Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation (erratum)

Daniel Claus
Marijo Mlikota
Jonathan Geibel
Thomas Reichenbach
Giancarlo Pedrini
Johannes Mischinger
Siegfried Schmauder
Wolfgang Osten
Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation (erratum)

Daniel Claus,a Marijo Mlikota,b Jonathan Geibel,a Thomas Reichenbach,a Giancarlo Pedrini,a Johannes Mischinger,c Siegfried Schmauder,b and Wolfgang Ostena

aUniversität Stuttgart, Institut für Technische Optik, Stuttgart, Germany
bUniversität Stuttgart, Institut für Werkstoffprüfung, Werkstoffkunde und Festigkeitslehre, Stuttgart, Germany
cEberhard Karls Universität Tübingen, Klinik für Urologie, Universitätsklinikum Tübingen, Tübingen, Germany

[DOI: 10.1117/1.JMI.4.2.029801]

This article \textit{J. Med. Imag.} 4(1), 014505 (2017) was originally published with the captions for Figs. 8 and 9 transposed. The captions and figures below are correctly matched.

This article was corrected online on 23 May 2017.

![Stress distributions](image)

\textbf{Fig. 8} Stress distributions obtained using the hyperelastic Arruda–Boyce model for Abaqus (a) σ_{xx} at the front surface, (b, c, d) 3-D stress distribution along (b) the x-direction σ_{xx}, (c) y-direction σ_{yy}, (d) and z-direction σ_{zz} with indenter positioned on top of inhomogeneity, (e) 3-D stress distribution along z-direction σ_{zz} with indenter positioned in 10 mm distance to inhomogeneity.

© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
Fig. 9 Flow chart and results for obtained displacements fields with and without foreign body, the resulting difference displacement field, the calculate strain field, and corresponding cross-section plot, which compares the difference approach strain field with the conventional results shown in Fig. 7(b).