biological visual mech-
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1 Introduction
The Retinex color theory was postulated to account for a
series of observations that Land made on color constancy.1

He and his colleagues reported several experiments in which
they presented color pictures comprised of color patches
reminiscent of the paintings of Mondrian under various tri-
chromatic spectral combinations of illuminant, that is, differ-
ent amounts of the long-wave (red), middle-wave (green),
and short-wave (blue). They examined the color appearance
of a particular patch in the Mondrian picture. Two different
Mondrian pictures were viewed, each containing a target
patch. The two target patches had different spectral reflectan-
ces, say, white and green. They adjusted illuminants under
which the Mondrian pictures are observed such that the
target patches with different reflectances in the two pictures
emitted the same spectral radiance. Despite the two patches
having equal spectral radiance, the white and green patches
did not appear the same. Rather, they were perceived as
white and green, respectively, thereby demonstrating color
constancy.

Similar results were obtained in a different experimental
setup, in which an observer viewed one Mondrian-picture
under varying combinations of illuminant triplets and deter-
mined the color of the patch by choosing the matching color
from the Munsell chart. In each run, the illuminant was
adjusted so that the patch always sent the same radiance to
the eye regardless of its reflectance. Despite the target patch
having different spectral radiances, the observer matched the
patch to the closest color in the Munsell chart in all cases,
e.g., green patch to the green color and so on.

Land’s experiments revealed that color sensation cannot
be predicted based on a simple analysis on the spectral
radiance of the incoming light from the scene to the eyes.
What, then, determines color sensation? From what aspects

of a scene can color sensation be predicted? The Retinex
theory sought to solve this problem.

The fundamental Retinex color principles were estab-
lished during the early development of the theory.1–5 First,
color sensations correlate with the lightness of independent
long-, medium-, and short-wavelength spectral channels
(channel independence). Second, the lightness of an image
area in each waveband channel depends on a complex rela-
tionship of the area and its surroundings (spatial interaction).

The prototype Retinex algorithm by Land and McCann,3

referred to as L&M Retinex (throughout this article, we will
use the conventional Retinex names outlined in Ref. 6),
describes the computational process to realize the principle
of spatial interaction by computing the radiance-ratio prod-
uct along paths that go through the image. This process is
applied to each of the triplet of the color channels (channel
independence). The algorithm iteratively computes the out-
put array by assigning an arbitrary initial value 1.0 radiance-
ratio product for all the pixel locations in the image and
updating the value at each pixel as a path passes through.
The path makes spatial comparisons by taking ratios of
scene radiances at the edges and uses products of these ratios
to make long distance comparisons. A reset procedure
(a ratio-product value larger than 1.0 is set to 1.0) is used
for scene normalization to maxima. This path procedure
was repeated for multiple paths, providing a way to model
appearance. The number and lengths of the paths determine
the balance between local-maxima and global-maximum
scene normalization. Path parameters were optimized by
observer matching data that provided a quantitative goal for
this model of vision.

Succeeding and reinventing the original Retinex formu-
lation, numerous Retinex methods were developed in the
past decades (see Ref. 6 for a comprehensive review). All
the newer Retinex algorithms maintained the basic principle
of channel independence. On the other hand, the one-dimen-
sional (1-D)-path-based spatial interaction of the prototype
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L&M Retinex3 was quickly replaced by a two-dimensional
(2-D) operation for most of the subsequent Retinex-family
algorithms [Frankle and McCann,7 McCann 99,8,9 Land’s
designator Retinex,10 NASA retinex,11,12 gamut Retinex,13

Sobol Retinex,14,15 Kotera Retinex,16 Variational Retinex,17–20

kernel-based Retinex (KBR);21 cf. Milano Retinex22,23], but
the strategical details diverged substantially across them. In
addition, some portion of the Retinex family removed the
reset operation (or any other white-anchoring mechanisms)
and either adopted the grayworld hypothesis (the algorithmic
assumption that the global mean of any image is gray;
as in designator Retinex, variational Retinex) or not (e.g.,
NASA Retinex).

That some of the basic principles of the prototype L&M
Retinex are altered or eliminated in some Retinex variations
leads to the question: are all these Retinex successors
designed to accomplish the same processing goal, which,
for the L&M Retinex, was predicting color sensation?
Is there a way to interpret different Retinex designs in an
integrative perspective?

In the search for the answer, we noticed that different
Retinex variations have comparable neural mechanisms in
the human visual system that provides a comprehensive
framework. Land and McCann’s3 Retinex aimed to predict
color sensation, which is the end result of the processes con-
sisting of the human visual system. Thus, the visual system
mechanism is considered the “ground truth” of the Retinex
theory, as Land named it with the compound word of retina
and cortex.

In the 1980s, Land published some works that modified
the prototype L&M Retinex formulas (the designator
Retinex).10,24 These ideas further inspired Jobson, Rahman,
and Woodall to develop another line of 2-D Retinex (NASA
Retinex)11,12 (followed by Kotera Retinex).16 As we will
soon detail, this line of Retinex implementation shows an
explicit connection to Retinal processing. The designator
and NASA Retinexes do not involve the reset.

In 1975, Frankle and McCann Retinex began the imple-
mentation of 2-D L&M Retinex,7 which evolved into
McCann 99 Retinex8,9 (continued to gamut Retinex13 and
Sobol Retinex14,15). This Retinex family preserves all the
prototype L&M Retinex principles. At a glance, the relation-
ship of 2-D L&M Retinexes with a neural mechanism may
not be clear. But we will point out that the shifted-array com-
parison approximates orientation-dependent processing in the
visual primary visual cortex. These Retinexes maintain the
spatial interaction schemes of the original L&M Retinex3

including the reset and average operations.
There is an another line of 2-D Retinexes, based on varia-

tional methods, that are associated with image processing
problems (contrast and color enhancement and histogram
equalization25 and reflectance estimation17–20). They share
the same algorithmic structure with a physiological model
of cortical process, the Wilson–Cowan model,26 but the rela-
tionship of their functional structure of spatial interaction to
the visual system mechanisms has yet to be established.
Variational Retinexes, similar to the designator and NASA
Retinexes, do not incorporate the reset operation.

Here we will line up the above three families of Retinexes
alongside the retinocortical neural mechanisms, the different
ground truths used by different Retinexes. Our discussion is
concentrated less on the mathematical details of the different

Retinex versions from each of the Retinex families and more
on the history and the implications of the pivotal versions
that manifest connections with neural mechanisms: the mul-
tiscale NASA Retinex,12 McCann 99 2-D L&M Retinex, and
the variational model by Bertalmío et al.21

2 Neural Structures of Retina and Cortex
We first provide the basic information on the retinocortical
processing architecture as a guideline. The visual brain is a
complicated machinery, and we do not intend to cover all the
neurophysiological details. It is sufficient for our context to
overview the basic spatial processing properties of the retina
and the primary visual cortex.

The gist of spatial processing in the retinocortical stream
is the push-pull spatial interaction and the multiscale struc-
ture. The precise ways in which the spatial interaction occurs
differ between the retina and the cortex, and this determines
what type of information is handled at each stage.

2.1 Retinal Push-Pull Spatial Interaction
Light reaching the retinal surface triggers the phototransduc-
tion process of photoreceptors, which transform light energy
into neural activity. From this very first stage of the visual
processing chain, the human visual system discards any
redundant information by coding the “difference” of the
light signals at one point of the visual scene from that of
nearby points.

In the retina, the spatial interaction is accomplished
through a regulatory mechanism called “lateral inhibition”
(see Ref. 27 for a comprehensive review). When a set of
photoreceptors is activated by light projected to some part
of the visual field, several regulatory interneurons (named
horizontal cells) around the photoreceptors are consequently
activated that are connected back onto the photoreceptors
and inhibit the activities of the photoreceptors. Thus, when
the photoreceptor responses increase (push), the horizontal
cells roll their responses back (pull). The reason that the
inhibition is “lateral” is because the receptive-field of a hori-
zontal cell (i.e., the pull area) is larger than the receptive-field
of a photoreceptor (i.e., the push area), so an activation of
a single photoreceptor would result in the inhibition of the
neighboring photoreceptors to which the same horizontal
cell makes an inhibitory connection.

As the outcome of this push-pull regulation, the retina
codes a light intensity at a certain point of a scene as the
difference of the intensity value at the point (center) from
the mean light intensity surrounding the point (surround;
thus referred to center-surround processing). The center-sur-
round processing is commonly represented as a difference-
of-Gaussian (DOG) following the estimated profile of the
ganglion cell receptive-field.28–32 In other words, the retinal
spatial processing is abstracted as an isotropic (i.e., radially
symmetric) spatial filter that is the difference of two
Gaussian filters, one with a smaller standard deviation (push)
and the other with a larger standard deviation (pull).

2.2 Orientation-Dependent Cortical Push-Pull
The orientation-sensitivity is the signature spatial processing
characteristic of the primary visual cortex.33–35 Different cells
in this brain region have their own “preferred” or “tuned”
orientation in the incoming light pattern. For example,
assume that we measure the electric activities of a single
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cell in the cortex of a primate when the animal is viewing
different orientations of bars. A cell may show the most
rigorous activity when the animal sees a vertical bar but
may remain silent or inhibited upon seeing a horizontal bar.
This particular cell is tuned to vertical (0 deg) orientation.

The orientation preference of the cells in the primary
visual cortex of primate species and humans is well docu-
mented. Here, the cells are aligned based on their orientation
preference, orderly from 0 deg to 360 deg, for various spatial
frequencies (resolution; see next section) for each location in
the visual field. This orientation-dependent structure is sub-
stantially different from the isotropic spatial representation of
the retinal ganglion cells.

There is a type of push-pull regulation at the primary
visual cortex that occurs with respect to the orientation
preference. Taking the example above, the vertical-tuned cell
activity (push) is regulated by the inhibition from the cells
tuned to nearby orientations (pull). The push-pull regulation
in the primary visual cortex thus normalizes the cell activities
across orientations. In other words, it codes the “difference”
of a particular orientation information in the incoming light
pattern from close-by orientations.

2.3 Retinal and Cortical Multiresolution Structure
In addition to the orientation-preference, the primary visual
cortical cells exhibit spatial-frequency-preference;33–35 that
is, a cell responds more strongly to a certain spatial-
frequency, or resolution, of stimulus over other resolutions.
Thus, the organization of the primary visual cortex is such
that there exist cells with different combinations of spatial-
frequency and orientation sensitivity.

On the other hand, there has not been much discussion on
any multiresolution structures of the retina. Most, if not all,
of the studies involving lateral inhibition up-to-date have
assumed a single-surround DOG. This is based on earlier
physiological evidence on the retinal ganglion cell RF,
which is often referred to as the “classic” RF.28,30–32 How-
ever, Yeonan-Kim and Bertalmío36 pointed out that there is
accumulating evidence that the spatial profiles of the retinal
regulatory interneurons are comprised of multiresolution
components37–39 and that the surround part of the ganglion
cell exhibits an “extra-classic” suppressive field that sub-
tends much beyond the width of the classic RF.40–42 This
means that the retinal spatial processing incorporates a multi-
resolution surround structure.

3 Retinex and Retina
The first group of Retinexes of our concern includes the
Land’s designator Retinex and NASA Retinex. The spatial
interaction forms of this family manifest a straightforward
correspondence to the neural structure of the retina.

3.1 Designator Retinex by Land
In 1983, Land proposed a new process of Retinex compu-
tation (designator Retinex) distinguished from the L&M
family of Retinex. He proposed the concept of designator,24

by which he meant a local average of the ratio product
(i.e., local lightness) around a given point in the image of
interest, ðxn; ynÞ, for each color wavelength channel. His
initial idea was to compute the ratio product along a path
from ðxn; ynÞ to another point in the image, ðxm; ymÞ, repeat

this ratio-product computation for various image points
ðxm; ymÞ 0s around ðxn; ynÞ, average across all the ratio-
products obtained between ðxn; ynÞ and each of the
ðxm; ymÞ 0s, and use this average as the Retinex output for
the point ðxn; ynÞ. Designator Retinex involved threshold-
ing (discarding any ratio on the path that is smaller than
a certain value) but not reset.

In 1986, Land described a designator Retinex using 2-D
computations instead of involving the path:10

“The designator is the computed numerical measure on one
waveband of the lightness seen as part of the whole field of
view. Previous retinex techniques have involved some kind of
comparison between the flux (on one waveband) coming to
the eye from a point on the object and flux (on that samewave-
band) arriving from points in remote, as well as contiguous,
areas. These comparisons involve edges, gradients, thresholds,
and pathways, and provide the average of the relationships
between a given point and a large number of other points in the
field of view . . . Keeping the same criteria, the new technique,
instead of utilizing an average of these relationships, compares
the flux from the point of interest to an average, weighted in
an unusual way, of the fluxes from all points in the field.”

Here, Land suggests comparing a point in the image to
the average radiance around the point, rather than computing
the radiance ratio of a point to each of the points in the
neighborhood followed by averaging.

This is reminiscent of the neural structure of retina that we
introduced in Sec. 2.1 (despite the fact that Land commented
in his 1983 paper that color coding in the cortical area V4
may be of further consideration in relation to his idea)24

when we make an analogy between a point in the image
and a single photoreceptor on the retinal surface. The retinal
push-pull regulation and lateral inhibition is such that
a horizontal cell averages across responses of multiple
photoreceptors (i.e., multiple points in the image) and this
response average regulates, or inhibits, the responses of
each photoreceptor (i.e., a point in the image).

3.2 Retinal Lateral Inhibition and NASA Retinex
Land may not have further explored his idea on the 2-D
implementation of designator Retinex,10 but a similar con-
cept was elaborated by other researchers, who developed
a center-surround type of Retinex processing comparable
to retinal lateral inhibition.11,12,43–45 Lateral inhibition codes
light intensity at a certain point of a scene as the difference
between the intensity value at the point (center) and the mean
light intensity surrounding the point (surround; thus referred
to as center-surround processing).

The NASA Retinex proposed by Jobson, Rahman, and
Woodell11 is one of the Retinex versions inspired by retinal
processing, which the authors called “center/surround”
Retinex.

The center/surround NASA Retinex takes the form

EQ-TARGET;temp:intralink-;e001;326;149Riðx; yÞ ¼ log Iiðx; yÞ − log½Fðx; yÞ � Iiðx; yÞ�; (1)

where i indicates the i’th trichromatic spectral band of the
image I with ðx; yÞ denoting the pixel position and * stands
for the convolution operation. Fðx; yÞ is a 2-D function for
surround, for which the authors used either a Gaussian or
an exponential function.
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Jobson et al.11 noted that this is the typical DOG repre-
sentation of retinal and LGN ganglion cell RFs28,30–32 (see
Sec. 2.1) and that Eq. (1) approximates the ratio of the center
pixel radiance with respect to the average radiance of the sur-
rounding pixels as long as the source illumination is uniform
across the image.

The above NASA Retinex algorithm is referred to as a
single-scale Retinex (SSR),11 in contrast to a multi-scale
Retinex (MSR)12 that the same authors subsequently devel-
oped to overcome the limitations of the SSR. The SSR
achieves either good dynamic range control or good color
rendition, but not both. Jobson et al.12 observed a trade-off
between accomplishing dynamic range control and achiev-
ing good color rendition that was modulated by the spatial
constant of Fðx; yÞ (i.e., the surround width): a large
surround width providing the means to adjust the brightness
of the image. This led them to utilize multiple widths of the
surround at the same time, which is formalized as

EQ-TARGET;temp:intralink-;e002;63;554Riðx;yÞ¼
XS
s¼1

Wsflog Iiðx;yÞ− log½Fsðx;yÞ� Iiðx;yÞ�g; (2)

with S being the number of different widths of surrounds and
each center-surround operation weighted byWs. MSR allows
a way to balance between the dynamic range control and
good color rendition by adjusting the surround widths and
their respective weights per image application.

However, neither SSR nor MSR involved any reset or
other global white- or grey-anchoring (e.g., global grayworld
hypothesis) process, and thus output images of MSR Retinex
tend to be desaturated. To overcome this issue, later studies
incorporated an additional color restoration step following
the Retinex application (MSR with color restoration;
MSRCR).12,46 MSRCR overcomes the desaturation problem
of MSR and maintains a good level of color constancy.

3.3 Multiscale NASA Retinex and Retina
The single-scale NASA Retinex conforms to the conven-
tional view on the retinal lateral inhibition. However, the
transition to the multiscale approach appears to be rather
feasible given the latest neurophysiological evidence. As
we briefly stated in Sec. 2.3, an increasing number of
physiological studies report the existence of multiple
scales of surround profiles (the “classic”28,30,31,32 and the
“extraclassic”40–42) in the retinal ganglion cell RF.36 This
is comparable to the combined use of multiscale surrounds
in the later version of the NASA Retinex.

The recent investigation by Yeonan-Kim and Bertalmío
on the biological structure of the retinal processing evaluated
the effect of the multiscale RF surrounds. As it turns out, the
extraclassic (i.e., a larger spatial scale) surround produces
a long-range spatial interaction, which the conventional
concept of lateral inhibition (the “classic” RF) failed to
explain. Some perceptual properties related to lightness
induction47–49 are likely engendered as the consequence of
this long-range interaction. “Assimilation” phenomenon is
an example. Assimilation refers to the case in which the
lightness of an object tends to the luminance of the object’s
surrounding [Fig. 1(a)], as opposed to the more typical case
in which lightness shifts away from the surrounding lumi-
nance [“contrast” phenomenon; Fig. 1(b)]. While contrast
is trivially attributed to the retinal lateral inhibition in the
context of the classic RF, assimilation is influenced by the
luminance of a remote surface that is too distant to be within
the resolution of the classic ganglion cell RF. Yeonan-Kim
and Bertalmío showed that the extraclassic surround produ-
ces this remote interaction.

Yeonan-Kim and Bertalmío’s study links the multiscale
NASA Retinex to the physiological processing in the retina.
The implication is that the large-scale surround in the NASA
Retinex likely produces the long-range spatial effect similar
to the extraclassic retinal RF. Conversely, that the multiscale
structure similar to the NASA Retinex exists in the retinal
circuitry implies that the retina may be capable of the
kind of dynamic range control and color rendition that the
NASA Retinex accomplishes.

Overall, we conclude that the spatial interaction operation
of the designator and the NASA Retinexes are comparable to
the retinal physiology.

4 Retinex and Cortex
Frankle and McCann7 patented a method to modify L&M
Retinex3 to bypass using a path, which led to the develop-
ment of the 2-D L&M Retinexes. As it turns out, these
Retinexes share many interesting properties with a cortical
vision model, the multiscale oriented DOG (ODOG) filtering
model, incorporating the orientation and multiscale structure
of the primary visual cortex, suggesting a link between the
2-D L&M Retinexes and cortical processing.

4.1 2-D implementation of L&M Retinex
The prototype L&M Retinex by Land and McCann3 intro-
duced in 1971 took the turn toward 2-D implementation
a few years later:

Fig 1 Lightness assimilation and contrast: (a) lightness assimilation phenomenon in which the gray bars
of the same reflectance appear darker when embedded in the black bars (left) than in the white bars
(right). (b) Lightness contrast phenomenon in which the gray patches of the same reflectance appear
lighter inside a darker square (left) than in the lighter square (right).
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“In 1975, under the technical leadership of Jon Frankle,
Polaroid purchased an I2S image processor (McCann
1983a, b; McCann, 2004). While the study of paths of Ratio-
Product-Reset-Average model taught us about the nature of
spatial interactions, it was hopelessly slow for processing
real images. Influenced by the sampling techniques used
by Stiehl et al. (1983), Frankle and McCann (1983) patented
a multi-resolution algorithm that made it possible to process
real images in real time.”6

Frankle and McCann’s7 patent detailed a new method
removing the 1-D-path approach and adding multiscale
operations. This led to the development of other 2-D L&M
Retinex descendants,8,13–15 all of which preserve the spatial
interaction (ratio-product computation) and reset ideas of the
prototype L&M Retinex, unlike the designator and NASA
Retinexes.

Instead of proceeding along a path and selecting a pair of
image points to compare, Frankle and McCann7 operated the
ratio-product for the entire array of points in an image at once
by computing the ratio between each point in an array to that
in the spatially shifted version of the array iteratively while
changing the shift direction at each iteration. For example,
suppose I is the input image (calibrated such that the
range of I codes the scene radiance in linear scale) and
Rk is the ratio-product at k’th iteration. Then

EQ-TARGET;temp:intralink-;e003;63;469Rkðx; yÞ ¼
Iðx; yÞ

Iðx − x 0
k; y − y 0

kÞ
· Rk−1ðx − x 0

k; y − y 0
kÞ; (3)

where x 0
k and y 0

k specify the directions of the shift (the signs
of x 0

k and y
0
k) and the pixel amounts of the shift (the absolutes

values of x 0 and y 0), respectively, at the k’th iteration. jx 0
kj

and jy 0
kj start from the half-size of I (e.g., if the dimension

of I is 512 × 512 pixels, jx 0
1j ¼ jy 0

1j ¼ 256), which are then
fixed for a user-designated number of iterations before
decreasing by a factor of two for the next number of itera-
tions. This strategy accomplishes the MSR computation:
a large pixel shift at the beginning computes the ratio at
a low-resolution, which changes to high-resolution with a
decreasing amount of pixel shift.

Rkðx; yÞ is then reset

EQ-TARGET;temp:intralink-;e004;63;292Rkðx; yÞ ¼
�
Rkðx; yÞ; if Rkðx; yÞ ≤ maxðIÞ
maxðIÞ; otherwise

; (4)

and averaged

EQ-TARGET;temp:intralink-;e005;63;241Rkðx; yÞ ¼
Rkðx; yÞ þ Rk−1ðx; yÞ

2
; (5)

and the final output of the given iteration is assigned as the
average between the current ratio-product and that of the
previous.

4.2 2-D L&M Retinex by McCann
The update to Frankle and McCann’s7 2-D L&M Retinex
was introduced by McCann8 (McCann 99 Retinex; see
Ref. 9 for the patent documentation). While most of the
algorithmic aspects remained comparable to the precedent,
its major modification concerned the multiscale operation.

Frankle and McCann’s7 algorithm reduces the amount
of pixel shift over iterations such that the ratio-product
was computed in varying scales, from low- to high-resolution

(Sec. 4.1). On the other hand, McCann 99 Retinex8 adopts a
more straightforward approach to the resolution control:
reducing the array size (pyramid processing). For example,
the algorithm scales down the resolution of an input image, I,
say, comprised of 512 × 512 pixels, to a 4 × 4 pixel array
(call the resulting image array I4×4), each pixel containing
the average of each 128 × 128 image block. The ratio-prod-
uct at the k’th iteration is

EQ-TARGET;temp:intralink-;e006;326;664R4×4
k ðx; yÞ ¼ I4×4ðx; yÞ

I4×4ðx− x 0
k; y− y 0

kÞ
· R4×4

k−1ðx− x 0
k; y− y 0

kÞ: (6)

In this case, the maximum pixel shift is always one (i.e.,
x 0
k ∈ ½−1;0; 1� and y 0

k ∈ ½−1;0; 1�). The algorithm repeats the
same operation for higher resolutions (R8×8, R16×16, and so
on), until the resolution reaches that of the original image
(R512×512). As in Frankle and McCann Retinex, R4×4

k ðx; yÞ
is then reset and averaged with R4×4

k−1ðx; yÞ in the same way
as in Eqs. (4) and (5).

Now let us rewrite Eq. (6) for an arbitrary scale, s, take the
logarithm on both sides of the equation, and set x̃ ¼ x − x 0
and ỹ ¼ y − y 0 for convenience. Then we have

EQ-TARGET;temp:intralink-;e007;326;505 log Rs×s
k ðx; yÞ ¼ log Is×sðx; yÞ − log Is×sðx̃; ỹÞ

þ log Rs×s
k−1ðx̃; ỹÞ: (7)

Equation 7 shows that the ratio-product computes the dif-
ference (in log-scale) of the average of the reset product of
one block of the image from that of the neighboring block.
Note that, at each k, the shift direction changes: the differ-
ences are calculated for the horizontal direction, or orienta-
tion, with x̃k ¼ �1 and ỹk ¼ 0, for the vertical orientation
with ~xk ¼ 0 and ỹk ¼ �1, and for diagonal orientations with
the factorial combinations of x̃k ¼ �1 and ỹk ¼ �1. Again,
Rs×s
k ðx; yÞ is then reset

EQ-TARGET;temp:intralink-;e008;326;355Rs×s
k ðx; yÞ ¼

�
Rs×s
k ðx; yÞ; if Rs×s

k ðx; yÞ ≤ maxðIÞ
maxðIÞ; otherwise

; (8)

and averaged

EQ-TARGET;temp:intralink-;e009;326;299Rs×s
k ðx; yÞ ¼ Rs×s

k ðx; yÞ þ Rs×s
k−1ðx; yÞ

2
: (9)

This shows that McCann 99 Retinex computes the ratio-
product over varying orientations at multiple scales of s,
which is reminiscent of the orientation and spatial-frequency
processing of the primary visual cortex (Sec. 2).

4.3 Vision Model on Cortical Processing: Multiscale
ODOG Filtering Model

McCann 998 2-D L&M Retinex is analogous to a vision
model published in the same year by Blakeslee and
McCourt.50 This model was designed based on the physio-
logical structure of the primary visual cortex that separately
encodes varying orientations and spatial-frequency compo-
nents of the scene. The idea was to process the input
image, I, using multiple scales of ODOG kernels

EQ-TARGET;temp:intralink-;e010;326;100ODOGϕd;σsðx; yÞ ¼ Gσsðx; yÞ − Gϕd;σsðx; yÞ; (10)
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where Gσsðx; yÞ ¼ Ne
x2þy2

2σ2s;x (N is a normalization constant) is
a radially symmetric Gaussian kernel with the standard
deviation, σs, where s is the nominal index of the size

(scale) of the Gaussian. Gϕd;σsðx; yÞ ¼ Ne
ðx−ϕd;xÞ2

2σ2s;x
þðy−ϕd;yÞ2

2σ2s;y is
an elongated Gaussian with σs;y ¼ 2σs;x, and ϕd determines
the d’th orientation of the elongation.

The output of the model, O, predicts the percept of I

EQ-TARGET;temp:intralink-;e011;63;485Oðx; yÞ ¼ 1

D

XD
d¼1

P
S
s¼1 WsfODOGϕd;σsðx; yÞ � Iðx; yÞg

kPS
s¼1 WsfODOGϕd;σsðx; yÞ � Iðx; yÞgkx;y

;

(11)

which is obtained by filtering I with each ODOGϕd;σs ,
weighting the filtered image for each scale and summing
over the scales for each orientation, normalizing for each
orientation (d) these weighted sums by each of their own
root-mean-square (RMS) contrasts [k ·kx;y indicates RMS
computation for all the points ðx; yÞ], and then averaging
across the orientation.

Throughout a series of studies,50,51–55 Blakeslee and
McCourt showed that the multiscale ODOG filtering model
accounts for many lightness induction phenomena that were
previously not explained. White’s illusion is a classic exam-
ple (Fig. 2).50,56,57 In Fig. 2, the gray patches embedded in
the vertical black and white bars have the same luminance,
but the left patch appears lighter than the right patch. The
direction of the lightness change is toward the luminance
of the surround with which the patches have more contact
(e.g., the left set of patches share more borders with the
white than the black bars), and this phenomenon is thus
classified as assimilation. This type of assimilation is not
explained in terms of the retinal multiscale processing
described in Sec. 3. On the other hand, the ODOG multiscale
filtering model predicts White’s illusion.

McCourt, Blakeslee, and Cope58 recently extended the
model application to Land and McCann’s3 Mondrian-like
stimuli and demonstrated the operational similarity between
the multiscale ODOG filtering model and the Retinex theory.
While this demonstration was limited to lightness (rather
than chromatic) induction by achromatic stimuli, applying
the Retinex principle of channel independence (operating
the above algorithm on each RGB channel) may expand the
model feasibility to the color domain.

4.4 Comparing 2-D L&M Retinex to Multiscale
ODOG Filtering Model

Both the McCann 99 2-D L&M Retinex and the multiscale
ODOG filtering model involve the orientated multiscale
processing structure that is evidenced in the architecture of
the primary visual cortex. Of course, there are differences in
terms of algorithmic details between them, but we leave
more thorough mathematical analysis for future studies.
Here, we focus on outlining the important similarities
between them.

First of all, it is noticeable that the two algorithms sample
the same type of information from the input image. The
McCann 99 Retinex samples at a given resolution the differ-
ence of the average intensity at one region of the image from
its neighborhoods aligned in a particular orientation [see the
first two terms of Eq. (7)]. Filtering the input image with
ODOGϕd;σs [Eq. (10)] realizes essentially the same sampling
strategy except that it uses a Gaussian average rather than
the blockwise mean.

Both of the algorithms then sum up the sampled informa-
tion, albeit differently. 2-D L&M Retinex sums up the differ-
ence over the number of iterations across orientations first in
the coarse scale and then proceeds to finer scales [note that
this is not a linear summation due to the reset that follows the
ratio-product computation; Eqs. (4) and (8)]. The multiscale
ODOG filtering model linearly sums up across all the scales
and then across the orientations [note that orientation-
summation is not linear due to the normalization step; see
Eq. (11)].

It is worth noting again that the 2-D L&M Retinex and
the multiscale ODOG filtering model are models of human
vision. While the L&M Retinex throughout history has
aimed to predict color sensation,6,8,59 the multiscale ODOG
filtering model was developed to predict brightness for a
broad range of scene configurations, including the simple
assimilation and contrast configurations (Figs. 1 and 2) and
assimilation in more complicated patterns, as well as
Adelson’s checkershadow illusion that was traditionally
thought to involve illumination estimation.50,51,53–55 Thus,
the operational similarities between these two models58,60

imply some important common grounds in color and bright-
ness processing that are worth investigating in the future.

The degree of similarity between the 2-D L&M Retinex
and the multiscale ODOG filtering model in terms of infor-
mation sampling structure and the performances suggests
that the 2-D L&M Retinex may entail the cortex-like
operation.

5 Image Processing to Retinex and Neuroscience
Varitional approaches for Retinex formulate Retinex as an
optimization problem. They are largely subdivided into two
groups, one that estimates the optimal contrast of an image21

and the other that estimates the illumination/reflectance of
an image.17–20,61 Both types are shown to be a simplified
form of the Wilson–Cowan equation,20,62 a classic neural
model for the cortical population responses,26 while their
relationship to the visual system mechanisms is not clearly
established. We mainly cover the documentations of the first
group due to relevancy reasons, but the link between these
Retinexes and the physiological model in our discussion
holds for both groups.

Fig 2 White’s Illusion: the two gray patches have the same reflec-
tance, but the gray patch inside the black bar on the left appears
lighter than the patch inside the white bar on the right.
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5.1 Variational Model by Bertalmío et al.
Bertalmío et al.25 proposed a variational model for color
and contrast enhancement based on other image processing
techniques like the automatic color enhancement (ACE)
algorithm of Rizzi et al.63 and the variational histogram
equalization technique of Sapiro and Caselles.64 Although
those earlier works did not consider any physiological
evidence, later studies suggested a considerable algorithmic
similarity between the variational model of Bertalmío et al.25

and a physiological model of cortical population responses,
the Wilson–Cowan model65,66 (Sec. 5.2).

The algorithmic precedent of the variational model by
Bertalmío et al.25 is the histogram equalization equation
by Sapiro and Catelles64

EQ-TARGET;temp:intralink-;e012;63;595EðIÞ ¼ 2
X
x

�
IðxÞ − 1

2

�
2

−
1

AB

X
x

X
y

jIðxÞ − IðyÞj; (12)

where x, y are pixels and A, B are the image dimensions,
which is an energy functional to be minimized to obtain
a flat histogram.

Bertalmío et al.25 modified Eq. (12) to conform to the
perceptually based principles of the color enhancement
technique, ACE, such as channel independence, spatial
interaction, and grayworld hypothesis, and proposed a new
energy functional
EQ-TARGET;temp:intralink-;e013;63;459

EðIÞ ¼ α

2

X
x

�
IðxÞ − 1

2

�
2

− γ
X
x

X
y

wðx; yÞjIðxÞ − IðyÞj

þ β

2

X
x

½IðxÞ − I0ðxÞ�2; (13)

where wðx; yÞ is a weighting function that scales the weight
of y as its distance from x increases, I0 is the original image,
and α, β, and γ are positive weights. Minimizing Eq. (13)
locally enhances contrast (second term) and discounts the
illuminant to preserve color constancy (first term), while pre-
venting the image from departing too much from its original
values (third term). Bertalmío et al.25 showed that Eq. (13)
has a single minimum and that the image I minimizing
Eq. (13) is a fixed point of ACE. This indicates that ACE
is a numerical implementation of the gradient descent of
Eq. (13).

Equation (13) has the gradient descent equation

EQ-TARGET;temp:intralink-;e014;63;249ItðxÞ ¼ −α
�
IðxÞ − 1

2

�
þ γ

X
y

wðx; yÞsgn½IðxÞ − IðyÞ�

− β½IðxÞ − I0ðxÞ�; (14)

and the minimum of the energy functional, Eq. (13), is
obtained by updating ItðxÞ in Eq. (14) iteratively from the
initial values of I ¼ I0 until ItðxÞ reaches a steady state.
The resulting I is the output of the model.

The explicit connection of the variational model by
Bertalmío et al.25 to the Retinex theory was shown by
Bertalmío et al.21 Here the authors proposed a 2-D imple-
mentation of the Retinex algorithm, named the KBR, which
shares the essential elements of the 1-D-path based Milano
Retinex algorithm:22,23

EQ-TARGET;temp:intralink-;e015;326;752LðxÞ ¼
X
y∈A

wðx; yÞf
�
IðxÞ
IðyÞ

�
signþ½IðyÞ − IðxÞ�

þ
X
y∈A

wðx; yÞsign−½IðyÞ − IðxÞ�; (15)

where

EQ-TARGET;temp:intralink-;sec5.1;326;673signþðξÞ ¼
8<
:

1; if signþðξÞ > 0;
1
2
; if signþðξÞ ¼ 0;

0; if signþðξÞ < 0;

sign−ðξÞ ¼ 1 − signþðξÞ;

where A defines the image domain with symmetry
assumption.21 While the Milano Retinex using paths suffers
from image artifacts such as sensitivity to noise or appear-
ance of halos, KBR does not produce such artifacts. Yet,
KBR is unable to deal with overexposed images as is the
Milano Retinex.

Bertalmío et al.21 proved that the limitation of KBR with
overexposed images is imposed by the fact that there is no
such energy that is minimized by the iterative application of
the KBR algorithm. This led the authors to develop a modi-
fied version of KBR. As it turns out, this modified KBR
equation is essentially the gradient descent, Eq. (14), of
the energy functional in Eq. (13). In other words, the varia-
tional model of Bertalmío et al.25 is an iterative application of
a modified version of KBR that improves on the handling of
overexposed images.

5.2 Variational Retinexes to Wilson–Cowan Equation
Bertalmío and Cowan62 pointed out that the variational
model by Bertalmío et al.25 resembles the Wilson–Cowan
equation, a neural model that describes the population
responses of the primary visual cortex using the PDE26

EQ-TARGET;temp:intralink-;e016;326;355

∂aðr;ϕ; tÞ
∂t

¼ −αaðr;ϕ; tÞ

þ μ

Z
π

0

Z
R2

ωðr;ϕkr 0;ϕ 0Þσ½aðr 0;ϕ 0; tÞ�dr 0 dϕ 0

þ hðr;ϕ; tÞ; (16)

where the state aðr;ϕ; tÞ is the population of cells with cort-
ical space coordinates r ∈ R2 and orientation preference ϕ ∈
½0; πÞ α, μ are coupling coefficients, hðr;ϕ; tÞ is the external
input (visual stimuli), ωðr;ϕkr 0;ϕ 0Þ is a kernel that decays
with the differences jr − r 0j, jϕ − ϕ 0j, and σ is a sigmoid
function.

The similarity between the variational model by
Bertalmío et al.25 and the neuroscience model becomes
apparent with some generalization on Eq. (16). If we ignore
the orientation ϕ and assume that the input h is constant in
time, Eq. (16) takes the form

EQ-TARGET;temp:intralink-;e017;326;147

∂aðrÞ
∂t

¼ −αaðrÞ þ μ

Z
R2

ωðrkr 0Þσ½aðr 0Þ�dr 0 þ hðrÞ: (17)

Bertalmío and Cowan62 noted that the gradient descent of
the energy functional of the variational model by Bertalmío
et al.25 in Eq. (14) is nearly identical to the simplified,
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nonoriented version of the Wilson–Cowan equation in
Eq. (17) if the absolute difference operation, jIðxÞ − IðyÞj,
in the second term is replaced by σ½IðxÞ�. Note again that
the variational model is intrinsically an iterative application
of the Milano Retinex algorithm; this bridges the variational
model to the physiological model structure developed in the
neuroscience domain. At the same time, it is also implied
that the Wilson–Cowan equation is the gradient descent of
a certain energy.

It is worth noting that Zosso, Tran, and Osher20 also
deduced the connection of the variational Retinexes to the
Wilson–Cowan equation. Their work included an extensive
review on the history of the family of variational Retinexes
that formalize the Milano Retinex as a variational problem of
illumination/reflectance estimation.17–20,61 The authors then
proposed a new form of nonlocal variational Retinex for
reflectance estimation and showed that its estimate is equiv-
alent to the steady-state form of Eq. (17).

5.3 Variational Retinexes in Relation to Other
Retinex Families

The analysis of the variational Retinex models reveals poten-
tial ways to interpret diverse image processing problems
(e.g., contrast and color enhancement, histogram modifica-
tion, reflectance versus illumination parsing) in the context
of the Retinex theory and the physiological mechanisms
in the visual system. However, establishing an integrative
perspective should not be hasty. Here, we address some
precautions and prospects.

The algorithmic comparability between the variational
Retinex to the nonoriented Wilson–Cowan equation
[Eq. (17)] comes at the cost of the multiresolution processing
and the orientation-dependent processing. It thus appears as
if, at the end of the line, these Retinexes limit the functional
structure of the spatial interaction to what is comparable to
lateral inhibition, but in the conventional sense similar to
Land’s designator idea.10 On the other hand, the multireso-
lution and the orientation-dependent schemes are important
for predicting lightness.53,55,60,67

Bertalmío65 noted that the variational model [Eqs. (13)
and (14)] does not reproduce the perceptual phenomena
of assimilation and only generates a contrast effect. He sub-
sequently proposed to modify the model, substituting the
gray world hypothesis for a local mean and making the
weight γ depend on local contrast, which yields the evolution
equation
EQ-TARGET;temp:intralink-;e018;63;243

ItðxÞ ¼ −α½IðxÞ − μðxÞ� þ γðxÞ
X
y

wðx; yÞsgn½IðxÞ − IðyÞ�

− β½IðxÞ − I0ðxÞ�: (18)

This gradient descent scheme maintains the same effect of
contrast enhancement and attachment to I0, but now it tends
to maintain the local mean within the vicinity defined by
wðx; yÞ around the pixel ðx; yÞ instead of gravitating toward
the absolute global mean (i.e. gray). Equation (18) is shown
to be able to reproduce assimilation effects comparable with
human perception.47,68

There is an implicit link of Eq. (18) to the multiscale
NASA Retinex, which may be worth noting. They both
do not assume the global grayworld hypothesis and operate
on the difference between the given pixel value with the local

mean around it (“local” grayworld). In addition, Eq. (18)
may produce a multiscale effect due to the two spatial
terms, μðxÞ and wðx; yÞ, similar to the NASA Retinex. This
requires future clarification.

Another issue is that the original Wilson–Cowan equation
[Eq. (16)] entails the orientation processing. Given that the
2-D L&MRetinex and the multiscale ODOG filtering model,
with “oriented”multiscale processing, are capable of predict-
ing human lightness data in diverse scenarios (Sec. 4.4), it
may be of interest to consider a kind of “multiscale”Wilson–
Cowan equation rather than the simplified version. This may
provide a more formal analytic means to assess the relation-
ship between the variational Retinexes and other families of
Retinexes, as well as the physiological mechanisms.

Overall, we conclude that the variational Retinexes, at
least in the current forms, are retina-like as designator and
NASA Retinexes in their spatial processing structures.
All these Retinexes disregard reset operation unlike L&M
Retinex. Interestingly, the way performances of these
retina-like Retinex algorithms are evaluated is through visual
inspection or preference measures of visibly acceptable or
pleasing images. This is different from the original intention
of the L&M Retinex, which was to predict the color sensa-
tion of human observers. McCann69 pointed out, however,
that visual inspection cannot provide means to evaluate a
vision model since in this scheme the output of “a vision
model” would pass through the visual system again before
evaluation, which is problematic. Alternatively, the retina-
like Retinexes need to be considered as vision-inspired
image processing algorithms rather than a vision model.
At least, the goal of the retina-like algorithms is to improve
viewers’ experiences, which is distinguished from the origi-
nal L&M Retinex.

6 Conclusion
So far we reviewed various Retinex algorithms in their rela-
tion to the physiological mechanisms in the retina and the
primary visual cortex. Our intention was to suggest an initial
framework to which various Retinex algorithms are com-
pared. The effort has yet to quantitatively or mathematically
evaluate the Retinex variations regarding their computational
time, performance, predictability to human perception,
coherence to the physiological system, and compatibility
with other image processing tools. Linking the Retinex
theory to the physiological mechanisms can also lead to a
better understanding of the functional implications of the
physiological structure.

The Retinex theory appears to encompass other image
processing problems. Many of these problems revolve
around the issues of chromatic and achromatic contrast
processing that codes spatial intensity differences in the
scene. As was recognized by Barlow from about half a cen-
tury ago70,71 (see Ref. 72 for a review), minimizing the spatial
redundancies is the fundamental strategy of biological
vision.73,74 Understanding this spatial interaction strategy
both from a biological and a technical perspective may
thus provide further insights on the Retinex theory and assist
the development of relevant image processing techniques.
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