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Abstract. Extraction of bone contours from x-ray radiographs plays an important role in joint space width
assessment, preoperative planning, and kinematics analysis. We present a robust segmentation method to
accurately extract the distal femur and proximal tibia in knee radiographs of varying image quality. A spectral
clustering method based on the eigensolution of an affinity matrix is utilized for x-ray image denoising. An active
shape model-based segmentation method is employed for robust and accurate segmentation of the denoised
x-ray images. The performance of the proposed method is evaluated with x-ray images from the public-use
dataset(s), the osteoarthritis initiative, achieving a root mean square error of 0.48� 0.13 mm for femur and
0.53� 0.18 mm for tibia. The results demonstrate that this method outperforms previous segmentation methods
in capturing anatomical shape variations, accounting for image quality differences and guiding accurate seg-
mentation. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work

in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMI.3.3.034005]
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1 Introduction
The segmentation of knee x-ray images has found wide appli-
cations in the analysis of anatomical structure and kinematics,1–4

the assessment of loss of joint space width (JSW), the diagnosis
of osteoarthritis (OA) and osteoporosis in terms of fracture
detection and bone density measurement, and the planning
for joint replacement.5 Manual segmentation of these anatomical
structures is time consuming and subjective. Our aim is to
design a robust automatic segmentation method to extract the
distal femur and proximal tibia contours from x-ray images.
However, automatic segmentation is challenging due to the
complex structure of the knee in x-ray images. Images may
be contaminated by noise, sampling artifacts, spatial aliasing,
insufficient contrast or resolution, or luminous intensities
depending on the x-ray equipment such that the boundaries
of the regions of interest become indistinct or disconnected.
Interpatient bone shape, size, and deformation variations, such
as osteophytes, add complexity to structure identification.
Moreover, the loss of key features of the femur contour may
occur from overlapping neighboring bones, such as the tibia,
and occlusion by implants or operational tools.

Previous work on automatic femur and tibia segmentation
has primarily focused on using the active shape model
(ASM).6–9 ASM was first developed in the mid-1990s by
Cootes et al.10 performing principal component analysis
(PCA) on a series of manually marked training data to generate
a statistical shape model. There are several advantages in using
ASM: ASM has good performance for low contrast images and
is based on user-defined forces. In addition, ASM is guided by
prior knowledge of shape from manually annotated training

dataset, making it less susceptible to imaging artifacts.
Historically, the ASM has been modified and improved.
Behiels et al.6 added a regulation term in the cost function to
impose smoothness of shape changes. Lindner et al.7 integrated
random forest regression voting to ASM to segment proximal
femur. Seise et al.9 used a double contour active shape model
to segment tibia and femur from knee x-ray images.

Original ASM using Mahalanobis distance (MD) to find the
object of interest has some limitations. MD11 is a statistical
measurement to determine similarity between sets that are
assumed to have normal distribution. In an x-ray image, the
point with the minimum MD between its surrounding intensity
values and the mean lies on the border of the object. The MD
calculation involves the inverse of a covariance matrix of the
training data. If the covariance matrix is sparse, its inverse
will be undefined and consequently, MD will be undefined.
The covariance matrix becomes sparse when the number of pix-
els sampled is greater than the number of training images.
Therefore, either having a limited training dataset or attempting
to sample a large number of pixels would prove problematic.

The active appearance model (AAM)12 is another segmenta-
tion method that assumes the appearance spaces to be Gaussian.
However, this assumption fails in real patients as the interpatient
bone structure varies significantly, especially for bones with
osteophytes. In such cases, a single mean mode is insufficient
to capture the variations of appearance spaces with a single
Gaussian distribution. A further limitation of AAM is that x-
ray images of degenerated bones create outliers, which may
lead to incorrect segmentation.

We present a robust segmentation method integrating spec-
tral clustering and ASM to accurately extract bone contours in
knee radiographs. Spectral clustering13 is an unsupervised learn-
ing algorithm to extract global information from an image
so that only the most salient edge points remain and the original
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image has been denoised. Active contour search is then per-
formed on the denoised x-ray image to obtain the candidate con-
tour points with the highest intensity gradient. ASM constrains
the contour in feasible shapes, leading to an accurate and robust
segmentation result. This method captures large appearance
variation, thus solving the limitations of ASM using MD
and AAM.

The remainder of the paper is organized as follows: Sec. 2
provides a description of the segmentation framework, followed
by the experiments and evaluation in Sec. 3 and conclusions
in Sec. 4.

2 Approach
The proposed method consists of two parts: spectral clustering
for image denoising and ASM for segmentation. In the follow-
ing section, we will discuss spectral clustering in Sec. 2.1, ASM
in Sec. 2.2, and the overall segmentation algorithm in Sec. 2.3.

2.1 Spectral Clustering

The traditional AAM12 is constructed from the intensity distri-
bution of the region of interest. However, the intensities of the
femur and tibia in x-ray images may vary significantly with dif-
ferent equipment and intensity settings, leading to an inaccurate
appearance model. For images with large, interdataset intensity
variations, spectral clustering was employed to determine the
similarity between image pixels in a similar manner to the “nor-
malized cuts” approach by Shi and Malik.13 Spectral clustering
relies on the eigenvalues and eigenvectors of an affinity matrix
defined in Eq. (1) to partition points into disjoint clusters with
high intracluster similarity and high intercluster dissimilarity.
The eigenvectors obtained from spectral partitioning are then
used as weighted candidates for the following oriented segmen-
tation to create a direct partition of the image, rather than using a
clustering algorithm, such as k-means clustering.13 Our method
differs from the method of Shi and Malik in that eigenvectors
obtained from spectral partitioning are treated as denoised
images for the following ASM-based segmentation, rather
than being directly partitioned by k-means clustering.

As an input to spectral clustering, a sparse symmetric affinity
matrix W is constructed using the intervening contour cue,14

which is the maximal value of intensity (Im) along a line

connecting two pixels in the image. The two pixels have a
low affinity as a strong boundary separates them from a high
affinity in the same region. The affinity matrix is formed by con-
necting all pixels i and j within a fixed radius r with affinity:

EQ-TARGET;temp:intralink-;e001;326;708Wij ¼ exp

�
−max

p∈īj
fImðpÞ∕ρg

�
; (1)

where īj is the line segment connecting i and j and ρ is a
constant.

Shi and Malik13 proposed a normalized cut, NcutðA; BÞ, to
describe the degree of dissimilarity between two sets, A and B.
The normalized cut can be minimized using the condition:
EQ-TARGET;temp:intralink-;sec2.1;326;608

vðiÞ ∈
�
1;−

P
xi>0 diP
xi<0 di

�
and vTD1 ¼ 0;

where v ¼ ð1þ xÞ −
P

xi>0 diP
xi<0 di

ð1 − xÞ

to identify and delete the weakest link among nodes in a graph
as follows:

EQ-TARGET;temp:intralink-;e002;326;508minx NcutðxÞ ¼ minv
vTðD −WÞv

vTDv
; (2)

where Dij ¼ ΣjWij is an element of D in the i’th row and j’th
column, and x to be an N ¼ jVj dimensional indicator vector
(xi ¼ 1 if xi ∈ A and xi ¼ −1 otherwise).

Equation (2) is the Rayleigh quotient,15 which can be mini-
mized by solving the generalized eigenvalue problem (general-
ized SVD):

EQ-TARGET;temp:intralink-;e003;326;404ðD −WÞv ¼ λDv; (3)

where Dij ¼ ΣjWij, fv0; v1; : : : ; vng is solved as generalized
eigenvectors corresponding to the nþ 1 smallest eigenvalues
0 ¼ λ0 ≤ λ1 ≤ : : : ≤ λn. These generalized eigenvectors
fv0; v1; : : : ; vng carry contour information16 themselves.
Thus, each eigenvector, vi, is treated as an image, which is
then filtered with Gaussian directional derivative filters at
multiple orientations and weighted by λi in Eq. (4):

Fig. 1 X-ray image after spectral clustering and Sobel operator: (a) original image; (b)–(h) first seven
generalized eigenvectors from spectral clustering; (i) output from spectral clustering; (j) Sobel filtered
image. The intensity of both spectral clustering and Sobel operator images are normalized to [0,1].
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EQ-TARGET;temp:intralink-;e004;63;752SImðx; yÞ ¼ max
θ

½Σi∇θviðx; yÞ�: (4)

Equation (4) is maximized over the angle of the Gaussian direc-
tional derivative filter. The weighting by the eigenvalue λi is
motivated by the physical interpretation of the generalized
eigenvalue problem as a mass-spring system.17

To demonstrate the spectral clustering’s ability to denoise the
original x-ray image, the first seven generalized eigenvectors are
depicted compared to the same image filtered by a 3 × 3 Sobel
operator,18 as shown in Fig. 1. In practice, 16 eigenvectors were
used for spectral clustering.16 To qualitatively compare the
results from spectral clustering and Sobel operator, the intensity
of both images is normalized to [0,1], as shown in Figs. 1(i) and
1(j). Furthermore, we compared the signal-to-noise ratio (SNR)
of these two images; SNR is 16.05 for the spectral clustering
image in Fig. 1(i) and 10.04 for the Sobel filtered image in
Fig. 1(j). Both qualitative and quantitative results show that
spectral clustering outperforms the conventional Sobel operator,
because it extracts only the most salient edges in the image while
the latter extracts data at all the edges.

2.2 Active Shape Model

Two commonly used segmentation strategies after performing
spectral clustering are k-way segmentation13 and hierarchical

segmentation.16 K-way segmentation can be improved by per-
forming a recursive two-way cut, using a clustering algorithm,
such as k-means to create a hard partition of the image.
Unfortunately, this can lead to an incorrect segmentation as
large uniform regions in which the eigenvectors vary smoothly
are broken up. Hierarchical segmentation16 calculates nonover-
lapped regions using an oriented watershed transform (OWT)19

producing an ultrametric contour map16 for segmentation.
However, this method is time consuming as it searches the
whole image, and infeasible segmentation cannot be avoided.

Using prior knowledge captured in ASM for segmentation is
both more computationally efficient and robust to image incon-
sistencies. ASM represents the global shape information with
the dominant shape variations in the training dataset. In this
study, the training dataset includes a set of bone contours
aligned to each other with the following method. First, a manual
segmentation is performed of the objects of interest in the origi-
nal x-ray images. The manually segmented landmarks are
defined on the bone boundary that is segmented from the x-
ray images by an operator. Ten equally spaced points were
sampled between successive manual landmarks. The number
of manually segmented landmarks is determined by the opera-
tor, with a range of the number of points from 92 to 150. These
manually segmented landmarks are then interpolated by cubic
spline to get contours. Finally, corresponding points between

Fig. 2 Training landmarks before and after alignment: (a) distal femur training landmarks before align-
ment; (b) aligned distal femur training landmarks with the mean model in blue; (c) proximal tibia training
landmarks before alignment; and (d) aligned proximal tibia training landmarks with the mean model in
blue.
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contours are identified from the interpolated contour points by
first aligning centroids, then using rigid alignment using a stan-
dard vertex-to-vertex iterative closest point algorithm. This is
followed by a general affine transformation to align the
training contour to the new contour using 12 degrees of
freedom (rotations, translations, scaling, and shear). New points
on the new contour are created with similar local spatial
characteristics to the template contour.20 Thus, the generated
training set consists of N training contours denoted as
S ¼ fCαjα ∈ f1; : : : ; Ngg, each contour Cα ⊂ S has a set of
landmark points Xα ⊂ Cα, where Xα ¼ fCα

njn ∈ f1; : : : ;Mgg
and where cαn ¼ ðxαn; yαnÞ denotes the coordinates of the n’th
landmark point in Cα The contours before and after alignment
are shown in Fig. 2. The number of landmarks is 603 points for
femur and 1470 points for tibia.

Once the training shapes have been aligned, the mean
shape is calculated using X̄ ¼ fc̄njn ∈ f1; : : : ; Ngg, where

c̄n ¼ ðx̄n; ȳnÞ and x̄n ¼ ð1∕KÞPαx
α
m and ȳn ¼ ð1∕KÞPαy

α
m,

where K is the number of points in each contour.
Subsequently, PCA is applied to the training dataset,10 so that

any valid bone shape x can be represented as

EQ-TARGET;temp:intralink-;e005;326;708x ¼ x̄þ ϕsb; (5)

where x̄ is the mean model, and Φs ¼ ðϕ1;ϕ2;: : : ;ϕmÞ is a
matrix of eigenvectors corresponding to the m largest
eigenvalues λi derived from the covariance matrix,
S ¼ ½1∕ðn − 1Þ�Pn

i¼1ðxi−x̄Þðxi−x̄ÞT . m is chosen to be the
smallest number representing more than 99% of the variance
of the training set, i.e., satisfying

P
m
i¼1 λi∕

P
n
i¼1 λi > 0.99. n

is the total number of eigenvectors. These eigenvectors, Φi, re-
present the orthogonal basis of linear deformation modes that
describe how points tend to move together as the shape varies.
The corresponding eigenvalue λi is equal to the variance
described by each linear deformation mode. The shape model
parameter, b, is computed by b ¼ ϕT

s ðx − x̄Þ. When fitting
the model to a set of points, the values of b are constrained
to lie within the range �3

ffiffiffiffi
λi

p
.21

Figure 3 depicts the statistics of shape deformation, showing
that after the first few eigenvectors, the variance becomes very
small; thus, the first m dominant eigenvectors are adequate to
build the active shape model that accounts for the variability
in the contour shapes.

To test how ASM can model the variation of bone shape, the
shape parameter was limited to fall within the range
½−3 ffiffiffiffi

λi
p

; 3
ffiffiffiffi
λi

p �. The eigenvector is a set of displacement vectors
along, which the mean shape is deformed. To illustrate this
point, the first six eigenvectors have been plotted on the
mean shape in Fig. 4, resulting in the deformation from the

Fig. 4 (a)–(f) Mean shape deformation using first to sixth eigenvectors. The first eigenvector represents
the most significant shape variation, and the contribution to shape variation decreases as the eigenvector
number increases.

Fig. 3 Statistics of shape deformation. Square root of eigenvalues
sorted by size (dotted line) and components of one individual vector
(solid line) indicate the shape deformation.

Journal of Medical Imaging 034005-4 Jul–Sep 2016 • Vol. 3(3)

Wu and Mahfouz: Robust x-ray image segmentation by spectral clustering and active shape model



mean shape. Due to the limitations on the number of eigenvec-
tors and the value of shape parameters, we cannot expect ASM
based on remaining examples to model the test case perfectly.
The average error is 0.27� 0.15 mm and the maximal error is
1.10 mm. This comparison was performed by computing the
RMS error of the closest corresponding points between the
reconstructed contour from ASM and the original contour.
The maximum error is the maximum RMS error between cor-
responding points of reconstructed contour from ASM and the
original contour. These values represent lower limits on the
errors obtained in the segmentation.

2.3 Algorithm

The overall framework consists of two parts: spectral clustering
for image denoising and ASM for segmentation. Spectral clus-
tering first generates an affinity matrix from the original image.

This is followed by a solution to the generalized eigenvalue
problem using a linear combination of the first n eigenvectors of
the affinity matrix. The output of spectral clustering is a linear
combination of the eigenvectors filtered by Gaussian directional
derivative filters. The segmentation part has four steps: (1) the
initial contours were placed near the actual boundary by man-
ually adjusting translation, rotation, and uniform scale. (2) An
active contour search is performed to obtain the maximal gra-
dient response in the normal profile, as shown in Fig. 5. The
calculated direction of normal profile is filtered by Savitzky–
Golay filter22 to get a smooth profile. (3) ASM segmentation
is used to constrain the contour points in a feasible shape.
(4) Relaxation is performed by the active contour search in
the local neighboring area to relax the constraint from ASM
so that the final boundary is on the local gradient maximum.
The overall algorithm is shown in Fig. 6.

Fig. 6 System framework. Spectral clustering is applied to denoise the image. ASM is applied for
segmentation.

Fig. 5 The normal profile and the corresponding gradient variation: (a) gradient variation on normal
profile and (b) orientation of normal profile (brown line).
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3 Experiments and Evaluation
All images were obtained from public use datasets of the
Osteoarthritis Initiative (OAI, version 0.E.1 clinical dataset;
see the website at Ref. 23) of randomly selected ∼400 antero-
posterior knee radiographs for subjects suffering from OA. The
images have been collected from different radiographic centers,
resulting in large intensity differences due to the use of different
x-ray and recording equipment. In addition, the presence of
neighboring bones and soft tissue may result in incorrect seg-
mentation when these artifacts have stronger edge intensities
in the images than the bone of interest. Therefore, a robust auto-
matic segmentation algorithm is important for accurate segmen-
tation in a wide variation of x-ray images.

Experiments were designed to validate the proposed auto-
matic segmentation algorithm. For the femur and tibia bone con-
tours analyzed in this study, the testing images are left out and
the statistical shape model is computed based on the training
contours. Contours extracted from 328 x-ray images were
used as the training dataset, and 80 femur and 20 tibia x-ray
images were used as the testing set.

Segmentation results for each step are shown in Fig. 7. The
bottom portion of the femur in Fig. 7(c) illustrates how the mis-
takenly segmented points in the tibia image are corrected by the
ASM constraint.

Qualitative results from four examples of the validation test
of the proposed automatic segmentation algorithm with respect
to its capability for finding the correct femur and tibia contours
are shown in Fig. 8. In these images, the ground truth (manual
segmentation by an expert) is in green and the automatic seg-
mentation is in red.

We used dice similarity coefficient (DSC) and the root mean
square (RMS) error as quantitative evaluation with respect to the
capability of finding the correct object boundary. DSC is used to
compare the similarity between segmented and ground truth
contours.24 The range of DSC is [0,1], with 0 indicating no over-
lapping and 1 indicating complete congruence of the two sets.
DSC of the segmented femur contour is 0.97� 0.01 with the
worst case 0.93. DSC of the segmented tibia contour is 0.98�
0.01 with the worst case 0.95. Because DSC measures the over-
lap ratio between the automatically and manually segmented
contours, the above results indicate good overlapping of the
automatic segmentation with the manual segmentation.

Fig. 8 Qualitative results for four cases. Green represents ground truth and red represents results from
automatic segmentation algorithm.

Fig. 7 An example of segmentation results by spectral clustering-based ASM: (a) original image; (b) gra-
dient search result; (c) result after ASM constraint; (d) result after relaxation; and (e) final result by con-
volving the contour points with a one-dimensional Gaussian filter.

Table 1 Comparison of performance: original ASM, ASM with
relaxation, ASM with MD, and spectral clustering-based ASM.

RMS
error
(mm)

Standard
deviation
(mm)

Maximum
error
(mm)

ASM, femur 0.62 0.17 1.17

ASM with relaxation, femur 0.60 0.21 1.13

ASM with MD, femur 1.01 0.23 1.49

Spectral clustering-based
ASM, femur

0.48 0.13 0.90

Spectral clustering-based
ASM, tibia

0.53 0.18 1.13
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We compared RMS error between the original ASM algo-
rithms, ASM with relaxation, ASM combined with MD, and
the proposed algorithm (spectral clustering-based ASM). This
comparison was performed by computing RMS error of the
closest corresponding points between manually and automati-
cally segmented contours. The maximum error is the maximum
RMS error between corresponding points of aligned contours
from automatic and manual segmentation. Totally, 80 images
were used for femur testing and 20 images for tibia. Ideally,
these distances are zero for a perfect fit when the automatic seg-
mentation is the same as the manual segmentation. Table 1
shows the RMS error, its standard deviation and maximum
error in millimeters.

The robustness of the proposed automatic segmentation algo-
rithm was examined with respect to the presence of neighboring
bones and low image contrast. The segmentations with and
without ASM, shown in Figs. 9(b) and 9(c), demonstrate that
ASM avoids infeasible points when incorrect segmentation
occurs at the neighboring bone.

4 Conclusions
This research presents a robust automatic segmentation algo-
rithm combining statistical shape models and spectral clustering
with the objective of accurately segmenting distal femur and
proximal tibia in x-ray images of varying quality. The results
demonstrate a significant improvement in addressing previously
unanswered problems, such as the existence of neighboring
bones, image artifacts or inconsistencies, significant contrast
variations, and interpatient anatomical femur/tibia shape
variations.

The proposed method has significant implications for JSW
assessment. Incorrect segmentation primarily occurs in the fem-
oral condyle and tibia plateau, both of which impact the meas-
urement of JSW significantly. The JSW measurement uses the
interior contour of the tibia,25 but the output of the proposed
segmentation algorithm is the exterior contour of the tibia.
However, the interior contour can be calculated as a postseg-
mentation step, using our result as an initial contour. Evalua-
tion of JSW calculations is the subject of future work.
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