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Abstract. We describe a system for vehicle make and model recognition (MMR) that automatically detects and
classifies the make and model of a car from a live camera mounted above the highway. Vehicles are detected
using a histogram of oriented gradient detector and then classified by a convolutional neural network (CNN)
incorporating the frontal view of the car. We propose a semiautomatic data-selection approach for the vehicle
detector and the classifier, by using an automatic number plate recognition engine to minimize human effort. The
resulting classification has a top-1 accuracy of 97.3% for 500 vehicle models. This paper presents a more exten-
sive in-depth evaluation. We evaluate the effect of occlusion and have found that the most informative vehicle
region is the grill at the front. Recognition remains accurate when the left or right part of vehicles is occluded.
The small fraction of misclassifications mainly originates from errors in the dataset, or from insufficient visual
information for specific vehicle models. Comparison of state-of-the-art CNN architectures shows similar
performance for the MMR problem, supporting our findings that the classification performance is dominated
by the dataset quality. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
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1 Introduction
There are thousands of surveillance cameras installed along
highways that are mainly used for traffic management and
law enforcement. Continuous manual inspection is not
feasible, as this requires enormous manual effort involving
high costs. Automatic visual interpretation enables detection,
tracking, and classification of all traffic. One specifically
important concept is visual make and model recognition
(MMR). Make and model information of vehicles can be
used to find vehicles with stolen license plates, when com-
paring the observed vehicle model information with the
registered information associated with the license plate. An
additional application is to find specific vehicles after a crime
when only a vehicle description is available without the
license-plate number. In such cases, make and model of the
vehicle need to be obtained visually. These challenges are
the focal point of this paper.

Recognition of the vehicles in the above applications is
now performed by an automatic number plate recognition
(ANPR) system in combination with a lookup in the national
vehicle registration database. Although this works for most
cases, it is easy to circumvent this database matching by
altering the license plates. Moreover, it does not work for
vehicles without a license plate, foreign vehicles, or for
motorcycles (when considering a frontal viewpoint).

The objective of this paper is therefore to solve the mis-
match and missing license plates cases with an accurate vis-
ual analysis system. To this end, we present an MMR system
developed for the Dutch National Police, in which vehicles

are observed from a camera mounted in an overhead sign
structure on the highway, with the purpose to extract accurate
make and model information. The extracted information may
be combined with existing ANPR information. The system
implementation has a focus on observing a single lane
(see Fig. 1). This existing camera is used to feed the training
process of our recognition system. The recognition model is
trained to recognize vehicles from a large training set of
vehicle images and make and model labels. Due to band-
width restrictions between the camera (online) and our train-
ing and testing facilities (offline), we have to optimize the
gathering of training and testing samples. Another challenge
is the automated handling of new and rare vehicle models as
registered in the vehicle registration database, for which it is
hard to collect training and testing images. For these reasons,
we propose a semiautomatic system to create a vehicle data-
set. The sampling and their annotation in this system are
automated, while the updated training still needs manual
control. This approach enables the construction of an initial
dataset and allows to incrementally collect new vehicle
samples over time, so that the best system performance is
ensured at all moments.

The MMR system consists of a detection and a classifi-
cation stage, to localize and recognize vehicles in a full-fron-
tal view. The aim is to find the vehicle make and model
information without being dependent on an ANPR system.
Our two-stage approach enables detection of vehicles in
every video frame and performs classification once a vehicle
is found. This paper extends our initial work1 by providing
extensive insight in our MMR classification performance and
discussing the evaluation of the MMR system in high detail.
First, a comparison between different convolutional neural*Address all correspondence to: Matthijs H. Zwemer, E-mail: m.zwemer@tue.nl
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networks for vehicle model classification is reported.
Second, we give more insight into the classification perfor-
mance by finding the most informative region for MMR clas-
sification and measure the robustness against occlusions.
Third, the false classifications are further investigated to
find shortcomings in the system and information handling.

The structure of the paper is as follows. We commence
with an overview of related work in Sec. 2. Then the two-
stage detection and classification system is described in
Sec. 3. The semiautomatic gathering of the dataset is
explained in Sec. 4 and a detailed evaluation of our system
on the dataset is discussed in Sec. 5. After our in-depth evalu-
ation of the vehicle MMR system, we discuss the application
for law enforcement to assist the police with the problem of
vehicle theft and evaluate computation times of the real-time
system in Sec. 6.

2 Related Work
Our vehicle recognition system consists of a detection and
a classification stage, to localize and recognize vehicles in
a full-frontal view. The first detection stage can be solved
with different approaches. The full vehicle extent is detected
using frame differencing by Ren and Lan2 or background
subtraction by Prokaj and Medioni.3 Siddiqui et al.4 and
Petrović and Cootes5 extended detections from a license-
plate detector. Wijnhoven and de With6 proposed a histo-
gram of oriented gradient (HOG)7 to obtain contrast-invari-
ant detection. Recent work by Zhou et al.8 reports on a
convolutional neural network (CNN) to obtain accurate
vehicle detection. When the vehicle is detected, the vehicle
region of the image is used as input for the classification task
of MMR.

Image classification has been also broadly reported.
CNNs are state-of-the-art for image classification and origi-
nate by work from LeCun et al.9 and gained popularity by
Krizhevsky et al.,10 who used a CNN (AlexNet) to achieve
top performance in the 1000-class ImageNet Challenge.11

For MMR, Ren and Lan2 proposed a modified version of
AlexNet to achieve 98.7% using 233 vehicle models in
42,624 images. Yang et al.12 published the CompCar dataset
which contains different car views, different internal, and
external parts, and 45,000 frontal images of 281 different
models. They showed that AlexNet10 obtains comparable
performance to the more recent Overfeat13 and GoogLeNet14

CNNmodels (98.0% versus 98.3% and 98.4%, respectively).
Siddiqui et al.4 showed that for small-scale classification
problems, Bag of SURF features achieve an accuracy of
94.8% on a vehicle dataset containing 29 classes in 6639
images.

Other work extends full-frontal recognition toward
more unconstrained viewpoints. Sochor et al.15 used a

three-dimensional (3-D) box model to exploit viewpoint
variation, Prokaj and Medioni3 employed structure from
motion to align 3-D vehicle models with images, and
Dehghan et al.16 achieved good recognition results but do
not reveal details about their classification model.

In conclusion, detection methods involving background
subtraction or frame differencing are sensitive to illumination
changes and shadows. Therefore, we select the histogram of
oriented gradients to obtain accurate detection. We have
found that detection performance in this constrained view-
point is sufficient, whereas complex detection using CNNs8

is considered too expensive in terms of computation. Given
the previous work, we have adopted the AlexNet10 network
as the classification model and focus on an extensive evalu-
ation of the large-scale MMR problem. As shown by Yang
et al.,12 AlexNet achieves state-of-the-art performance, is one
of the fastest models at hand, and suitable for a real-time
implementation.17 Our experiments are performed on our
proprietary dataset, which contains 10 times more images
and the double amount of vehicle models than the public
CompCar dataset,12 but focuses on a single frontal vehicle
viewpoint. We do not evaluate on the CompCar dataset
because classification results are presented by Yang et al.12

and we specifically aim at a large-scale evaluation.

3 System Description
The vehicle recognition system is shown in Fig. 2 and con-
sists of two main components: detection and classification.
The input of the detection component is a video stream from
a camera mounted above the highway focusing on a single
lane. The detection component localizes vehicles in each
video frame. If a vehicle is found, the vehicle subregion
is extracted from the video image. This cropped image is
then processed by the classification component recognizing
the make and model of the vehicle. During normal operation,
all images from the camera are directly downsampled so that
license plates are not readable anymore, while preserving
sufficient resolution for classification. During training and
validation, the original image resolution is used because
the license plate information needs to be processed by an
ANPR engine to automatically annotate the vehicle make
and model label for our experiments (see Sec. 4). The detec-
tion and classification components are discussed below in
more in detail.

3.1 Detection: Vehicle Localization
Vehicle detection is performed by sliding a detection window
over the image and classifying each window location into
object/background. A vehicle is detected when the image
features at that location match with the classification
model. The classification model is explained in more detail
in the following paragraph. Sliding of the detection window
over the image is performed at multiple, scaled versions of
the input image and detections are merged by a mean-shift
mode-finding merging algorithm. This detection process
is repeated for every frame in the live video stream.
Detections are tracked over time. For each vehicle, the sub-
sequent make and model classification is performed once
when the vehicle is fully visible in the camera view.

Since vehicle images contain large variations in appear-
ance due to lighting, weather, vehicle type, and viewpoint
variations, it is important to remove these variations by

Fig. 1 The roadside analysis system and traffic control room for our
MMR system.
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applying a feature transformation. We have selected the
HOG feature transform, because of its high object detection
performance and efficient computation. For each image
pixel, the HOG features compute the local gradient magni-
tude and orientation. The gradient information is accumu-
lated over small spatial subregions of the image (cells),
and for each cell a histogram of gradient orientations is
created. The histograms of the cells over an area in the image
are concatenated and form the HOG feature description of
that part of the image. The HOG feature description is then
segmented into object/background using simple linear SVM
classification. This simple classification model can be seen
as a template that creates a description of the object in HOG
feature space (example visualization in Fig. 2). More details
about HOG can be found by Dalal and Triggs.7

In order to train the SVM, we use HOG features, which
are computed for 12 × 5 cells of 4 × 4 pixels, covering the
head lights and bumper of the vehicle (see green bounding
box in Fig. 3 as an example). We use eight orientation bins
ignoring the orientation sign with L2 normalization per cell.
In addition to HOG features, the gradient magnitude for each
cell is included in the feature vector. The linear classification
model is trained from many vehicle and nonvehicle samples
using stochastic gradient descent.18 Vehicle tracking is
implemented using optical-flow-based tracking of feature
points using the concept of good features to track.19

3.2 Classification: Make and Model Recognition
Classification of make and model is performed once for each
detected vehicle. The detection box is enlarged with a fixed
factor to cover the grill, hood, and windshield, shown as the
blue rectangle in Fig. 3. This part of the image is scaled to a
fixed resolution of 256 × 256 pixels and used as the input to
our MMR classifier in combination with the corresponding
make and model class label.

We use the AlexNet classification model,10 which is a
CNN consisting of five convolution layers and two fully con-
nected layers and a nonlinear operation between each layer.
The output is a list of classification scores per vehicle model
(class). The class with the highest classification score is the
output of our MMR system.

The classification network is trained end-to-end on our
vehicle images and class labels, which is then optimized
to predict the correct vehicle class for each image. Note
that we predict the make and model combination, so that
the number of classes equals the number of vehicle models.
We use the AlexNet network pretrained on ImageNet and
fine-tune it on our dataset. For each training image, multiple
random subimages of 227 × 227 pixels are used to train the
CNN. We train for 50,000 iterations using a batch size of
128. All other training parameters are equal to the original
model.10

4 Semiautomatic Dataset Generation
The detection and classification components both require
offline training with vehicle samples prior to using them
in the online MMR system. To train our recognition system,
it would be trivial to collect raw video from the camera over a
long period in the field and process this video data offline to
prepare our training data. However, this approach cannot be
followed because only a low-bandwidth connection exists
between the roadside setup and the back-office, so that the
amount of transferred video data is strictly limited. We pro-
pose a setup that consumes limited network bandwidth by
only transmitting a selected single image for each vehicle
that passes the camera. To implement this, a vehicle detector
is required. We will now describe how the training data are
collected for such a vehicle detector and the process of data
collection for the classification component.

For both dataset collection purposes, we use an ANPR
engine20 that detects both the rectangular location of the
plate and reads the characters (number). From the location
of the number plate, we will create additional vehicle anno-
tations to improve the detector, while from the recognized
license-plate number, we look up the vehicle make and
model from a database. Both procedures are visualized in
Fig. 4. Next, we downscale each image to a lower resolution
and only keep the make and model annotation while remov-
ing the license-plate number to anonymize the identity of
the vehicle. With this data, we train our vehicle recognition
system, which has a privacy-friendly design because there is
no identity information and license plates are not readable.

4.1 Training Data Collection for Detection
We start by downloading a limited amount of video (15 min)
and manually annotate 659 vehicles in these video frames.
All annotations are flipped horizontally to obtain a total
of 1318 annotated vehicles. Using these images, we train

Fig. 2 System overview of the MMR system.

Fig. 3 Video frame, the detection box in green and classification ROI
in blue. Windshield and license plate are blurred.
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our initial vehicle detector and then apply this detector to the
roadside setup, to collect images with vehicles and transmit
these to our back-office. This approach is necessary because
the detection performance of the initial detector is insuffi-
cient (resulting in missed cars and false detections). The
initial detector is used at a low threshold to select all images
that probably contain vehicles, see arrow 2 in Fig. 4. The
bandwidth usage is limited by only downloading the selected
images. We can now exploit these additional images to train
an improved vehicle detector.

As manual annotation of vehicles is cumbersome, the
downloaded images are annotated using an ANPR engine
to locate the license plate. We assume that each vehicle has
a license plate and use a fixed extension of the license plate
box as a new vehicle annotation. If no license plate is found
by the ANPR engine, we do not include the image in our
dataset.

In total, we have collected 20,598 vehicle annotations
during 4 h of online processing with our initial detector
(including flipped versions). Half of this set is used to
train the final detector, and half to evaluate the detector
performance.

4.2 Make and Model Attribute Acquisition for
Classification

The classification component requires sufficient samples for
each vehicle class to distinguish intraclass variation from
interclass variation. Moreover, not all vehicle models are
equally popular, and the distribution of models is extremely
nonuniform and unbalanced.

To collect data for training the classification component,
we use our vehicle detector to automatically create cutouts of
vehicles for a longer time period and send them to our back-
office, see arrow 3 in Fig. 4. The network bandwidth is now
limited by only transmitting cutouts of vehicles. Then, we
process each vehicle cutout with an ANPR engine to find
the license-plate number. The license-plate number is used
to query a database with vehicle make and model informa-
tion. In the Netherlands, such a database is provided and
publicly available.21 This process allows for large-scale
annotation of our dataset.

The classification dataset was recorded during various
weather conditions over a long interval of 34 days in which
a total of 670,706 images (100%) were collected. Examples
of dark and rainy samples and samples with strong shadows
are shown in Fig. 5. All images are processed by the ANPR
engine. In 649,955 of the images (97%), a license plate was
found and the number could be extracted (other images
contain too much noise for recognition). The make and
model information was extracted from the database for
587,371 images (88%). Failure cases originate from non-
Dutch license plates, which are not registered in the database
and incorrectly read license-plate numbers (ANPR failure).
In total, we detected 1504 different vehicle models. The dis-
tribution of the number of samples per vehicle model is
shown in Fig. 6, which approximates a logarithmic behavior.
The top-500 models all have more than 30 samples. The last
700 models only have one or two samples and represent vari-
ous high-end vehicles, old-timers, and custom vehicles, such
as modified recreational vehicles. The model that is mostly

1

2

3

Fig. 4 Overview of the semiautomatic dataset generation procedure
for the detection dataset (arrow 2) and our classification dataset
(arrow 3) and the small initial vehicle detection dataset (arrow 1).

Fig. 5 Classification examples. Wind shield and license plates blurred for privacy.

Fig. 6 Number of samples per model in our dataset.

Journal of Electronic Imaging 051225-4 Sep∕Oct 2018 • Vol. 27(5)

Zwemer et al.: Semiautomatic training and evaluation of a learning-based vehicle make. . .



detected is the Volkswagen Golf, with a total of 20k samples
(13% of the dataset).

The classification dataset is split in a training set of
26 days (76%) and a test set of 6 days (18%), the remaining
2 days are used for validation during the training process to
avoid overfitting on the training set. In total, we have
created three different train, test, and validation datasets to
enable a cross validation.

5 In-Depth Evaluation
This section evaluates the vehicle detector followed by
an in-depth analysis of the make and model classification
performance.

5.1 Evaluation Metrics
Detection performance is measured using recall and preci-
sion. A true positive (TP) rate is defined as a detection
that has a minimum overlap (intersection over union) of
0.5 with the ground-truth box. Detections with lower overlap
are false positives (FP). Missed ground-truth samples are
denoted as false negatives (FN). The recall R and precision
P are then computed as

EQ-TARGET;temp:intralink-;e001;63;505R ¼ TP∕ðTPþ FNÞ; P ¼ TP∕ðTPþ FPÞ: (1)

We summarize the recall–precision curve by a single
value as the area under curve (AUC), where perfect detection
has a value of 100%.

The classification performance is measured by the top-1
accuracy, in which the number of correct classifications is
divided by the total number of classifications performed.
As a second metric, the performance per vehicle model is
measured using recall and precision as in Eq. (1). A classi-
fication is a TP if the classification label is equal to the
ground-truth label, otherwise it is an FP. A sample is an
FN for a ground-truth vehicle model, if it is not correctly
classified. Note that an FN for one class results into an
FN for another class.

5.2 Vehicle Detection
This section evaluates the vehicle detection performance and
compares the initial vehicle detector based on manual anno-
tations with the final detector trained with the automatically
collected vehicle annotations (Sec. 4.1). Figure 7 portrays the
recall–precision curves for these detectors. The dashed blue
curve shows the performance of our initial detector and the

solid red curve depicts the results of the final detector. The
initial detector already shows good performance, but regu-
larly generates false detections. The final detector clearly
outperforms the initial detector and is almost perfect with
an AUC of 99%. The operation point has been empirically
chosen to detect 98% of the vehicles, having negligible false
detections, which is sufficient for the MMR application.
Note that the reported detection rate holds for the per-image
detection. Since a vehicle is visible in multiple video images,
the actual vehicle detection rate is higher but is not measured
this way.

In Fig. 8, the average images of our training set and our
detector output are shown. The top image shows the average
image of the annotations that are used to train the detector
(the output of the ANPR detector). It can be clearly observed
that the image is aligned on the license plate. The bottom
image shows the actual detections after training. Note that
the detector does not focus on the license plate only, but
on the overall frontal-view layout of the vehicle. More spe-
cifically, the bottom view shows that all key elements of the
frontal view are employed in a balanced way, as they appear
at equal visibility. Apparently, those elements are learned and
detected in a similar fashion. In conclusion, this highlights
that our process of automatic annotation is quite powerful
and the training process results in the generalization of
the detector to the total vehicle characteristics.

5.3 Make and Model Classification
The classification performance is evaluated with three main
experiments. First, we investigate the overall classification
performance for an increasing number of vehicle models.
For the vehicle models that are not considered in the training,
we distinguish two cases: (1) we accumulate those into a sin-
gle additional “other” class or (2) ignore them completely.
Second, in a further experiment, we examine the perfor-
mance per individual vehicle model in relation to the amount
of samples per class. For the lower-performing models, we
present a visual analysis. Third, we investigate the most
informative part of the vehicle for classification by adding
a synthetic occlusion to the vehicle images and measuring
the effect on classification performance. Finally, we evaluateFig. 7 Recall–precision curve of our initial and final vehicle detectors.

Fig. 8 (a) Average automatically annotated detection box and
(b) average detected result.
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and compare other CNN architectures from literature on our
vehicle classification problem.

5.3.1 Overall performance

Due to the nonlinear distribution of our make and model
samples (classes) in our dataset (see Fig. 6), we investigate
the classification performance when selecting an increasing
number of classes in our model. One can simply ignore the
samples of the nonselected classes or combine them into a
single additional “other” class. This will enable the system to
create awareness that it does not recognize these vehicles,
instead of always misclassifying them. To compare the
cases of having an other class or ignoring, two different mod-
els are trained. The first model ignores unconsidered classes
completely (no other class) and the second model incorpo-
rates all unconsidered classes by explicitly adding an other
class to our classification model. A simplified example of
these two training methods is shown in Fig. 9, classifying
between seven vehicle makes, two of these are considered
other. We will now investigate these four combined cases:
training and testing, both with and without the other class.
The results of these cases are all shown in Fig. 10. Note that
each combination of training and testing with/without is

labeled as (a), (b), (c), and (d). We will now discuss each
individual case.

Case (a). The classification accuracy of the model trained
without the other class is constrained by the distribution
of the data in the test set, e.g., for one class (VW Golf),
the best possible accuracy is 13% because all samples in
the other class will be wrongly classified (the “test all”
case in Fig. 9). The results are shown in Fig. 10 by the
solid blue line (a). The classification accuracy increases
when more vehicle models are incorporated in the model
and saturates around 500 classes, achieving an accuracy
of almost 97%. This shows that the classification model
is able to handle our large-scale classification task.

Case (b). Next, in case (b), we ignore the other class in our
test set to measure the accuracy over the classes which
are actually in our classification model. The results
are shown by the dotted blue line (b) in Fig. 10. The
performance gradually decreases when more vehicle
classes are added to our classification model. This is
as expected because the classification problem becomes
harder when distinguishing more classes. In addition,
with more classes, fewer samples are available for the
additional classes (vehicle model #500 only contains
50 training samples).

(a)       (b)            (c)     (d)

Fig. 9 Simplified example of training of the classification model with and without an explicit other class. At
the left, training is performed without the other class and tested (a) with and (b) without other class. At the
right, the other class is added during training and evaluated (c) with and (d) without this additional class.

(a)
(b)
(c)
(d)

(a)
(b)
(c)
(d)

Fig. 10 Make and model classification accuracy for an increasing #models.
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Case (c). Now we investigate case (c) and evaluate the effect
of explicitly taking the “other” class into account in our
classification model (train all in Fig. 9). This is interest-
ing because when the other class is classified correctly,
we can detect samples that the system is not aware of for
future use. However, a lower accuracy is expected for
the vehicle models which are incorporated in the clas-
sification model because the model has to deal with
an extra class with a high amount of intraclass variation
(it contains all other vehicle classes). The results are
shown in Fig. 10 by the red solid line (c). Although the
accuracy over the complete range is high (>97%), it
continuously decreases for a growing number of classes.
Over the total range of classes, the accuracy is 1% lower
than the (b) model.

Case (d). When we evaluate this model over our test set
without the other class [case (d)], we can measure the
influence of this class on our classification performance
and compare the results with the classification model
that is not trained with the other class. The results are
shown by the dashed red line (d) in Fig. 10. Note that
the classification performance is a bit lower than the
classification model trained without the other class,
but it is approaching the performance for an increasing
number of vehicle models. This is due to the decreasing
number of samples in the other class while increasing
the number of vehicle models in our classification
model. Note that when training with all vehicle models
in the classification model (without using the other
class), there is no other class and all curves will have
the same performance.

From this experiment, we can draw the following conclu-
sions. The total performance for a number of classes will
always be upper-bounded by case (b) and lower-bounded
by case (a). When modeling more classes, the performance
differences between the different cases become smaller. It is
expected that the performance will converge at a large num-
ber of classes for all cases. However, because we only have a
limited number of samples per class and the frequencies of
occurrence become very small for the last number of classes,
it is very difficult to experimentally validate this with suffi-
cient data. Comparing cases (b) and (d), we can observe that

when evaluating the influence of adding the other class to the
training, this only marginally decreases the performances. As
a bonus, it will become possible to exploit this additional
class to extend our dataset. In the following experiment,
we will validate this assumption by calculating the recall
and precision for the individual vehicle classes.

5.3.2 Per class evaluation

In this experiment, we provide more insight into the classi-
fication performance per class. First, we evaluate the recall
and precision for a different number of training samples per
class to determine how many samples are needed to achieve
good classification performance. Next, vehicle models with
low accuracy are visually examined to determine the main
cause of false classifications. Note that we fix the number
of vehicle model classes to 500 (plus the additional other
class) for this experiment. Each class has a different number
of training samples due to the nonlinear vehicle model dis-
tribution. We measure the recall and precision for each class
individually to evaluate the effect in classification perfor-
mance per class. The results are shown in Fig. 11. Note that
the plot is zoomed-in at sample sizes below 2000. For the 66
models having more than 2000 samples, recall and precision
both approach unity (perfect classification).

It can be observed from the figure that for most classes
with more than 500 training samples, the recall and precision
exceed 95%. A notably lower performance is observed for
classes with less than 200 samples. There are some outliers
to this trend that perform significantly worse. The corre-
sponding vehicle models are annotated in the figure. The
other class has a recall of 74% and a precision of 84%,
which is low compared to other classes with many samples.
However, this can be explained by the large intraclass varia-
tion in this class compared to the normal vehicle classes.
Nevertheless, the classification model is able to detect
vehicle models that are not present in our training dataset.
When using this other class to collect additional training
samples for classes that are not occurring at all in the training
set, a high precision results in effectively selecting these sam-
ples. For every 100 images automatically classified as other,
84 are actually useful. Moreover, we have found that of the
16% that is misclassified as other, the make is typically

Fig. 11 Recall and precision for the amount of training samples available.
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correctly classified and the model differs only slightly from
the ground-truth. Many of these cases result from incorrect
labeling in the constructed dataset, both for training and
testing (e.g., Citroen DF instead of Citroen DS and Saab
93 versus Saab 9-3).

Visual examples of outliers are further investigated in
Fig. 12. This figure illustrates an example TP classification
and the highest FP classifications. We observe that for these
cases, either the class labels are inconsistent (for example,
Citroen DS3 and DS 3) or the classes are visually similar.
For example, the Iveco model number relates to the wheel
base and payload capacity, which cannot be visually
observed from the front of the vehicle. Other difficult cases
are the more visually similar sedan models versus estate
versions of a vehicle model (Volvo S40 versus Volvo V50).

Note that for the Volvo S40, there is an example of a
ground-truth label Renault Twingo which is incorrectly
annotated. An empirical evaluation of all FP classifications
shows that about 0.18% of the samples in the test dataset
have incorrect labels (this is an estimate because the authors
are not car experts). These incorrect labels are caused by the
ANPR engine, resulting in an incorrect license-plate number
due to lighting or dirt on the plates. These incorrectly read
license plates can actually correspond to registered vehicles
in the online registration database, which finally lead to
labeling errors in the dataset.

5.3.3 Most informative region

The classification model uses the total vehicle image as input
for the classification. In this experiment, we will investigate
which vehicle region is most important and informative for
classification. If an image region is assumed to contain no
information for make and model classification, we could

potentially exclude that region in our classification model.
Vehicles are left/right symmetrical giving a vertical sym-
metry axis, so we expect the classification performance
not to drop when half of the vehicle is occluded.

We measure which region is most important for classifi-
cation with two experiments. In the first experiment, the
accuracy is measured when increasingly occluding the com-
plete test set from zero occlusion to full occlusion. This is
performed in four different directions: from left to right,
top to bottom, right to left, and bottom to top. The results
are shown in Fig. 13. It can be observed that the accuracy
for occlusion from left to right and right to left are similar,
both have a high accuracy until 50% of the area is occluded.
This shows that our classification model can handle large
occlusions from both sides and that there is an equal amount
of vehicle model information at both sides of the image,
confirming the symmetry of vehicles. When occluding the
vehicles from top to bottom, the accuracy drops after 25%
occlusion, meaning that vehicle model information is con-
tained within the windscreen. Occlusion from bottom to
top results in a significant decrease in accuracy above
25% occlusion. This point corresponds to the vehicle grill
(see the bottom row in Fig. 13 left at 25% occlusion). We
can conclude that most information is contained in the
bottom half of the vehicle.

After evaluating an increasing amount of occlusion (from
zero to full occlusion), we now measure the effect of occlu-
sion by sliding an occlusion patch with fixed size over the
image. This allows to measure the drop in classification per-
formance when covering specific regions of the vehicle. The
classification top-1 score of all vehicles in the dataset is mea-
sured for each position of the occluding patch. For a single
image, the score is accumulated only if the vehicle is

Fig. 12 TP classification (green) and the strongest FP classifications (red) for several models with low
precision. The number at the bottom-right of TP (green) represents the precision, the number of FP (red)
denotes the false positive rate.
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classified correctly and made zero otherwise. For each patch
location, we normalize the score to the total number of
images.

This approach is performed by sliding a window of size
64 × 64 pixels over the image with a step size of 8 pixels.
The sliding is performed over the complete test set, as we
have already localized the vehicle with our vehicle detector
and we assume that the most important region is similar for
all vehicles. The resulting heatmap is shown in Fig. 14,
where red means high score and blue means low score in
classification. Since the occlusion removes information, the
blue region denotes the most informative region because the
classification score is lowest when this region is occluded.
This region covers the grill of the car, typically also contain-
ing the brand logo. Regions that have a small but notable
influence are the headlights and the upper corners of the
windshield.

5.3.4 Comparison with other classification MODELS

In our final experiment, we compare the AlexNet10 classifi-
cation model with other models from the literature: ResNet-
50,22 VGG16,23 and SqueezeNet V1.1.24 The models are
trained with their default parameters and fine-tuned, using
their pretrained models from the ImageNet classification
competition. ResNet-50 is fine-tuned for 200,000 iterations
with batch size 32 on random crops of 224 × 224 pixels
taken from our input samples of 256 × 256 pixels. VGG16
is fine-tuned with batch size 64 for 100,000 iterations, with

random 224 × 224 pixel crops. SqueezeNet uses random
227 × 227 pixel crops and is fine-tuned for 200,000 itera-
tions with batch size 32. In addition, mirrored versions of
the input samples are used for data augmentation. All
other parameters are similar to the original implementations.
Training is performed three times for 500 models and the
other class. The results are shown in Table 1. All classifica-
tion models achieve an accuracy of 97% or higher, which
shows that all models can handle the large-scale make and
model classification task.

Because performance differences are small, we can con-
clude that the classification problem can be effectively
solved by any of these CNN models. This suggests that
the experimental validation is a general evaluation of the
dataset and is not dominantly influenced by the combination
of the dataset and applied classification model. It may be
possible to combine the outputs of the CNN networks to pos-
sibly obtain a higher accuracy. This is left for future work,
since it would clearly increase the complexity and compli-
cate our real-time requirements.

6 Application
In this section, we evaluate the performance of the complete
system as described in Sec. 3. The extracted make and model
information is used to assist the police in a law-enforcement
application where stolen vehicles are recognized. In order to
measure the system performance for this application, a field
test has been conducted by an external party using live video
from a camera mounted above a highway in the Netherlands.

Fig. 13 Artificial occlusions added to the dataset and the effect on classification performance.

Fig. 14 Effect of occlusion on classification using an occlusion win-
dow with fixed size.

Table 1 Comparison with other classification models for 500 vehicle
classes and “other” class.

CNN model Accuracy Std. dev.

AlexNet10 97.29 0.08

ResNet-5022 97.27 0.06

VGG 1623 97.92 0.03

SqeezeNet V1.124 97.93 0.14
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The make and model information provided by the visual rec-
ognition system is used in two ways, see Fig. 15. The first
application is to continuously monitor the highway and com-
pare the visual MMR results with the make and model infor-
mation obtained by querying the vehicle registry with the
license plate. A mismatch between these results indicates
possible license plate fraud or a missing license plate. The
second application is focused on localizing vehicles involved
in criminal activities without requiring knowledge on the
license plate of the respective vehicle. Using only a witness
description of the vehicle model, the police can now actively
search if the vehicle passes the camera system. Currently this
is only possible if the license plate is a priori known. By
using the visual information for MMR recognition, it is
more difficult for criminals to circumvent this localization
by replacing or removing the license plate. The evaluation
of the complete system performance is measured using
the results of an ANPR engine as ground truth. The ANPR
engine detects the license plate and uses the plate number to
query the make and model information in a vehicle registra-
tion database (similar to Sec. 4). Manual verification of the
external party is then carried out to verify the ANPR engine
and evaluate the results of our system. Note that when
evaluating the complete system performance, a vehicle that
is not detected (and thus not classified) will result in a mis-
classification. Hence, combining the performance from our
experiments for detection (98.00% of the vehicles) and clas-
sification (97.29%) leads to an expected total system accu-
racy of 95.34%. In the live system, we deploy the vehicle
detector from Sec. 5.2 and our classification model trained
on all data incorporating the other class (see Sec. 5.3.1).
In the following, we first present the computation time of
the individual recognition components and then discuss
the field test.

6.1 Real-Time Computation Performance
Detection and tracking is performed every frame in the live
video, while classification is performed only once per
vehicle. To ensure real-time processing, the MMR classifi-
cation stage is implemented in a separate thread. The recog-
nition system is mapped on low-cost computing hardware
consisting of a dual-core CPU (i3-4170 at 3.70 GHz) with
2-GB RAMmemory. The real-time performance is measured
by processing 15 min of video (at 30 frames per second) on
the dedicated hardware platform. The evaluation has been
performed during rush hour to measure the performance
in real-life practical situations with the highest traffic inten-
sity. During the benchmark, we measure the number of func-
tion calls to each stage and their average computation time.
Note that detection and tracking are applied every video

frame to localize vehicles. Classification is only applied
once for every detected vehicle. The video capture time is
measured separately and the overhead in threading, visual-
izing, and storing the results is measured together as other.
The results are shown in Table 2.

Detection and tracking takes only 3.59 ms∕frame, while
classification consumes 178.10 ms per vehicle. For typical
rush-hour traffic, the system executes with real-time perfor-
mance. All stages take an average of 10.38 ms∕frame of the
total budget of 33.33 ms∕frame. To further check the real-
time system operation, we now calculate the performance
under a worst-case situation, which occurs when two con-
secutive vehicles drive very close behind each other. In this
scenario, we assume vehicles of 4 m length, driving 200 ms
apart with a speed of 130 km∕h, which is an extreme form of
tailgating. This leads to a classification every 310.77 ms.
This relates to 10.36 frames for detection, tracking, video
capture, and other calls with a total time budget of 72.10 ms.
The total computation time then amounts to 250.20 ms,
which is within our 310.77 ms budget. This shows that
the hardware setup (without GPU acceleration) is sufficient
to perform real-time MMR, even in worst-case scenarios.

6.2 Field Test
The proposed MMR system has been deployed as a live sys-
tem for the Dutch National Police in the Netherlands. An
independent evaluation of our system has been carried out
by an external party. The third party used the same camera
stream for our visual MMR system and connected it to
an ANPR engine. To validate the visual MMR system,
the ANPR results were manually compared to our system

Fig. 15 The final application in which our MMR system is used.

Table 2 Timing characteristics for evaluating the computational
performance.

Function Calls Avg. time (ms)
Avg. time per
frame (ms)

Detection 27,000 0.82 0.82

Tracking 27,000 2.77 2.77

Classification 493 178.10 3.42

Video capture 27,000 2.31 2.31

Other — — 1.06

Total — — 10.38
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output. This evaluation uses our top-500 classification model
incorporating the other class and processed four different
time periods with a total duration of 8 h, under different
weather and lighting conditions (see Fig. 16 for some exam-
ple frames captured during the field test).

The external party reported an overall accuracy of 92.4%.
When only the make classification is considered, an accuracy
of 95.7% was measured, indicating that the make is classified
correctly, but the model was erroneously classified for 3.3%
of the vehicles. Visual interpretation of the results indicates
that errors mainly occur due to partly visible vehicles. These
vehicles are not detected by our system and therefore not
classified (thereby lowering the accuracy). The ANPR-
based validation process locates the license plate in the
image and therefore does produce a classification. Other
errors occur from low-light conditions, where vehicles are
barely visible. These errors explain the small performance
gap between the results from the field test (92.4%) and
the overall system accuracy from our own benchmarks
(95.34%).

7 Conclusions
We have proposed a system for vehicle MMR that automati-
cally detects and classifies the make and model of each
vehicle from a live camera mounted above the road. We
have shown that with minimal manual annotation effort, we
can train an accurate vehicle detector (99% AUC), by using
an automatic number plate recognition (ANPR) engine.
During testing, the ANPR testing is not required anymore
to obtain a high detection performance. The applied vehicle
detector automatically detects vehicles and by additionally
extracting the license-plate number, the make and model
information is obtained from a database.

For classification, we have used a CNN and have exper-
imented with the AlexNet model, leading to an MMR clas-
sifier with a top-1 accuracy of 97.6% for 500 vehicle models.
An explicit other model class only leads to a small drop in
performance (∼0.3%), but makes the model aware of unrec-
ognizable vehicles. This approach can be used to automati-
cally gather additional samples of rare and new vehicle
models to further improve the classification model.

We have evaluated the effect of the number of training
samples per class and conclude that the classification perfor-
mance is high when more than 500 samples are available.
The performance significantly drops at 200 samples per
class or lower. A visual inspection of low-performance
classes reveals that the problem is ill-posed. Some vehicle
models are defined by properties that cannot be visually dis-
tinguished from the vehicle front, such as the difference
between sedan and estate models or engine details. These
models should be joined in a combined model description,
or additional input data (e.g., a side view) are required to

solve such detailed classification tasks. Other notable errors
occur from inconsistent model label definitions or incorrect
labels, resulting from misreadings in the ANPR engine,
errors in the national vehicle database or false license plates.

To investigate the most informative vehicle regions, we
have imposed occlusions at various visual positions and
then measured the effect on the classification performance.
We have shown that the bottom of the vehicle is most inform-
ative, although the windshield region also contains informa-
tion. Since vehicles are symmetrical giving a vertical
symmetry axis, the performance is not significantly penal-
ized when only the left or right of the vehicle is visible.
By sliding a smaller fixed-size occlusion region over the
images, we have shown that the grill and brand logo are
most informative for classification.

The evaluation of different state-of-the-art CNN models
reveals that the resulting classification performance is similar
for all CNN models. This implies that the experimental val-
idation is a general evaluation of the dataset in combination
with a state-of-the-art CNN, where the choice of the CNN
model is less relevant.

The proposed semiautomatic system can be used to effec-
tively construct a large dataset, which in turn can be applied
to train an accurate recognition system. The detailed inves-
tigation of this paper shows that most classification failures
originate from errors in the dataset in which the estimated
class was correct. To fix the errors in the dataset, and thereby
improve the accuracy of the classification model, manual
inspection of the failure cases is required. These failure
cases are ill-defined vehicle models that are not visually dis-
tinguishable and incorrectly labeled samples. Despite the
occurrence of such vehicle models, the classification model
is able to cope with this noise in the dataset and can accu-
rately recognize vehicle models. It was shown that the sys-
tem executes in real-time performance without GPU support.
To achieve this, the classification stage was implemented in
parallel. The system was successfully applied in a field test
with the Dutch National Police involving four intervals of
8 h, yielding an overall accuracy of 92.4%.
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