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Abstract. With the prevalence of video recordings from smart phones, dash cams, body cams, and conventional
surveillance cameras, privacy protection has become a major concern, especially in light of legislation such as
the Freedom of Information Act. Video redaction is used to obfuscate sensitive and personally identifiable
information. Today’s typical workflow involves simple detection, tracking, and manual intervention. Automated
methods rely on accurate detection mechanisms being paired with robust tracking methods across the video
sequence to ensure the redaction of all sensitive information while minimizing spurious obfuscations. Recent
studies have explored the use of convolution neural networks and recurrent neural networks for object detection
and tracking. The present paper reviews the redaction problem and compares a few state-of-the-art detection,
tracking, and obfuscation methods as they relate to redaction. The comparison introduces an evaluation metric
that is specific to video redaction performance. The metric can be evaluated in a manner that allows balancing
the penalty for false negatives and false positives according to the needs of particular application, thereby assist-
ing in the selection of component methods and their associated hyperparameters such that the redacted
video has fewer frames that require manual review. © 2017 SPIE and IS&T [DOI: 10.1117/1.JEI.26.5.051406]
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1 Introduction
A new era of surveillance has been ushered in due to
advances in camera, data storage, and communications tech-
nology coupled with concerns for public safety, police-pub-
lic relations, and cost effective law enforcement. According
to IHS,1 there were 245 million professionally installed video
surveillance cameras active and operational globally in 2014.
While the majority of these cameras were analog, over 20%
were estimated to have been network cameras and around
2% were HD CCTV cameras. The number of cameras
installed in the field is expected to increase by over 10% per
year through 2019. Traditional police static video surveil-
lance systems typically consist of networks of linked cam-
eras mounted at fixed locations in public spaces such as
transportation terminals, walkways, parks, and government
buildings. There is also a great increase of law enforcement
cameras on mobile platforms, such as dash cams and body
cams. A 2013 Bureau of Justice Statistics release indicated
that 68% of the 12,000 local police departments used in-car
cameras.2 A survey of large city and county law enforcement
agencies on body-worn camera technology indicated that
95% planned to deploy body cameras.3 These public, as well
as private, surveillance systems have been a great aid in iden-
tifying and capturing suspects, as well as revealing behaviors
between the public and law enforcement.

This vast amount of video data being collected poses a
challenge to the agencies that store the data. Records created
and kept in the course of government business must be

disclosed under right-to-know laws unless there is an excep-
tion that prevents disclosure. The Freedom of Information
Act (FOIA), 5 U.S.C. 552, is a federal law that establishes
a presumption that federal governmental information is
available for public review. Under FOIA, federal agencies
are required to issue a determination on a disclosure within
20 working days of receipt of the request or appeal, which
can be extended by 10 days in circumstances such as the
request is for a significant volume of records or requires
collection of records from different offices or consultation
with another agency. State law enforcement agencies operate
under similar disclosure guidelines.

Video recordings are considered public records for the
purpose of right-to-know laws, and privacy is one exception
to reject a request for disclosure. Rather than an outright
rejection of a complete video record of an event, it is becom-
ing common practice to redact portions of the video record.

Redaction protects the privacy and identity of victims,
innocent bystanders, minors, and undercover police officers.
Redaction involves obscuring identifying information within
individual video frames. Identifying information often
includes but is not limited to faces, license plates, identifying
clothing, tattoos, house numbers, and computer screens.
Obscuring the information typically involves blanking out
or blurring the information within a region. The region
could be a tight crop around a person’s face, for example.
Alternatively, redaction could involve blanking out the entire
frame except portions that are not considered private. An
example of redaction is shown in Fig. 1, where blurring is
used to obfuscate the body. Figure 2 shows the high level
process of releasing a redacted video.*Address all correspondence to: Shagan Sah, E-mail: sxs4337@rit.edu

Journal of Electronic Imaging 051406-1 Sep∕Oct 2017 • Vol. 26(5)

Journal of Electronic Imaging 26(5), 051406 (Sep∕Oct 2017) REVIEW

http://dx.doi.org/10.1117/1.JEI.26.5.051406
http://dx.doi.org/10.1117/1.JEI.26.5.051406
http://dx.doi.org/10.1117/1.JEI.26.5.051406
http://dx.doi.org/10.1117/1.JEI.26.5.051406
http://dx.doi.org/10.1117/1.JEI.26.5.051406
http://dx.doi.org/10.1117/1.JEI.26.5.051406
mailto:sxs4337@rit.edu
mailto:sxs4337@rit.edu


The present paper reviews the video redaction problems
and challenges, rigorously explores detection and tracking
methods to enable redaction, and introduces a detection
and tracking metric specifically relevant to redaction. The
remainder of the introduction reviews current redaction prac-
tices. Section 2 reviews the two main components of a redac-
tion system: object detection and object tracking. Section 3
presents a metric for evaluating the redaction system.
Section 4 examines various types of obfuscations, and Sec. 5
discusses open problems in the redaction space.

1.1 Current Approaches to Video Redaction
Various approaches have been proposed and applied to pri-
vacy protection in videos. The most common ones apply vis-
ual transformations on image regions that contain the private
or personally identifiable information (PII). These obfusca-
tions can be as simple as replacing or masking faces with
shapes in video frames.4 Other common obfuscations hide
objects by blurring, pixelation, or interpolation with the
surroundings. More advanced techniques utilize edge and
motion models for the entire video to obscure or remove the
whole body contour from the video.5 Some approaches
involve scrambling the part of the image using a secret
encryption key to conceal identity.6 Korshunov and Ebrahimi7

show the use of image warping on faces for detection and
recognition. Although some studies have also shown the
use of RFID tags for pinpointing the location of people in
space,8 most studies rely on image-based detection and
tracking algorithms to localize an object in a video frame.

Recently, Corso et al.9 presented a study with analysis on
privacy protection in law enforcement cameras. The redac-
tion process can be very time and labor intensive and thus
expensive for a law enforcement agency. Improvements in
automated redaction offer the potential to greatly relieve this
cost burden. The three primary steps in a process using auto-
mation are localization of object(s) to be redacted, tracking
of these objects over time, and their obfuscation. While these
steps can be fully performed manually with video editing

tools, current approaches are moving toward semiautomatic
redaction with a manual review with extensive manual edit-
ing, which is necessary as less than perfect obfuscation of an
object in even a single video frame may expose the identity
and hence defeat the entire purpose of privacy protection. For
example, there are commercially available tools that offer
basic video redaction functionality. They have a friendly
interface that gives the user the ability to manually tag the
object of interest. The tagged object can then be tracked in
a semiautomatic fashion through portions of the video. How-
ever, detection and tracking performance limitations still
typically require a manual review to verify the final redaction.

In some existing tools, there is automated face detection,
but it is limited to frontal faces and fails with occlusions,
side views, size, or low-resolution images. Another common
option in existing redaction tools is a color-based skin detec-
tion option; however, their efficacy with different color skins
is limited. Automatic blur of the entire image is also avail-
able, but it reduces any contextual meaning in the image.
YouTube provides a facility to detect human faces and blur
them. However, our analysis indicates that it fails with side
view faces, occlusions, and low-resolution videos.

2 Components of a Redaction System
A typical redaction system relies on two key components:
object detection and tracking. Object detection is required
for automatic localization of relevant objects in a scene or
video. Such automated localization prevents requiring manual
tagging of the objects of interest. A tracking module then uses
the tagged object information to estimate object positions in
the subsequent frames. The performance of the detection and
tracking modules control the efficiency of the redaction sys-
tem—higher accuracy requires less manual review and/or val-
idation of results. We review common detection and tracking
techniques along with relevant datasets.

2.1 Object Detection
In the field of computer vision, object detection encompasses
detecting the presence of and localizing objects of interest
within an image. Object detection can assist the redaction
problem by finding all of a certain category of object, for
example faces, in a given image. The output of an object
detection algorithm is typically a rectangular bounding box
that encloses each object or a pixel-level segmentation of
each object from its surroundings.

A variety of methods exist for object recognition and
localization on still images (e.g., single video frames).
A brief overview of some recent state-of-the-art techniques
relevant to redaction is presented in the sections below.
In Sec. 2.2, the ability to leverage temporal information to
extend the results from object detection across a video
sequence (i.e., series of video frames) is covered.

Fig. 1 Example of redaction with blurring.

Fig. 2 Example of a typical video redaction system.
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2.1.1 Sliding window approach

When considering the output of an object detection algo-
rithm as a bounding box around the object(s) of interest,
one intuitive method that has been applied is a sliding win-
dow approach. Here, a detection template is swept across the
image, and at each location the response of an operation such
as an inner product with the template or a more complex
image classification is computed. The resulting detections
(desired bounding box locations) are then selected as the
template locations (center and template size) that meet a
predetermined response threshold. For example, the Viola–
Jones sliding-window method10 was considered the state-of-
the-art in face detection for some period of time. Unfor-
tunately, sliding window-based approaches are computation-
ally expensive as the number of windows can be very large to
detect objects of different scale and sizes. As such, sliding
window approaches are less common for video-based redac-
tion applications.

2.1.2 Region proposals

Region proposals are candidate object subregions (windows)
in an image that are computed based on low-level image
features. A variety of studies11–17 have suggested different
region proposal generation methods using techniques such as
hierarchical grouping, superpixel features, and graph cuts
to score candidate region proposals. In most cases, region-
proposal-based methods tend to oversample the image.
Producing more candidate regions than actual objects
reduces the likelihood of missing an object of interest (i.e.,
trades off more false alarms for fewer missed detections).
Improved localization performance is then often achieved
by pruning the raw set of candidate regions using some
form of image-based classification step.

Object detection using the region proposals is generally
based on a classifier. The classifier [e.g., neural networks,
support vector machine (SVM), k-nearest neighbor, etc.] is
applied to the features [e.g., CNN, Harris corners, SIFT,
histogram of oriented gradient (HOG), etc.] extracted for
each of the candidate region proposals to obtain a confidence
score or probability for each candidate region. In alternate
approaches, the model directly regresses a refined set of
bounding box parameters (e.g., location, width, and height)
for the final set of object detections.

2.1.3 Recent methods

Deep learning has achieved state-of-the-art results in a vari-
ety of different classification tasks in computer vision.18 In
2014, Region Convolutional Neural Network (RCNN)19 first
applied the Convolutional Neural Network (CNN) architec-
ture to the task of object localization. Since then, a variety of
other deep learning-based methodologies for addressing the
object detection and localization problem have been pub-
lished, including fast-RCNN20 and faster-RCNN.21

More recently, the you only look once (YOLO)22 archi-
tecture was shown to achieve computational throughput
speeds compatible with real-time video processing while
also producing object localization results comparable with
the prior methods. YOLO formulates object detection as a
regression problem with the objective to predict bounding
box coordinates and class confidence in an image by applying
a single-pass CNN architecture. For redaction applications,

the class labels and bounding box coordinates can be used to
determine which image subregions should or should not be
obfuscated.

2.1.4 Pixel-based methods

For redaction purposes, the output of an object detection
might need to be inferred at a scale finer than a bounding
box. For instance, consider the scenario in which there is PII
for a bystander near a suspect’s face in an image. Here,
choosing to not redact a bounding box region around the sus-
pect’s face might be insufficient, allowing unwanted PII to
be visible. An example illustrating the deficiency of using
just a bounding box region around the suspect is shown in
Fig. 3.

As an alternative to a bounding box approach, it is
possible to assign a class label to each pixel in an image.
Although similar learning-based algorithmic techniques as
described above can be used, the output is a semantically
segmented image. Recent approaches24–27 based on fully
convolutional neural network (FCN) methods24,28 take in
arbitrary size images and output region level classification
for simultaneous detection and classification. Chen et al.24

used conditional random fields to fine tune the fully convolu-
tional output. Wu et al.29 did extensive experiments to find
optimum size and number of layers, then used bootstrapping
and dropout for highly accurate segmentation.

For redaction applications, pixel-based methods for object
localization can provide some advantages in terms of better
differentiating foreground areas of interest (i.e., nonredacted
regions) and surrounding background content that is to be
redacted. However, any pixel-level missed detections in such
a scenario translate into the potential for under-redaction of
personal information. Thus, appropriate design choices must
still be made to ensure acceptable overall redaction perfor-
mance. Here, both over- and under-redactions must be appro-
priately considered. Appropriate performance measures for
redaction will be discussed in more detail in Sec. 3.

2.2 Object Tracking
Similar to object detection in images, object tracking in
videos is an important technology for automated redaction.
Given the initial position and size of an object, a tracking
algorithm should estimate the state of the object in subsequent

Fig. 3 Example of application of pixel-level segmentation on a sample
image from AFLW23 dataset.
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video frames. By maintaining a “lock” on the object of inter-
est (person, face, license plate, etc.), the tracking algorithm
helps to maintain object localization despite potential errors
being committed by the object detector running on each
video frame. An example of this is shown in Fig. 4.

Fundamentally, tracking an object involves extracting fea-
tures of that object when first detected and then attempting to
find similar (matching) features in subsequent frames. The
major challenges associated with object tracking include
illumination variation, changes in object scale, occlusions
(partial or complete), changes in object pose or perspective
relative to the camera, and motion blur. To be successful,
tracking methods need to be robust to these types of noise
factors, and tracking performance depends heavily on the
features used.31

2.2.1 Motion-model-based approaches

Temporal differencing algorithms can detect objects in
motion in the scene; alternatively, background subtraction,
which requires the estimation of the stationary scene back-
ground, followed by subtraction of the estimated background
from the current frame, can detect foreground objects (which
include objects in motion). The output of either approach is a
binary mask with the same pixel dimensions as the input
video that has values equal to 0 where no motion/foreground
objects are detected and values equal to 1 at pixel locations
where motion/foreground objects are detected. This detec-
tion mask is usually postprocessed via morphological oper-
ations that discard detected objects with size and orientation
outside predetermined ranges determined by the geometry
of the image-capture scenario. Once candidate foreground
objects have been detected, methods such as particle filtering
are typically applied to leverage temporal information in
linking objects in the current image frame with observations
of these objects from prior frames.

2.2.2 Appearance-based tracking

Appearance-based trackers32–34 rely on hand-crafted or
machine-learned features of each object’s visual appearance
to isolate and match objects. Simple examples of this type
of approach would include using fixed template matching
(e.g., using two-dimensional correlation) or color histogram
matching (e.g., using the mean-shift algorithm) to follow
objects from frame-to-frame.

Appearance-based methods tend to be susceptible to large
appearance changes due to varying illumination, heavy shad-
ows, dramatic changes in perspective, etc. To address these
issues, some approaches make use of adaptive color fea-
tures35 or online learned dictionaries of appearance models
(such as in the track-learn-detect paradigm36,37) for objects
that are being tracked. A key challenge with these types of
methodologies then becomes the difficulty in tuning the
online adaptation parameters. Here, the appearance models
must be updated fast enough to accommodate changes in
object appearance within the scene. However, tracker failures
can increase if the models become overly responsive—incor-
porating too many extraneous appearance characteristics due
to noise or surrounding background image content.

2.2.3 Track-by-detection

Detection of objects in individual frames can be extended to
enable tracking and trajectory estimation. Recent success in
object detection has led to development of tracking by
detection38–40 that uses CNN to track objects by detecting
them in real time. Such approaches, however, have limita-
tions in handling complex and long occlusions, where the
fundamental object detection will struggle. A recent work
on object detection in videos41 used a temporal convolution
network to predict multiple object locations and track the
objects through a video.

Since the image-based detector must be applied at each
video frame, a key challenge for track-by-detection methods
tends to be the computational overhead required. However,
since the YOLO approach leverages a single-shot network, it
has been shown to achieve state-of-the-art object detection
and localization in images at video frame rate speeds. Thus,
YOLO is a natural candidate for tracking-by-detection-based
approaches to following objects of interest in videos.

2.2.4 Recurrent networks for object detection

An object detector used for tracking performs frame-by-
frame detection but fails to incorporate the temporal features
present in the video. To overcome this, a recurrent neural
network can be applied to exploit the history of object
location.40 The recurrent units in the form of long short term
memory (LSTM)42 cells use features from an object detector
to learn temporal dependencies. The loss function for train-
ing the LSTM minimizes the error between the predicted and

Fig. 4 Illustration of object detection compared with object tracking for a video stream. In the case of
occlusions (center), tracking techniques are able to project the location of the object using temporal infor-
mation. Example video from PEVid dataset.30
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ground truth bounding box coordinates. Although the utiliza-
tion of temporal information by tracking across multiple
frames can increase robustness, it significantly deteriorates
the ability to perform tracking in real time.

In another recent method,43 an online and offline tracker is
proposed for multiobject tracking. Appearance (based on
CNN features), shape, and motion of objects are used to
compute the distance between current tracklets and obtained
detections into an affinity matrix. The affinity is used as a
measure to associate the current tracklets with the detections
obtained in a frame using the Kuhn–Munkres algorithm. The
offline tracker uses K-dense neighbors to associate tracklets
and current detection.

2.3 Datasets of Interest
2.3.1 Image datasets

The most common objects redacted for privacy protection
are faces, persons (i.e., full human body), house numbers,
vehicle license plates, visible computer screens (which may
be displaying PII), and skin regions or markings (e.g.,
tattoos). There are a number of published object detection
datasets that are relevant to redaction. Although not tailored
specifically to redaction, many of these datasets contain
objects of interest for redaction. In addition, these data sets
typically provide annotation of individual object locations
and class labels, so they can easily support performance
evaluation of redaction methods.

The widely used PASCAL visual object classes (VOC)
dataset44,45 has detailed semantic boundaries of 20 unique
objects taken from consumer photos from the Flickr website.
Among the object categories, the most relevant to redaction
are the person and TV/monitor classes. However, the car,
bus, bicycle, and motorbike classes could also be of interest

depending on the redaction application. The complete data-
set consists of 11,530 training and validation images. The
“person” category is present in over 4000 images and the
“tv/monitor” category in roughly 500 images.

Alternative datasets include an increased number of
annotated categories and images. For example, MSCOCO
objects46 have 80 categories with 66,808 images having
person and 1069 images having tv/monitor categories as
pixel-level segmentations. The ImageNet objects47 have 200
categories of common objects annotated with bounding
boxes in over 450,000 images. The KITTI dataset48 consists
of 7481 training and 7518 test images collected from an
autonomous driving setting and consists of annotated cars
and pedestrians. Figure 5 shows sample images from the
KITTI48 and PASCAL datasets with annotated detection
boxes and segmented pixels, respectively.

For exploring algorithms that specifically target the redac-
tion of human faces, the annotated facial landmarks in the
wild23 (AFLW) is a popular dataset of ∼25; 000 annotated
faces from real world images. This dataset includes variations
of camera viewpoints, human poses, lighting conditions, and
occlusions, all of which make face detection challenging. To
make face detection more robust, Vu et al.51 introduced a head
detection dataset that contains 369,846 human heads anno-
tated from movie frames, including difficult situations such
as strong occlusions and low lighting conditions.

Face recognition datasets are also useful in redaction sys-
tems to test the efficacy of different obfuscation techniques.
The LFW Face dataset52 consists of 13,233 images of 5749
people collected from the internet. Similarly, the AT&T
database53 of faces contains 10 images each of 40 individ-
uals. A more recent FaceScrub dataset54 consists of 100,000
images of 530 celebrities.

Fig. 5 Sample images from Penn-Fudan49 and LFW50 datasets with annotated detection boxes and
segmented pixels.
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2.3.2 Video datasets

Beyond still images, there are video datasets relevant to algo-
rithm development and performance evaluation of redaction
methods. One example is PEViD,30 which was designed spe-
cifically with privacy and redaction-related issues in mind.
The dataset consists of 21 clips of 16 s sampled at 25 fps
at 1920 × 1080 resolution of surveillance videos in indoor
and outdoor settings. The dataset has four different activities:
walking, stealing, dropping, and fighting and has ground
truth annotations for human body, face, body parts, and per-
sonal belongings such as bags. Another video dataset that
can be useful to redaction is VIRAT,55 which annotates
vehicles and pedestrians on roadways.

In addition to detecting faces and heads, detection of the
entire human body is very common in redaction. The
Caltech Pedestrian56 dataset is perhaps the most popular
for detecting persons in images. It consists of ∼10 h of
640 × 480 30 Hz video taken from a vehicle driving through
regular traffic in an urban environment. About 250,000
frames (in 137 approximately minute long segments)
with a total of 350,000 bounding boxes and 2300 unique
pedestrians are annotated.

Object tracking in videos is a very popular task among
researchers; hence, there are numerous datasets available
to evaluate and benchmark tracking algorithms. The most
common and recent ones are Object Tracking Benchmark
(OTB),57 YouTube Object dataset,58 and ImageNet object
detection from video.59 In most datasets relevant to redac-
tion, the target objects are humans or cars of small size in a
surveillance-like setting with less motion in the background.

In current publicly available datasets, collections of anno-
tated images are much more prevalent than video datasets.
However, a common practice is to train on (large) image
datasets and then apply the resulting models to video frames
for evaluation (track by detection). Until the redaction-
relevant, publically available video datasets increase substan-
tially in size, this approach of training algorithms on avail-
able large image datasets will likely remain a key component
of many redaction solutions.

3 Evaluation Metrics
The PASCAL VOC challenges45 have been instrumental in
setting forth standardized test procedures that enable fair
comparison for benchmarking classification, object detec-
tion, and pixel segmentation algorithms. The questions “Is
there a car in the image?,” “Where are the cars located in the
image?,” and “Which pixels are devoted to cars?” are exam-
ples of classification, detection, and pixel segmentation prob-
lems. Scores are computed for each class and reported along
with the average across all 21 classes. The PASCAL VOC
challenges45 use area under precision-recall curves. This is
estimated at 11 equally spaced precision values from
0∶0.1∶1 to ensure that only methods with high recall across
all precision values rank well.

Taking the detection task as an example, each object has a
ground truth detection box. An automated method attempts
to find each object and return a bounding box around the
object. If the detected box precisely overlays the ground truth
box, we have detected the object. But what do we do if the
detected box is shifted up and to the left by a few pixels?
How about shifted down and to the right by half the
width of the object? PASCAL VOC utilizes the intersection

over union (IOU) metric, whereby a bounding box is said to
detect an object if IOU is >0.5. IOU is defined as

EQ-TARGET;temp:intralink-;e001;326;730IOU ¼ μðGTBB ∩ DetBBÞ
μðGTBB ∪ DetBBÞ

¼ TP

TPþ FPþ FN
; (1)

where μ is the set counting measure, which we define as area,
GTBB is the ground truth bounding box,DetBB is the detected
bounding box, and μðGTBB ∩ DetBBÞ and μðGTBB ∪ DetBBÞ
are the areas of the intersection and union of the bounding
boxes, respectively. TP ¼ true positive (area of DetBB that
intersects GTBB), FP ¼ false positive (area of DetBB not
intersected by GTBB), and FN ¼ false negative (area of
GTBB not intersected by DetBB).

For a given application, FN and FP pixel detections can
have different levels of importance. For instance, it is likely
that redaction applications cannot tolerate many FN detec-
tions as personally identifying information (PII) may be
exposed. Similarly, if a face is correctly obfuscated in all
but a handful of frames, the video cannot be considered prop-
erly redacted. Likewise, the amount of tolerable FP can be
dependent on the application. In some applications, it can be
acceptable to blur a region slightly beyond a face. The
acceptable amount of blurring beyond the face can depend
on factors such as not wanting to, or conversely not having a
concern for, obscuring neighboring information. Increasing
FP tends to decrease FN. Taken to a limit, the entire frame
can be obscured leading to zero FN, but very high FP. Once
again, the acceptable levels of FN and FP will be highly
dependent on the redaction application.

To enable optimization for a given problem, we first
define normalized errors

EQ-TARGET;temp:intralink-;e002;326;400FN ¼ μðGTBB − DetBBÞ
μðGTBBÞ

; (2)

EQ-TARGET;temp:intralink-;e003;326;356FP ¼ μðDetBB − GTBBÞ
μðDetBBÞ

; (3)

where “−” denotes set subtraction.
These error measures can be extended by considering that

certain pixels in a detection area can be more critical than
others. For instance, pixels in the periocular region can be
more useful in identifying a person than points farther out in
a bounding box. Also, pixels in the bounding box but not
directly on the object of interest can have a low level of
importance. One approach to addressing critical pixels is
with a saliency weighting. Let gti be the saliency weight of
a pixel xi ∈ GTBB. The saliency weighted FN becomes the
sum of the saliency weights in the missed pixels normalized
by the sum of the saliency weights in the ground truth

EQ-TARGET;temp:intralink-;e004;326;183FN ¼
P

igti ∀ xi ∈ μðGTBB − DetBBÞP

i
pi ∀ xi ∈ μðGTBBÞ

: (4)

Saliency can also be used to avoid over redaction or
redacting objects that need to be viewed, such as a weapon.
The saliency weights hi would be for pixels in the image
frame H but not in the ground truth bounding box xi ∈
ðH − GTBBÞ. Saliency weighted false positive can be written
as
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EQ-TARGET;temp:intralink-;e005;63;584FP ¼
P

ihi ∀ xi ∈ μðH − DetBBÞP

i
hi ∀ xi ∈ μðH − GTBBÞ

: (5)

This paper introduces the general concept of saliency for
redaction; however, due to its application dependence, it is
outside the scope of the paper to exercise it for various appli-
cations. Instead, we focus on unweighted FN and FP as per
Eqs. (2) and (3).

To maintain similarity with the IOU metric that is preva-
lent in the field, we invert FN and FP errors to convert each
into an accuracy, and then combine them into a single metric

EQ-TARGET;temp:intralink-;e006;63;453ACCR ¼ αð1 − FNÞ þ ð1 − αÞð1 − FPÞ: (6)

Different values of α can be tailored to the specific appli-
cations. For example, in redaction, minimizing FN is gener-
ally more important than minimizing FP; thus, α > 0.5.

To demonstrate the applicability of ACCR, Figs. 6 and 7
contain a few illustrative examples. The dotted green and
blue dashed regions are s and DetBB, respectively. The IOU
row uses Eq. (1), and the ACCR, α ¼ 0.5 and ACCR,
α ¼ 0.75 rows use Eq. (6). With regards to Fig. 6, on the
left, the DetBB of case 1 fills the entire image; as we step to
the right, it occupies less and less until we get to case 4 where
it occupies the area identical to GTBB. As we continue mov-
ing to right, in case 7, DetBB occupies zero area. The FN and
FP rows show the false negative and positive errors, respec-
tively, due to the mismatch between DetBB and GTBB. The
ACCR, α ¼ 0.75 row shows our recommended usage of
Eq. (6) where, as desired for many redaction applications,
false positives (on the left) are not penalized as much as
false negatives (on the right).

With regards to Fig. 7, case 8 is a typical example,
whereby the DetBB is a mismatch to GTBB and, in this case,
is smaller than GTBB. In case 8, by setting α ¼ 0.75, the FN
error is penalized more heavily, and the FP error is penalized
less. Since FP ¼ 0, the ACCR, α ¼ 0.75 score is lower. In
case 9, DetBB ⊂ GTBB by the same amount as case 10
where GTBB ⊂ DetBB. As such, IOU and ACCR, α ¼ 0.5
treat case 9 and case 10 the same. For obfuscation purposes,
it is preferable to fully enclose the GTBB. By weighting
FN > FP, with α ¼ 0.75 in Eq. (6), the ACCR, α ¼ 0.75 row
of Fig. 7 shows the benefits of the introduced ACCR metric.
Similarly, by comparing case 11 with case 12, the ACCR
rows of Fig. 7 correctly report low values when DetBB
is much smaller or larger than GTBB. Unlike IOU, which

reports the same value for case 11 and case 12, ACCR, α ¼
0.75 clearly distinguishes the penalty for false negatives,
which is how one might anticipate a redaction metric to
behave.

To examine ACCR further, Figs. 8 and 9 compare a sweep
similar to Fig. 6. Figure 8 shows that the FN is zero until
DetBB becomes a subset of GTBB. Similarly, FP is zero when
DetBB ⊂ GTBB. By comparing IOU to ACCR, α ¼ 0.75, we
can see that FN is more important than FP. Figure 9 exam-
ines the behavior of α in Eq. (6). When α ¼ 0, only the FP
term in Eq. (6) is used, and it only penalizes ACCR when
GTBB ⊂ DetBB. Similarly, when α ¼ 1, only the FN term in
Eq. (6) is used, and it only penalizes ACCR when
DetBB ⊂ GTBB. When α ¼ 0.5, ACCR offers behavior sim-
ilar to IOU and does not penalize false negatives appropri-
ately for redaction applications. The solid blue line in Fig. 8
demonstrates our recommended α ¼ 0.75, appropriately
favoring false positives over false negatives.

The above usage of Eq. (6) assumes that there is a single
DetBB and GTBB per image. When multiple bounding boxes
exist, all detection and ground truth boxes are merged into
single, possibly fragmented, masks before applying Eq. (6).
This ensures that all GTBB regions are fully enclosed by one
or more DetBB. Using α ¼ 0.75 continues to penalize false
negatives more than false positives.

Figure 10 compares the change in ACCR with varying
bounding box detections. We observe that, as the detected
bounding box covers more ground truth area, i.e., the FN
decreases, ACCR becomes higher. As more area from the
ground truth is missed, the ACCR score is penalized. This is
an important property of the redaction accuracy.

Fig. 6 Performance of IOU and ACCR . The DetBB goes from maximum FP to maximum FN in seven
equal increments from left to right. Case 4 represents DetBB that matches GTBB exactly. The dotted
green region represents GTBB, and the blue dashed region represents DetBB.

Fig. 7 Performance of IOU and ACCR on various test cases. The dot-
ted green region represents GTBB, and the dashed blue region rep-
resents DetBB.
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3.1 Comparison of Methods
We evaluate the proposed metric on four different object cat-
egories that are relevant to redaction—faces, human heads,
persons, and tv/monitors. For faces, we use the AFLW23

dataset. The faster-RCNN technique uses 50% of images
for training and the remaining 50% for testing. To compare

recent deep learning methods with a classical object detector,
we used the HOG feature combined with a linear classifier,
an image pyramid, and sliding window detection scheme for
the face and person categories. The mean redaction accuracy
(mACCR) is defined as the average score over all test images
to compare the performance over a dataset.

Fig. 8 Comparison of IOU, FN, FP, and ACCR . GTBB is fixed at 50% of input image volume, and DetBB
goes from maximum FP to maximum FN from left to right.

Fig. 9 Analysis of ACCR . GTBB is fixed at 50% of input image volume, and DetBB goes frommaximum FP
to maximum FN from left to right.

Fig. 10 Comparison of IOU and ACCR with varying values of α. Solid blue line is detected bounding box
and dashed green line is ground truth bounding box. Example image from PEVid dataset.30
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As reported in Table 1, the faster-RCNN method achieves
lower FN but higher FP compared with the HOG-feature-
based method. This is typically a desirable property in
a redaction system where failing to redact parts of an object
may reveal sensitive information. Analogously, faster-
RCNN is advantaged for higher alpha values where FN
results in a higher penalty than FP. Conversely, applications
that are required to penalize FP more than FN would benefit
from lower α values and the HOG-based method.

Since for a redaction application, missing side views or
occluded faces can also reveal the identity of persons, we run
experiments for comparison of face and head detectors. We
train a head detector to compare the robustness in detecting
faces due to occlusions and view angles. The YOLO model
was trained on images from the Head Annotations51 dataset.
Testing was done on the FDDB face detection dataset60 with
5171 faces in 2845 images, and the results are reported in

Table 2. The testing was done on a dataset with ground truth
only for faces (and not heads), and the qualitative improve-
ment do not directly translate to the metrics. Therefore,
we show examples in Fig. 11 comparing face and head
detectors. The mAP scores are low due to cross dataset
testing. The YOLO framework has strong spatial constraints
imposed by limiting two boxes per grid cell; hence, it fails
to detect small objects that appear in groups. Moreover, since
the learning is done to predict bounding boxes from data, it
struggles to generalize to objects in new or unusual aspect
ratios or configurations.

For the “person” and “tv/monitor” object categories, we
used the standard train/test splits from the PASCAl-VOC
200745 dataset. The results are reported in Tables 3 and 4.
The faster-RCNN achieved the lowest false negatives and
hence the best mAP scores among the three methods.
Among different techniques, the selection is based on the
method that is best suited to detect an object category.
Similarly, the selection of α values depends on the desired
performance in terms of FN versus FP.

3.2 Tracking Results
Since there may be high costs (e.g., lawsuits) associated with
releasing improperly redacted videos, some degree of human
review and validation is typically required. In semiautomated
schemes, confidence scores from the automated redaction
system are typically used to determine when a manual review
by a skilled technician is needed on particular video frames.
Because manual review and editing is costly, it is desirable
for the redaction system to have a low percentage of missed
(low confidence) frames.

Evaluation of object tracking in videos is done using a
threshold on ACCR to obtain the percentage of missed
frames as reported in Table 5. The performance of recent
object tracking models is evaluated on a subset of the
OTB57 dataset. We report results using a correlation filter-
based tracker implemented using DLib61 and compare it with
a more recent multidomain trained CNN-based object
tracker.62 The first frame of each video is manually tagged
to initialize the correlation tracker, and its performance
showed minimal changes. This may be due to the complexity
of the videos and simplicity of the tracker. With sufficient
training data, recent deep learning-based techniques can
achieve high accuracies and reduce the amount of manual
intervention required in video redaction systems. The α
value controls the contribution of FN and FP in the accuracy
score. For example, the variation in ACCR values with α for
the MDNet method indicates that it has higher FN than FP.
While designing a redaction system, the threshold on the
accuracy would determine the number of frames that require
a manual review. This also depends on a number of other
factors such as the object of interest, tracking method,
and desired performance in protecting the object (FP versus
FN).

4 Types of Obfuscation
Once all objects with private information are detected, the
information needs to be obfuscated in a manner that protects
the privacy. These obfuscations can be simple methods such
as blanking or masking objects such as faces with shapes in
individual video frames. Other common obfuscations are
blurring, pixelation, or interpolation with the surroundings.

Table 1 Performance comparison for face detection using classical
HOG features with a linear classifier and the more recent faster-
RCNN method. mFN and mFP are mean normalized errors, mACCR
is mean accuracy for redaction, and mAP is mean average precision.

Method HOG + Lin. classifier Faster-RCNN

mFN 0.322 0.058

mFP 0.089 0.338

mAP 0.364 0.672

mACCRðα ¼ 0.1Þ 0.887 0.689

mACCRðα ¼ 0.3Þ 0.840 0.745

mACCRðα ¼ 0.5Þ 0.793 0.801

mACCRðα ¼ 0.7Þ 0.747 0.857

mACCRðα ¼ 0.9Þ 0.700 0.913

Table 2 Performance comparison of YOLO model trained on face
and head datasets for testing on a face dataset. mFN and mFP
are mean normalized errors, mACCR is mean accuracy for redaction,
and mAP is mean average precision.

Method/training data YOLO/face YOLO/head

mFN 0.687 0.566

mFP 0.138 0.172

mAP 0.090 0.142

mACCRðα ¼ 0.1Þ 0.367 0.787

mACCRðα ¼ 0.3Þ 0.477 0.709

mACCRðα ¼ 0.5Þ 0.587 0.630

mACCRðα ¼ 0.7Þ 0.696 0.551

mACCRðα ¼ 0.9Þ 0.806 0.472
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More complex methods include geometric distortion and
scrambling that allows decryption with a key. We discuss
common obfuscation methods below. Several examples are
shown in Fig. 12.

First, consider various approaches that can be taken for
bounding the region to be obscured using blurring as an
example obscuration method. At a coarse level, an entire
image frame that contains any sensitive information can
be blurred. This may be useful when the video is relatively
long compared with a small number of frames that need to be

obscured or it is determined that blurred information is suf-
ficient for the viewer. For instance, in a courtroom showing
an auto accident, the overall movement of the vehicles may
be adequately observed in a video that is blurred to a degree
that obscures the identify of persons and license plates in the
video. Blurring the entire frame is a simple method for pro-
tecting information and can ensure a high level of protection,
but important context of the scene may get lost.

The sensitive region can be defined as the detected bound-
ing box around the subject of interest. The tolerable “loose-
ness” of the bounding box balances the trade-off between

Table 3 Performance comparison for person detection using
classical HOG features with a linear classifier and more recent
faster-RCNN and YOLO methods. mFN and mFP are mean normal-
ized errors, mACCR is mean accuracy for redaction, andmAP is mean
average precision.

Method HOG + Lin. classifier Faster-RCNN YOLO

mFN 0.415 0.119 0.189

mFP 0.372 0.220 0.202

mAP 0.194 0.758 0.654

mACCRðα ¼ 0.1Þ 0.057 0.776 0.735

mACCRðα ¼ 0.3Þ 0.048 0.796 0.752

mACCRðα ¼ 0.5Þ 0.039 0.816 0.769

mACCRðα ¼ 0.7Þ 0.031 0.836 0.786

mACCRðα ¼ 0.9Þ 0.022 0.856 0.803

Fig. 11 Examples to qualitatively compare a face and head detector. (a) Original images, (b) YOLO face,
and (c) head detector outputs, where the bounding boxes are outputs of the YOLO models. Example
images from the AFLW dataset.23

Table 4 Performance comparison for tv/monitor detection using
faster-RCNN and YOLO methods. mFN and mFP are mean normal-
ized errors, mACCR is mean accuracy for redaction, andmAP ismean
average precision.

Method Faster-RCNN YOLO

mFN 0.159 0.344

mFP 0.404 0.189

mAP 0.661 0.669

mACCRðα ¼ 0.1Þ 0.588 0.624

mACCRðα ¼ 0.3Þ 0.637 0.638

mACCRðα ¼ 0.5Þ 0.686 0.652

mACCRðα ¼ 0.7Þ 0.735 0.666

mACCRðα ¼ 0.9Þ 0.784 0.679
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false positives (which can obscure context) and false nega-
tives (which potentially reveal PII). A looser bounding box
increases FP and decreases FN, and vice versa. This trade-off
should be selectable according to the given application
requirements. If the general shape of the sensitive informa-
tion is known, the detection box can be used to place an alter-
native mask in that region. For example, ellipses of different
aspect ratios are sometimes used for face and body redaction.
As indicated in Sec. 2.1.4, object detection might need to be
inferred at a scale finer than a bounding box.

Obscuration methods must be understood in the context
of their ability to suitably mask the sensitive information and
the parameters used within the method. Fully blanking out or
masking pixels in the sensitive region is the most secure
method, but this can significantly affect certain contextual
information, such as movement and actions in the region.
More typical is blurring using a Gaussian blur kernel,
which brings in the issue of selecting Gaussian parameters
that provide adequate obfuscation. Pixelation (mosaicing)
is another common obfuscation method. The region to be
obfuscated is partitioned into a square grid, and the average
color of the pixels contained within each square is computed
and used for all pixels within the square. Increasing the size
of the squares increases the level of obfuscation. Figure 13
shows example images with varying degrees of blurring and
pixelation. Blurring was performed using the Gaussian blur-
ring function in OpenCV.63 The standard deviation of the

Gaussian kernel was varied to achieve multiple degrees of
blurring. The degree of pixelation was controlled by chang-
ing the size of the squares used in averaging.

Interpolation66 with the background can be useful in
applications that require the blurred image to be free from
redaction artifacts. Studies such as Ref. 67 have also studied
skin-color-based face detection.

In some applications, there is a requirement to retrieve the
original object after redaction. This can allow release of the
video where authorized parties possess a key that enables
decryption. A system to retrieve the original data with proper
authentication is presented by Cheung et al.68 They use a
rate-distortion optimized data-hiding scheme using an RSA
key that allows access only to authenticated individuals.
Similarly, Ref. 69 presented a retrievable object obscuring
method.

Similar to the visual content, audio is also an integral part
of surveillance videos. Detecting the audio segment to redact
can either be based on the object detection in the parallel
video stream or can be an independent search for audio clips.
The audio segment could be replaced with a beep, muted, or
modulated such that the original sound is protected.

4.1 Recognition in Obfuscated Images
The degree of obfuscation is an important consideration in
the prevention of unwanted identification of redacted faces
or objects. In fact, under constrained conditions, a fairly
accurate face recognition can be achieved given some prior
knowledge of the blur kernel and obfuscation technique.70

Recently, McPherson et al.71 studied the limitations faced by
ad-hoc image obfuscation techniques. They trained deep
convolution network classifiers on obfuscated images. Their
results show that faces or objects can be recognized using
trained models even if the image has been obfuscated with
high levels of pixelation, blurring, or encrypting the signifi-
cant JPEG components. Other studies have also reported
techniques and results on recognition of blurred faces.72,73

Chen at al.5 presented a study in face masking and showed
that face-masked images have a chance of exposing a per-
son’s identity through a pairwise attack. They presented a
technique to obscure the entire body and claimed that it has
better potential for privacy protection than face-masking.

Collectively, these results indicate that care must be taken
when designing the obfuscation component of a redaction
system. Parameters of the method should be chosen to assure
acceptable, low levels of reidentification accuracy using

Table 5 Comparison of percentage of missed frames on a subset of
the OTB object tracking dataset.57

Method Correlation tracker61 MDNet62

α
Threshold
ACCR mACCR

% of missed
frames mACCR

% of missed
frames

0.3 0.5 0.474 45.90 0.85 0.279

0.5 0.473 45.95 0.819 0.619

0.7 0.472 46.09 0.787 8.64

0.3 0.7 0.474 46.27 0.85 1.14

0.5 0.473 47.05 0.819 14.43

0.7 0.472 50.09 0.787 26.12

Fig. 12 Illustration of various obfuscation techniques. (a) Original image, (b) full frame blurred, (c) bound-
ing box of face blurred, (d) bounding box of face blanked out, and (e) pixelated bounding box of face.
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known techniques. To further illustrate this point, we provide
an example of face recognition from images with varying
degrees of obfuscation. We use the AT&T database of
faces,64 which consists of 10 different images of dimensions
92 × 112 pixels, each of 40 distinct subjects. These include
images taken at different times, with variations in lighting,
facial expressions, and facial details. The results for face rec-
ognition are reported in Table 6. For each subject, eight
images were used for training and two for testing. An SVM
classifier was trained on the top 150 Eigenfaces (principal
component analysis) of the unlabeled training dataset.

The results of this experiment provide empirical evidence
that it becomes increasingly difficult to recognize redacted
faces as the degree of obfuscation is increased. This is true
even under conditions where the exact redaction method
applied is known a priori and where the identification task
is to select the most similar individual from a small pool of
candidates (versus a database of thousands or millions of
people).

5 Open Problems
We discuss several open problems and challenges associated
with video redaction systems.

Although state-of-the-art computer vision is increasingly
robust in detecting certain objects, such as faces, bodies, and
license plates, the sensitive PII can take on many diverse
forms that will confound attempts to fully automate the proc-
ess (e.g., skin, tattoos, house numbers written in script,
logos, store front signs, street signs, and graffiti). Skin occurs
in many tones, and color-based segmentation is not robust
for sensitive applications. While character recognition may
be robust for conventional documents, recognition in the out-
doors is a different problem. The video may have been cap-
tured in very suboptimal conditions, such as poor lighting
and geometric perspective. In any given application, particu-
lar objects may need to be obfuscated while other instances
of that object class must be clearly visible (blur face 1 but not
face 2).

The public concern over privacy coupled with the need for
low cost ever vigilant security will drive privacy protection
into smart cameras, so certain material is never stored or
transmitted, except possibly with special encryption. While
some complex custom obscurations may not be possible,
mainline tasks such as face obscuration could be performed
by computing on the edge. The performance of such redac-
tion systems would depend on the accuracy of the face

Fig. 13 Varying degrees for obfuscation on example images from (top to bottom) AT&T,64 AFLW,23

VOC,45 and MediaLab LPR65 datasets. All images are cropped to dimensions 92 × 112. Standard
deviation of Gaussian kernel is varied as 5 × 5, 15 × 15, 25 × 25, and 45 × 45. Pixelation window
size is varied as 2 × 2, 4 × 4, 8 × 8, and 16 × 16.

Table 6 Comparison of face recognition accuracy using an SVM classifier by varying degrees of blurring and pixelation on the AT&T face dataset.

Orig.

Gaussian kernel Pixelation

5 × 5 15 × 15 25 × 25 45 × 45 2 × 2 4 × 4 8 × 8 16 × 16

Top 1 accuracy 88.74 85.25 73.75 61.25 31.25 87.5 83.75 70.0 36.25
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detection and obfuscation methods. Moreover, the process-
ing time becomes a critical requirement since the amount of
data is ever increasing.

Law enforcement applications cannot release any sensi-
tive data. If a single frame in a video is missed by a redaction
system, it could reveal the identity, for example, of a witness
and put them in danger. That one missed frame can defeat the
value of redacting thousands of other frames in the video
sequence. This sensitivity necessitates a manual review of
the redacted output. Efficient review methods can greatly
reduce labor costs.

6 Conclusion
With the rising popularity of surveillance, body, car, and cell
phone recording devices, imagery is increasingly being used
for public purposes such as law enforcement, criminal courts,
and news services. Often, the personal identity of people,
their cars, businesses, or homes are identifiable in these
recordings. Video redaction or obfuscation of personal infor-
mation in videos for privacy protection is becoming very
important. Object detection and tracking are two key com-
ponents of a redaction system. The current advances in the
field of deep learning achieve state-of-the-art performances
in object detection and tracking. However, the current evalu-
ation metrics do not consider redaction-specific constraints.
The presented redaction metric is promising for evaluating
redaction systems. We compare classical methods with
recent deep learning-based methods on redaction-specific
object categories. While designing a video redaction system,
the most desired property is having a fewer number of frames
that require a manual review. This depends on factors such as
threshold on the accuracy, the object of interest, detection
and tracking method, and desired performance in protecting
the object (FP versus FN). More challenges such as process-
ing time, raw video retrieval, and manual review remain
active research areas.
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