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Abstract. In movies and TV shows, it is common that several scenes repeat alternately. These videos are char-
acterized with the long-term temporal correlation, which can be exploited to improve video coding efficiency.
However, in applications supporting random access (RA), a video is typically divided into a number of RA seg-
ments (RASs) by RA points (RAPs), and different RASs are coded independently. In such a way, the long-term
temporal correlation among RASs with similar scenes cannot be used. We present a scene-library-based video
coding scheme for the coding of videos with repeated scenes. First, a compact scene library is built by clustering
similar scenes and extracting representative frames in encoding video. Then, the video is coded using a layered
scene-library-based coding structure, in which the library frames serve as long-term reference frames. The
scene library is not cleared by RAPs so that the long-term temporal correlation between RASs from similar
scenes can be exploited. Furthermore, the RAP frames are coded as interframes by only referencing library
frames so as to improve coding efficiency while maintaining RA property. Experimental results show that
the coding scheme can achieve significant coding gain over state-of-the-art methods. © The Authors. Published
by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in

part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.26.4.043026]
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1 Introduction

In video coding, the key to achieve high video coding effi-
ciency is to make full use of correlations in video. The short-
term temporal correlation has been well exploited by current
video coding. However, a substantial part of videos is
characterized with long-term temporal correlation since they
contain scenes that appear repeatedly. For example, in news
programs, the scenes of studio and logo clips may emerge at
intervals. In talk shows, the images of the hosts, the guests,
and the audience repeat alternately. In movies and TV series,
many scenes in dialogue clips and flashback episodes appear
repeatedly. The video coding efficiency would be highly
improved if the long-term correlation is well exploited.
During the development of video coding, the temporal
correlation in video has been more and more adequately
used owing to the improvement of temporal reference tech-
niques. In early video coding standards, such as MPEGI,
H.261, H.262/MPEG2,' and H.263,> only short-term tempo-
ral correlation was exploited because the compression algo-
rithms only made reference to one previous decoded picture.
Later, a multiple reference frame technique was introduced
by providing a long-term memory that stores seconds of
previously decoded frames (up to 50) to the codec so that
temporal dependencies in video containing repetitive motion,
uncovered background, noninteger pixel displacement, etc.
can be exploited.** The multiple reference frame idea was
further developed and adopted in the later video coding stan-
dards H.264/Advanced Video Coding’ and High Efficiency
Video Coding (HEVC),6 in which two kinds of frames, short-
term reference (STR) frames and long-term reference (LTR)
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frames, are stored in the decoded picture buffer and used for
motion compensation. STR frames, the neighboring frames of
the encoding frame, are used to eliminate short-term temporal
correlation while LTR frames, which are from distant past, are
employed to make use of long-term temporal correlation. In
practical application, the numbers of both STR frames and
LTR frames are limited because of: (1) the overhead of syntax
to signal reference frames; (2) exhaustive computation com-
plexity cost introduced by motion estimation (ME). Typically,
the number of LTR frames is set as one or two. For example, in
a well-known codec called VP8,’ only one LTR frame called
golden frame is enabled. In the latest Chinese video coding
standard AVS2,® a long-term background reference frame is
used to assist the coding of surveillance video.

Although LTR frames have been supported by many
video coding standards, the long-term temporal correlation
in videos with repeated scenes still exists. Previous works
always focus on exploiting the long-term temporal correla-
tion in a long scene.” " For example, in Refs. 9—12, a back-
ground frame was generated for a surveillance video and
used as an LTR frame to improve background prediction.
In Refs. 13 and 14, the optimal LTR frame interval
was investigated and LTR frames were adaptively selected
according to the accumulation of change in a scene. In
Ref. 15, the former two ideas were integrated, a background
frame was generated for LTR and then updated when more
background regions were exposed. However, the method of
selecting LTR frames for multiple repeated scenes in a video
to exploit their correlation has not been well explored. In
addition, random access (RA) is desirable in many applica-
tions. It enables seek, fast-forward, and fast-backward oper-
ations in locally stored video streams (e.g., DVD, BD, etc.).
In video-on-demand (VOD) streaming, it allows the servers
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Fig. 1 An example video with repeated scenes.

to respond to client requests. To support RA functionality,
the encoding video is divided into independent RA
segments (RASs) by RA points (RAPs) and the correlation
between RASs cannot be exploited. Moreover, the RAP
frames are all intracoded. An intraframe typically requires
several times more bits compared to an interframe with
the same quality since it takes no advantage of temporal
correlation. Because of above reasons, the rate-distortion
performance of current video coding is degraded.

In Ref. 16, we proposed a method for the coding of RAP
frames in video with repeated scenes. The representative
frames of the video were extracted and stored in a scene
library in advance. Then, the RAP frames were coded by
only referencing the scene library. The method in Ref. 16
can improve the coding efficiency of RAP frames and some-
what employ the correlation between repeated scenes.
However, there are still some problems. First, the construc-
tion of scene library was based on a front-to-back analysis of
the video. The first frame of a nonrepetitive scene was cer-
tainly chosen as library frame, which might not be efficient
for reference. Second, the method did not take advantage of
the scene library to optimize the coding of non-RAP frames,
thus the correlation between RASs was not fully used.

To make the best use of long-term temporal correlation in
videos containing repeated scenes, a scene-library-based
video coding (SLBVC) scheme is proposed in this paper.
The main contributions of this study are as follows: (1) A
video coding framework, in which the reference frames
are stored in a scene library not cleared by RAPs, is intro-
duced to exploit the correlations between RASs, as well as
similar scenes. (2) A method to build the scene library is
designed. The method is based on clustering and is able
to construct a compact scene library to facilitate the video
coding efficiency. (3) A layered coding structure based on
the scene library is proposed for the coding of each RAS.
In the layered coding structure, the library frames are intra-
coded. Each RAS is coded by referencing only one library
frame to improve coding efficiency while preserving the RA
capability. The proposed scheme is suited to stored video and
VOD streaming.

The rest of this paper is organized as follows: Sec. 2
presents the motivation and theoretical performance analysis
on the proposed scheme. The SLBVC scheme is described in
Sec. 3. The experimental results are discussed in Sec. 4.
Finally, Sec. 5 concludes the paper.
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2 Motivation and Theoretical Analysis

It has been said that many videos are composed of repeated
scenes. Figure 1 gives an example, which is extracted from
movie “The Man from Earth.”!” The example video can be
divided into 12 clips by scene change, which are signaled as
P;,i=12,...,12. The appearance time points of each clip
are signaled as T;, i = 1,2,...,12. Visually as some clips
belong to the same scene, there are five scenes in total,
which are marked as S;, i = 1,2, ..., 5. In current video cod-
ing, to support RA, the encoding video is divided into inde-
pendent RASs by RAPs. Without loss of generality, here we
discuss the coding of S|, which appears at a set of time points
{T,,T3,T,,}. The coding structure of S; is shown in Fig. 2.
It can be seen that Py, P5, and P, the clips of S}, are divided
into RASs, which are signaled as X, ;, Xj;, and Xy,
i=12,..., by RAPs. Not only the temporal correlation
between consecutive RASs in Py, P3, and P;; cannot be
used, the long-term temporal correlation between P, P,
and Pq; cannot be used, either. As a result, the coding effi-
ciency of S is limited. The RASs are independent from each
other because the decoded picture buffer is cleared up by
RAP picture. Naturally, we introduce a scene library that
stores reference frames and does not clear up at RAPs,
as shown in Fig. 3. Then, the quarantine between RASs is
broken. For S| in example video, the long-term temporal
correlation between consecutive RASs, as well as clips
P, P53, and P;; can be eliminated by referencing the library.
As a result, the coding efficiency of S; can be improved.

More generally, for sequence X, assume the RAPs are
inserted evenly according to the specified RA interval
(RAI). As shown in Fig. 4, sequence X is divided into
N independent RASs X,, n=12,...,N. X and X,
n=12,...,N can be regarded as vector sources.
According to rate-distortion theory,I8 the rate-distortion
function of X in current video coding R (Dx) can be written
as

priaas S~ay-” Ty
P
o Xl,l ° X1'2 coe| eae o X3.1 ces . o Xll,l eee ®RAP
T, T, Ts Ty T Ty,

Fig. 2 lllustration of encoding P4, P3, and P4y into RASs.
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Fig. 4 An illustration of video coding with uniform RAI.

R¢(Dx) = ZRX (dx,) > Rx,x,...x, (dx,. dx,, . ...dx,)

n=1

= Rx(Dx), (D

where Ry (dx ) and Rx(Dx) denote the classical Shannon
rate-distortion function of X,, and X, respectively. It can be
seen that the lower bound to rate of X is higher than the
Shannon lower bound because the correlations between
RASSs cannot be exploited.

In SLBVC, we employ a scene library that does not clear
at RAP to exploit the long-term temporal between RASs
from similar scenes. Use Y to represent the reference frames
in the scene library. Y is extracted from a part of RASs,
which can form a set signaled as ®. The coding process
of SLBVC is analogous to encoding RASs X, € ® first
and then letting the extracted reference frames Y referenced
by the rest RASs. The rate-distortion function of X in
SLBVC can be written as

Dx) = > Ry, (dx,)+ > Rx,v(dx,). 2)

X, ed X, ed

where Ry |y(dy,) is the conditional rate-distortion function
of X, given Y. Clearly, since reference frames Y can help the
coding of X,,,'"!” we have Ryx,y(dx,) < Ry, (dx,). Finally,
R%(Dx) can be expressed as

Compared with current video coding, the proposed scheme
can push the rate-distortion bound of X downward to
approach the Shannon rate-distortion bound.

3 Scene-Library-Based Video Coding Scheme

The framework of the SLBVC scheme is shown in Fig. 5. It
is composed of a traditional codec and two scene libraries.
The scene library at the encoder is built by extracting repre-
sentative frames of similar scenes in a video. Then, the
library frames are encoded into a unique stream and trans-
mitted to the decoder, so that the scene library can be recon-
structed in the decoder. In the encoding/decoding process,
each frame is coded using its most similar library frame
(MSLF) for LTR.

3.1 Clustering-Based Scene Library Construction

In practical implementation, we first extract library frames Y
from sequence X. Then, Y is coded and the reconstruction Y
is used for the reference of all RASs in X. So the rate—
distortion function of X is

N
RR(Dx) = Ry(dy) + Y Ry (dx), “4)
n=1

where Ry (dy) denotes the rate—distortion function of Y and
Ry ﬁg(dx”) represents the conditional rate-distortion func-

tion of X,, given Y. The aim of library construction is to
minimize the rate-distortion function shown in Eq. (4).
However, it is known that the intra-RAP frames use no
temporal correlation and their coding efficiency is not high.
So, the scene library has a much stronger impact on the RAP
frames. It is more efficient to build a library carrying high
correlation with the RAP frames rather than with the entire
encoding video. In addition, to simplify the construction of
the scene library, we also ignore the impact of distortion. As
a result, the goal of library construction can be modified as

N

min{H(Y) +) H(L,,|Y)}, (5)

n=1

where H(Y) is the entropy of Y, L,,, n = 1,2,..., N are the
RAP frames, and H(L,|Y) is the conditional entropy of L,
given Y. To minimize Eq. (5), on one hand, Y should share
as much correlations as possible with the RAP frames. On
the other hand, the entropy of Y should be limited as low

L c ) .
Rx(Dx) < Rg(Dx). €) as possible. As the library frames are used for the reference
Tencoder | : I eeea— Output video
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[ ld |
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Fig. 5 The framework of the SLBVC scheme.
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of RAP frames, they should be all intracoded to ensure the
RA capability of RAP frames. So, we directly extract the
library frames from the RAP frames. Then, the problems
become: (1) How many RAP frames should be extracted?
(2) Which RAP frames should be extracted?

If similar RAP frames can be clustered together, a single
cluster representative can serve as a good reference frame of
the others. This is a good optimization solution to Eq. (5). To
build the library, we classify the RAP frames into different
clusters, and the center frames of each cluster are specified as
library frames. K-means algorithm is employed for cluster-
ing because of its simplicity and efficiency.”’ Also, RAP
frames from the same scene have similar color histogram
features. So, the clustering is based on color histogram
feature.’'”> For an RAP frame L,, 1 <n <N, it can be
described by a color histogram as

L, ={fafa-- F27} (6)

where f4, 0 < p <256 represents the number of Y-compo-
nent with value p, 4,256 < p < 512 represents the number
of U-component with value p — 256, and f%, 512 < p < 768
represents the number of V-component with value p — 512.
Accordingly, the difference between two RAP frames L; and
L;, 1<, j< N can be calculated as

767

=> |7

p=0

D(L;,L;) - f7l- )

The K-means algorithm is implemented with given
clustering number K and initial clustering centers g,
k=1,2,...,K as follows:

Step 1: Classify each RAP frame L,, 1 <n <N to the
cluster k with minimum difference, as

~

k= arglskSK min[D(Ln’//lk)]' (8)

Step 2: Update the clustering centers. For cluster k, the
center frame is updated as the frame with the minimum
sum of differences with other frames in cluster k, which
is expressed as

Mk
py = L = arg, g, min {Z D(L, Lf)} ©)

i=1

where ny, is the number of frames belonging to cluster &,
L% and L* are the i’th and j’th frames, respectively, in
cluster k.

Repeat step 1 and step 2 until clustering centers y,
k=1,2,...,K do not change any more.

The number of clusters K needs to be explicitly specified
for K-means algorithm. However, how many library frames
should be extracted is not known as a priori. To find the opti-
mal number of clusters, we traverse all clustering options
with K varying from 1 to N. The clustering cost of each
option is calculated and the minimum clustering cost corre-
sponds to the optimal clustering number.

We define the clustering cost of each clustering option as
the sum of information content of all clusters. For K-cluster
clustering, the clustering cost is computed as
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ny

H(u) + ZH(LﬂMk)’ 10

i=1

Cost(K Z C,, C,=

where C; is the cost of k’th cluster, H(u;) is the entropy of
x> while H(L¥|u;) represents the conditional entropy of L¥
given y;. Use H(L¥, u,) to represent the joint entropy of L¥
and p;. The relationship between H(L¥|u;) and H(L, u;) is
given by

H(LF|uy)

We use the luma histogram of y; and the joint luma
histogram of L and p; to estimate H(y;) and H(L%, uy),
respectively.”? They are calculated as

= H(L, p) — H(uy). (11)

H(uw) == ) o log <ﬂ> (12
= TN TN
255 255 f”‘f pa
o), (13)
TN TN
p=0 g=

In Egs. (12) and (13), TN is the total number of pixels in a
picture, f% 3 represents the number of pixels with luma value
p in py, 27 L represents the number of pixel pair (p, q),

which means the luma values of the same position in L¥
and y,; are p and g, respectively.

By integrating Eqgs. (11)-(13) into Eq. (10), the clustering
cost Cost(K) can be derived. Traverse K from 1 to N to cal-
culate the cost of all clustering options. The clustering num-
ber is chosen as K, which corresponds to the minimum
clustering cost. After classifying the RAP frames into K
clusters, the center frames are extracted as library frames.
Note that there may be some clusters containing only one
frame, which has little correlation with other RAP frames.
Therefore, we only extract the center frames of clusters con-
taining multiple frames as library frames.

The value of K, is in the range of 1 to N. In extremes,
when K, is equal to 1, it means all RAP frames are similar
to each other. So, only one library frame is extracted. In con-
trast, when K is equal to N, it means the RAP frames are
different to each other. It is not efficient to use any frames as
the reference of the others. Thus, no scene library frames are
extracted.

Use the clustering of the scene change frames of
the example video in Fig. 1 as an example. There are
12 scene change frames, which are signaled as L,
i=12,...,12. After traversing all clustering options, a
curve of clustering cost Cost(K) relative to K is drawn as
Fig. 6. It can be seen that the optimal clustering number
is five, and the corresponding clustering result is shown
in Fig. 7. In the example, frames L, L,, Ls, Ly, and Ly,
are the center frames. As frame L, is the only frame in cluster
2, finally frames L, Lg, Ly, and Ly are extracted as the
library frames.

3.2 Coding Structure Based on Scene Library

Given the specified RAI, the distance of two consecutive
RAP pictures should be less than or equal to the specified
interval. Simply, RAP pictures are inserted with fixed RAI
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Fig. 6 The curve of clustering cost relative to cluster number of exam-

ple video.

(FRAI). However, RAP picture has another function that is
used as the reference frame of its following interframes in
the same RAS directly or indirectly. So, RAP pictures are
usually coded with higher quality for better interprediction
efficiency. For a video with multiple scenes, if scene change
occurs in an RAS, frames in the old scene are not suitable
to be used as reference frames of the new scene because of

Clusterl:

Cluster2:

Cluster3:

Cluster4:

Cluster5:

Table 1 The performance of ARAI over FRAI with RAI 32.

Sequence BD-rate Y (%) BD-rate U (%) BD-rate V (%)
Bigbang -2.1 -3.7 —-4.4
Cards -1.8 -2.3 -2.4
Sherlock -2.2 -3.8 -3.8
Earthman -2.3 -3.3 -3.1
Girls -2.2 -3.0 -2.9
Throne -2.3 -3.4 -3.1
Average -2.1 -3.2 -3.3

their low similarity. Thus, the coding efficiency of the RAS is
limited. As a result, we adopt an adaptive RAI (ARAI) cod-
ing structure®® in the SLBVC scheme. When scene change
happens, the scene change frame is coded as a RAP frame.
The later RAP frames are inserted at the specified interval
until the next scene change occurs. The ARAI structure can
facilitate inter prediction efficiency in the RAS at scene
change position so as to improve coding efficiency. Table 1
shows the coding efficiency of ARAI structure compared
to FRAI structure in terms of Bjgntegaard delta bit rate

Fig. 7 The clustering result of example video corresponding to the optimal clustering number (frames

with “*” are center frames).
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Fig. 8 The coding structures of (a) conventional video coding,
(b) LTR, and (c) SLBVC.

(BD-Rate).”> We employed six sequences containing multi-
ple scene changes for test. The details of the test sequences
can be found in Sec. 4. The test is conducted under RA
common test condition®® and the RAI is specified as 32.
It can be seen that 2.1% coding gain can be achieved by
the ARAI coding structure, which confirms the adoption
of ARALI structure in the proposed scheme.

Figure 8(a) shows the coding structure of two RASs from
the same scene in conventional video coding (for simplicity
we did not show multiframe reference and B-frames). The
RAP frames are all intracoded while the non-RAP frames
are coded as interframes by referencing neighboring frames
to exploit short-term correlation. A traditional LTR scheme is
implemented using RAP frame as the LTR frame of follow-
ing non-RAP frames in the same RAS, which is shown in
Fig. 8(b). In this way, the long-term correlation in an RAS
can be exploited. Now with the availability of the scene
library, the long-term correlation between RASs can also
be exploited.

In SLBVC, a layered coding structure is proposed, as
shown in Fig. 8(c). The library frames are coded as intra-
frames. Each RAP frame is coded as an interframe by
only referencing its MSLF, which is retrieved by color histo-
gram comparison.”’ Then, the MSLF of the RAP frame is
used as the LTR frame of the following non-RAP frames. We
do it this way because frames in an RAS belong to the same
scene with ARAI coding structure. So, the complexity for

library frames. In other words, the frames in the scene library
are not infinitely accumulated. After encoding/decoding a
video clip, the scene library is cleared. Then, a new scene
library will be built for the next clip. The video clip and
corresponding scene library are encoded into two streams.
In video stream, a signal for each frame is added to indicate
its MSLF in the library stream. Here, we only discuss the
library management strategies in VOD streaming applica-
tion, because for locally stored video streams, the strategies
are all the same except for omitting the stream request
operation.

In decoder, the video stream and the library stream are
downloaded and decoded synchronously. When the decoder
is capable of storing all the decoded library frames, they are
stored into the scene library and not to be removed. In this
way, the stored library frames can be directly reused by later
frames in the video clip. In contrast, when the decoder can
only store a part of the decoded library frames, e.g., mobile
devices, the downloaded library stream is stored in local. The
scene library works in a first-in, first-out manner to keep the
most recently decoded library frames. Then, later frames can
find their MSLFs either in the scene library or in the library
stream. For RA within current video clip, if the RAP frame to
be decoded cannot find its MSLF in the scene library, it will
search the stored library stream. If the MSLF cannot be
found in the stored library stream either, it will be requested
from the server. For RA across video clips, the scene library
and the stored library stream will be cleared. Then, the
streams of the RAP frame and its MSLF will be requested
from the server.

4 Experimental Results

4.1 Experimental Set-up

Experiments are conducted on six sequences containing
repeated scenes to evaluate the performance of the SLBVC
scheme. The test sequences were extracted from six movies
and TV series: “The Big Bang Theory,” “House of Cards,”
“Sherlock,” “The Man from Earth,” “2 Broke Girls,” and
“Game of Thrones.” The details of the sequences are
shown in Table 2. They all have a length of >4000 frames.
All sequences are composed of multiple scenes, a large
portion of which appear repeatedly.

The proposed scheme is implemented on an HM12.1%
encoder. We compare it with HEVC, the LTR scheme,
and the method in Ref. 16 to demonstrate its performance.

Table 2 Description of test sequences.

Sequence Resolution Fps (Hz) Length Scene change times

o Bigbang 1280 x 720 30 4080 52
retrieving the MSLFs of non-RAP frames can be saved.
Meanwhile, the RA property of the RAS is guaranteed. As Cards 1280 x 720 30 4337 23
a result, the long-term temporal correlation between RASs
can be exploited clearly. In addition to, the long-term temporal Sherlock 1280 x 720 30 4553 69
correlation in RASs can also be removed to some extent.

Earthman 640 x 360 30 4339 37

3.3 Scene Library Management Girls 640 x 360 30 4567 44
Due to storage capacity of code’c, the scene lll?rary is built for Throne 640 x 360 30 4336 46
video clip with several minutes’ length to limit the number of
Journal of Electronic Imaging 043026-6 Jul/Aug 2017 « Vol. 26(4)
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Table 3 The random-access configurations of HM.

Configuration Value Configuration Value Configuration Value
Profile Main LCU Size 64 Fast search Enable
Frame structure Hierarchical B Search range 64 SAO Enable

AMP Enable RDOQ Enable
GOP size 8 Hadmard ME Enable Rate control Disable

The sequences are encoded under RA common test condi-
tion, which is designed for RA applications. Table 3 shows
the details of RA common test condition. The quantization
parameter (QP) of test sequences QPg is set as 22, 27, 32, and
37 while the QP of scene library frames is empirically set as
QPg — 6, which usually leads to the best performance among
all QP values. In our experiments, the ARAI coding structure
is also employed by HEVC and the LTR scheme for fair
comparison. Two different RAI values are tested: 32, as
specified in RA common test condition; and 152 (5 s for
30 fps), which is the typical RAI used by online video

Table 4 The numbers of RAP frames, clusters, and library frames
with RAI 32 and 152.

RAI 32 RAI 152
RAP Library  RAP Library
Sequence frame Cluster frame frame Cluster frame
Bigbang 150 41 26 56 13 10
Cards 147 27 21 40 13 9
Sherlock 175 42 27 74 24 13
Earthman 152 23 21 46 12 10
Girls 166 53 29 53 14 9
Throne 158 47 28 50 10 8
1050
1000 ¢
g
2 950t
8
172]
E]
o 900
850

Clustering cost
(o8]
D
(=)

Clustering number

(@)

0 4150 100 150

websites. In the following description, we use RAI 32 and
RAI 152 to represent the conditions that the RAI is set as
32 and 152, respectively.

4.2 Results of Library Construction

The numbers of RAP frames and clusters of test sequences
are shown in Table 4. It can be seen that the RAP frames are
classified into a smaller number of clusters. The optimal
clustering number depends on the video content and the
number of RAP frames. An illustration of the curves of clus-
tering cost relative to clustering number of Bigbang is shown
in Fig. 9. The optimal clustering numbers are, respectively,
41 and 13 with RAI 32 and 152. After clustering, the scene
library is constructed by extracting the center frame of each
cluster. As only the center frames of clusters containing more
than one frames are chosen as library frames, so the number
of library frames is less than or equal to the number of clus-
ters, as also shown in Table 4.

4.3 Performance of Proposed Scheme

BD-Rate is used to evaluate the rate-distortion performance
of the proposed scheme. Note that each non-RAP frame also
uses the library frame as LTR frame, so the coding perfor-
mance is evaluated on the whole sequence. The bits brought
by the scene library are taken into consideration when cal-
culating the bitrate. The achieved gains of the LTR scheme,
the scheme in Ref. 16, and the proposed scheme with respect
to HEVC are shown in Table 5. It can be seen that with
RAI 152, there is some long-term temporal correlation in
RAS that can be exploited, so the LTR scheme can achieve

3901

(953
W
(=]
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330 P ‘ : ‘
0 1013 20 30 40 50
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Fig. 9 The curves of clustering cost relative to clustering number of Bigbang with (a) RAI 32 and

(b) RAI 152.
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Table 5 The performances of LTR scheme, scheme in Ref. 16, and
SLBVC scheme compared to HEVC.

RAI 32 RAIl 152

LTR Ref.16 SLBVC LTR Ref.16 SLBVC
Sequence (%) (%) (%) (%) (%) (%)
Bigbang -02 -16.2 -195 -05 -6.6 -10.8
Cards 0.1 -30.9 -374 -0.8 -9.8 -16.3
Sherlock -0.1 -19.2 -26.5 -0.7 -3.8 -16.2
Earthman 0.2 -28.0 -36.2 0.1 -9.9 -12.5
Girls 0.0 —-24.4 -34.9 -0.9 -3.6 -15.9
Throne 0.3 -23.2 -35.8 -0.1 -9.8 -15.0
Average 0.1 -23.6 -31.7 -0.5 -7.2 -14.4

0.5% coding gain. However, with RAI 32, few long-term
temporal correlation is left because of the short length of
RAS, thus the LTR scheme cannot bring any coding gain.
However, the scheme in Ref. 16 and the proposed scheme
can achieve much higher coding gain because they are
capable of removing the long-term temporal correlation
between RASs and repeated scenes. Also for the both schemes,
the performance with RAI 32 is better than RAI 152. This is

because much more long-term temporal correlation between
RASs remains with shorter RAI structure but now can be
removed. Compared to Ref. 16, the bit-savings of the pro-
posed scheme are 8.1% with RAI 32 and 7.2% with RAI
152. These coding gains are obtained due to the more effi-
cient scene library built with the cluster-based method and
the better coding of non-RAP frames.

Figures 10 and 11 show the rate-distortion curves for all
six test sequences by four schemes: HEVC, the LTR scheme,
the scheme in Ref. 16, and the SLBVC scheme with RAI 32
and 152, respectively. The rate-distortion curves of the LTR
scheme and HEVC are hardly distinguishable because of
their close performance. However, the rate-distortion curves
of the SLBVC scheme are obviously above that of the other
three schemes, which reveals the remarkable performance of
the proposed scheme. For sequences Cards (1280 x 720) and
Throne (640 x 360), the maximal bitrate is around 200 and
100 kbps because the images contain a lot of dark regions
and lack high efficiency components. It does not take too
many bits to encode them even with very high quality.
For the other sequences with rich colors and textures, the
bitrate can be up to hundreds of kbps. In summary, the pro-
posed scheme can deal with different types of video contents
and show advantage over a wide range of bitrate.

In addition to the improvement in objective performance,
visual quality is also significantly improved by the proposed
scheme. When the SLBVC scheme is applied, coding arti-
facts caused by aggressive compression, such as blockiness
and blurriness, will be greatly alleviated. Figure 12 shows a
set of images cropped from the middle frame of an RAS in
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Fig. 10 The rate-distortion curves of (a) Bigbang, (b) Cards, (c) Sherlock, (d) Earthman, (e) Girls, and

(f) Throne with RAI 32.
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Fig. 11 The rate-distortion curves of (a) Bigbang, (b) Cards, (c) Sherlock, (d) Earthman, (e) Girls, and
(f) Throne with RAI 152.

(b)

Fig. 12 Images cropped from the middle frame of an RAS in sequence Sherlock with RAI 32. (a) By
SLBVC (72 kbps), (b) by HEVC (86 kbps), and (c) original image.

Sherlock coded with RAI 32. The first image is coded by the
proposed scheme, the second image is coded by HEVC, and
the third one is the original image used for comparison. The
bitrate of the proposed scheme and HEVC is, respectively, 72
and 86 kbps, the PSNR values of the images range between
39 and 41 dB. It can be seen that the contour of the actor’s
face (eyes and nose) is much better preserved by the pro-
posed scheme. Similarly, Fig. 13 shows the images cropped
from Bigbang coded with RAI 152. Also, the textures of
the clothes are visually clearer with the proposed scheme.
As a result, we can conclude that the subjective quality of
proposed scheme is much better than that of HEVC.
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4.4 Discussion of Random Access

In VOD streaming, sometimes the users do not want to watch
the entire video sequence. They may request only part of the
sequence from the server by RA. When only a video part is
transmitted to the client, only the referenced library frames
instead of the whole library need to be synchronously
transmitted. It is feasible because the library frames are intra-
frames and independent from each other. With the length
of the transmitted video part decreasing, the number of
frames that a library frame is referenced by also decreases.
The performance of the SLBVC scheme may deteriorate.
Howeyver, since about 75% users watch the entire video in
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(@)

(b) (©)

Fig. 13 Images cropped from the middle frame of an RAS in sequence Bigbang with RAI 152. (a) By
SLBVC (139 kbps), (b) by HEVC (145 kbps), and (c) original image.

practice,””*? the proposed scheme is still valuable for VOD
streaming application.

We simulate the performance when part of the sequence
transmitted in VOD streaming. Assume the test sequence
contains N RASs with RAI 152. We test a series of trans-
mitted lengths round(4;), m = 0,1, ..., mx*, where round(x)
is the function that rounds the variable to the nearest integer,
and mx is the least integer satisfying round(z%) = 1. Ineach
test option, the test sequence is divided into homogeneous
parts at the specified transmitted length. The coding perfor-
mance (BD-rate) of each part is calculated with considering
the bits of the referenced library frames. Then the perfor-
mances of all parts are averaged to derive the final result.
Figure 14 shows the curves of coding performance relative

to m of all sequences. The value of mx for Cards and
Earthman is 5, whereas for the other sequences is 6. There
is performance deterioration with the increase of m and even
performance loss when m is too large. However, perfor-
mance improvement can still be observed over a large
range of transmitted length. For Bigbang, Sherlock, Girls,
and Throne, when m is between 0 and 3, which corresponds
to that 12.5% to 100% of the whole sequence is transmit-
ted, there is coding efficiency improvement. For Cards,
a larger range of m between 0O and 4 is observed to show
coding gain. For Earthman, although the range of m with
coding gain is narrower (0 to 2), the proposed scheme
still outperforms HEVC if only no <25% of the sequence
is transmitted.
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Fig. 14 The curves of coding performance (BD-Rate) relative to m of (a) Bigbang, (b) Cards,
(c) Sherlock, (d) Earthman, (e) Girls, and (f) Throne with RAI 152.
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4.5 Complexity Analysis

The complexity of the proposed scheme is imposed by scene
library construction (RAP frame clustering and library frame
encoding), MSLF selection, and video coding. As the HM
encoder is written in C++, the algorithms of scene library
construction and MSLF selection are also implemented in
C++ for fair comparison. The experiments are conducted
on Intel(R) Xeon (R) CPU E5- 2690 0 @2.90 GHz with
190G RAM memory. The complexity of each process is
measured by the running time.

The computational complexity of SLBVC Tg gyc can be
expressed as

Tggve =T+ T, + T3+ Ty, (14)

where T;, i = 1,...,4 represent the running time of RAP
frame clustering, library frame encoding, MSLF selection,
and video coding, respectively. The complexity distributions
of each process with RAI 32 and 152 are presented in
Tables 6 and 7. In RAI 152, Ty, T,, and T3 occupy about
0.04%, 0.05%, and 0.001% of the total time. While in
RAI 32, the percentages of T, T, and T increase to 0.79%,

Table 6 The complexity distribution of each process in SLBVC with
RAI 32.

RAP frame Library frame MSLF Video
Sequence clustering (%) encoding (%) selection (%) coding (%)
Bigbang 0.50 0.15 0.002 99.35
Cards 0.33 0.11 0.001 99.56
Sherlock 0.55 0.13 0.002 99.32
Earthman 1.14 0.10 0.002 98.76
Girls 0.98 0.16 0.002 98.86
Throne 1.27 0.12 0.002 98.61
Average 0.79 0.13 0.002 99.08

Table 7 The complexity distribution of each process in SLBVC with
RAI 152.

RAP frame Library frame MSLF Video
Sequence clustering (%) encoding (%) selection (%) coding (%)
Bigbang 0.03 0.05 0.001 99.91
Cards 0.01 0.04 0.001 99.94
Sherlock 0.04 0.06 0.001 99.89
Earthman 0.04 0.04 0.001 99.92
Girls 0.04 0.05 0.001 99.91
Throne 0.08 0.05 0.001 99.87
Average 0.04 0.05 0.001 99.91
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Table 8 The video coding time of LTR and SLBVC compare to
HEVC.

RAI 152 RAI 32
Sequence LTR (%) SLBVC (%) LTR (%) SLBVC (%)
Bigbang 125.9 131.0 125.8 133.7
Cards 125.3 130.0 125.1 130.1
Sherlock 127.0 133.7 126.8 133.5
Earthman 125.6 132.8 125.6 133.7
Girls 126.0 132.6 125.7 130.9
Throne 126.7 129.1 123.9 127.5
Average 126.1 131.5 125.5 131.6

0.13%, and 0.002% for the reason of more RAP frames.
Especially for T, assume the number of RAP frames is
N, the number of times of computing distances between
frames is O(N3). Thus, the increase of complexity is
much higher than 7, and T;. Overall, compared with the
complexity of video coding, T4, T, T», and T3 are rather
small and can be neglected.

Use the video coding time of HEVC as anchor, the video
coding time of the LTR scheme and the proposed scheme is
shown in Table 8. It can be seen that about 24% to 34% extra
complexity is brought into video coding by the LTR scheme
and the proposed scheme. It is because an additional LTR
frame is employed by each frame in both schemes, thus
the ME complexity is increased. Also, the video coding com-
plexity of SLBVC is slightly higher than the LTR scheme by
6% in average as the RAP frames are coded as inter-frames.
Considering the high performance of the SLBVC scheme,
the complexity increase is acceptable.

5 Conclusion

In this paper, an SLBVC scheme is presented to improve the
coding efficiency of videos with repeated scenes. The pro-
posed scheme is capable of exploiting long-term temporal
correlation between RASs which belong to similar scenes.
It can be applied to stored video application (e.g., DVD,
BD, etc.) and VOD streaming. Compared to state-of-the-
art method, the scheme can achieve 8.1% and 7.2% coding
performance improvement on the whole sequence with RAI
32 and 152, respectively. Although the performance may
degrade when only part of sequence is transmitted in stream-
ing, the proposed scheme still shows advantage over a large
range of transmitted length.

A couple of extensions of our current work can be further
explored in the future. For example, more accurate clustering
criteria can be investigated for the clustering algorithm to
build a more efficient scene library. Also, the coding quality
of library frames can be adaptively optimized according to
the times they are referenced to improve overall coding effi-
ciency. We will work on these issues to further improve the
efficiency of the SLBVC scheme.
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