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1 Introduction
Optical tomography1–8 is a technique for reconstructing inside
an object by illuminating it with a light probe and observing the
light penetrating through the object. In contrast to x-ray com-
puted tomography, which uses x-rays instead of light, safer
tomographic methods are demanded and scattering optical
tomography methods are recently attracting computer vision
researchers’ attention.9–15

We investigate a recently proposed optical tomography with
discretized path integral.12,13,15 Their method takes advantages
of the path integral formulation and formulates the inverse prob-
lem of optical tomography as a constraint nonlinear least
squared optimization problem. This method benefits from vari-
ous optimization techniques, which is not the case for voting11,14

or genetic algorithms.10 They solved the constraint optimization
problem by using the log-barrier (LB) interior point method16

with inner loops of Newton method12 and quasi-Newton
method.15 They have shown that optical tomography with
discretized path integral produces better estimation results com-
pared to a standard diffuse optical tomography (DOT),15 how-
ever, its high computation cost is a problem for further
development.

In this paper, we propose two contributions to tackle the
problem. First, we introduce the primal-dual (PD) approach
to solve the constraint optimization because it is known that
the PD interior point method is more efficient than the LB
method.16 Second, we propose new formulations of equations.
The main bottle-neck of the previous approaches12,13,15 is
Jacobian and Hessian which are computationally demanding
as the number of paths increases. Our new formulations are
equivalent to the previous ones, but much more efficient.
Numerical simulations show that the proposed approach accel-
erates the estimation by a factor of 100. (Conference versions of
this paper were presented.17,18 This paper extends those versions
with the extended description of the PD approach and the

efficient formulations, and additional experiments with opti-
mized codes with comparisons.)

There exists a number of acceleration methods for tomo-
graphic reconstruction; such as dimension reduction,19 power
acceleration,20 and, most importantly, graphic processing
units (GPUs).21 GPUs have been used for accelerating a forward
problem22 and forward and backward projections.23–25 In addi-
tion, thanks to the recent progress of general-purpose computing
on GPUs, GPUs have become popular for speeding up iterative
computations for solving compressive sensing formulations26

and large linear systems.27,28 We have not implemented the
proposed approach with any GPUs in this paper, however,
the use of GPUs would be beneficial for the proposed formu-
lations because computing a Jacobian matrix can be further
accelerated.29

In the following, we briefly summarize the constraint prob-
lem to be solved in Sec. 2. Then in Sec. 3, we develop the PD
method to solve the problem by taking into account the structure
of the problem. In Sec. 4, we derive new efficient formulations
to compute Jacobian and Hessian, with comparisons to and dis-
cussions of the previous formulations. We show simulation
results in Sec. 5 to show the improvement of the proposed
method in terms of computation cost.

2 Preliminary
In this section, we briefly review the formulation of optical
tomography with a discretized path integral. Details can be
found in Ref. 15.

We are interested in estimating the extinction coefficients σt
of each voxel in a two-dimensional (2-D) medium as shown in
Fig. 1. Extinction coefficients represent how much light attenu-
ates at each point. We follow the 2-D layer model,15 that is, we
assume the following layer scattering with the following proper-
ties. Suppose that the 2-D medium has a layered structure and is
discretized into voxels of an M × N grid; it has M layers of N
voxels. Therefore, the problem is to estimate extinction coeffi-
cients of each voxel in the grid.
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With this layered medium, we use an observation model of
the light transport between a light source and a detector: emit-
ting light to each of the voxels at the top layer and capturing light
from each voxel from the bottom layer (see Fig. 2). More spe-
cifically, the light source point x0 is located on the boundary of
the top surface of the voxels in the top layer. The detector point
xMþ1 is located on the boundary of the bottom surface of the
voxels in the bottom layer. Then, forward scattering happens
layer by layer; light is scattered at the center of a voxel in a
layer and goes to the center of a voxel in the next (below)
layer. By connecting the centers x1; : : : ; xM of voxels of each
layer, we have a path x0; x1; : : : ; xM; xMþ1 of light scattering
connecting the light source and the detector. Let i and j be
voxel indices of the light source and detector locations, respec-
tively. By restricting the light paths only to those connecting
i and j, the observed light Iij by the detector is the sum of con-
tributions of all paths connecting i and j. This is written as
follows:

EQ-TARGET;temp:intralink-;e001;326;752Iij ¼ I0
XNij

k¼1

Hijke−σ
T
t Dijk ; (1)

where σt ∈ RNM is a vector to be estimated, and each element is
the extinction coefficient of a voxel, as shown Fig. 2. Vector
Dk ∈ RNM represents a complete path k connecting i and j,
and each element is the length of the part of the path segment
passing through the corresponding voxel. Factor Hijk encodes
scattering coefficients and the phase function, I0 is the intensity
of the light source, and Nij is the number of paths connecting i
and j. Parameters Hijk, I0, Nij, Dk are given and fixed. The
problem is to estimate σt based on observations Iij.

By changing positions of the light source i and the detector j,
we obtain a set of observations fIijg, resulting in the following
nonlinear least squares problem under box constraints for
extinction coefficients to be positive

EQ-TARGET;temp:intralink-;e002;326;567min
σt

f s:t: σtl ≤ σt ≤ σtu; (2)

where f is the cost function

EQ-TARGET;temp:intralink-;e003;326;519f ¼
XN
i¼1

XN
j¼1

����Iij − I0
XNij

k¼1

Hijke−σ
T
t Dijk

����2; (3)

and σtl and σtu are lower and upper bounds, respectively. The
box constraints are due to the nature of the extinction coefficient
being positive (i.e., σtl > 0) and the numerical stability of
excluding unrealistic large values.

3 Primal-Dual Interior Point Method of the
Inverse Problem

Here, we develop a PD interior point method to solve the inverse
problem [Eq. (2)]. It is an inequality constraint optimization
with box constraints, which is straightforward in applying a
standard PD method.16 However, we can use the structure of
the box constraints, hence, we derive an efficient algorithm by
using the problem structure.

3.1 Primal-Dual Method

We first rewrite the inequality constraint problem to an equiv-
alent problem with equality constraints with slack variables s ¼
ðs1; : : : ; s2NMÞT as follows:

EQ-TARGET;temp:intralink-;e004;326;258min
σt

f s:t: c − s ¼ 0; 0 ≤ s; (4)

where c is a vector of the box constraints

EQ-TARGET;temp:intralink-;e005;326;210c ¼

0B@ c1ðσtÞ
..
.

c2NMðσtÞ

1CA ¼
�
σt − σtl1
σtu1 − σt

�
: (5)

Here, ci is the i’th constraint, and 1 is a vector of ones.
The Lagrangian L of the above problem is

EQ-TARGET;temp:intralink-;e006;326;126Lðσt; s; zÞ ¼ f −
X2NM

i¼1

ziðci − siÞ ¼ f − zTðc − sÞ; (6)

where z is a vector of Lagrangian multipliers or dual variables.

Layer 1

Layer 2

Layer M

Fig. 1 2-D layered model of scattering.15 This example of a 5 × 5 grid
shows a path consisting of vertices x1; : : : ; xM located at the centers
of voxels in a grid withM parallel layers. x0 is a light source located on
the top surface, and xMþ1 is a detector at the bottom.

Fig. 2 An example of a path in a 5 × 5 grid. The path Di jk is one of
paths that connect locations i and j . The grid is serialized to vector σt ,
and also to vector Di jk separately, but in a consistent order. These
vectors are used to represent the exponential attenuation of light
along the path by inner product followed by the exponential function
as expð−σTt Di jk Þ in Eq. (3).
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The KKT conditions of Eq. (4) with duality gap μ is written
as

EQ-TARGET;temp:intralink-;e007;63;730∇f − ATz ¼ 0; Sz − μ1 ¼ 0; c− s ¼ 0; s ≥ 0; z ≥ 0;
(7)

where S ¼ diagðsÞ, and

EQ-TARGET;temp:intralink-;e008;63;675A ¼ ∇c ¼

0B@ ∇c1
..
.

∇c2NM

1CA ¼
�

I
−I

�
: (8)

Here, I is an identity matrix.
To solve the system of the KKT conditions by using

Newton’s method, we have the following system of equations:

EQ-TARGET;temp:intralink-;e009;63;579

 ∇2L 0 −AT

0 Z S
A −I 0

! pσ
ps
pz

!
¼ −

 ∇f − ATz
Sz − μ1
c − s

!
; (9)

where Z ¼ diagðzÞ and ∇2L is the Hessian of the Lagrangian.

3.2 Solving the System Efficiently

The matrix in Eq. (9) is of the size 5NM × 5NM, which is sparse
but large and computationally expensive to solve. We, therefore,
develop an efficient way to solve the system by using the prob-
lem structure.

First, the system is explicitly written as follows:

EQ-TARGET;temp:intralink-;e010;63;428

(∇2Lpσ − ATpz ¼ −∇f þ ATz
Zps þ Spz ¼ −Szþ μ1
Apσ − ps ¼ −cþ s

: (10)

Substituting the last equation into the second one yields

EQ-TARGET;temp:intralink-;e011;63;361ATS−1ZðApσ þ c − sÞ þ ATpz ¼ −ATzþ μATS−11; (11)

and we add both sides to the first equation to obtain

EQ-TARGET;temp:intralink-;e012;63;323∇2Lpσ þ ATS−1ZðApσ þ c − sÞ
¼ −ATzþ μATS−11 − ∇f þ ATz: (12)

Here, we define w ¼ s−1 ⊙ z and y ¼ μs−1 − w ⊙ cþ z, where
 ⊙  is the Hadamard (element-wise) product, and s−1 is a vector
of element-wise reciprocals of s. Then, we have

EQ-TARGET;temp:intralink-;e013;63;245pσ ¼ ð∇2Lþ ATS−1ZAÞ−1ð−∇f þ ATyÞ; (13)

EQ-TARGET;temp:intralink-;e014;63;214pz ¼ μs−1 − w ⊙ ps − z: (14)

By exploiting the structure of matrix A and defining w ¼
ðwT

l ;w
T
uÞT to split a vector into two parts corresponding to

lower and upper bound constraints, we have

EQ-TARGET;temp:intralink-;e015;63;154ATS−1ZA ¼ ð I −I ÞdiagðwÞ
�

I
−I

�
¼ diagðwl þ wuÞ:

(15)

Similarly, we define y ¼ ðyTl ; yTuÞT to simplify ATy as
ATy ¼ yl − yu and then

EQ-TARGET;temp:intralink-;e016;326;752Apσ ¼
�

I
−I

�
pσ ¼

�
pσ
−pσ

�
: (16)

Now, the solution is given by

EQ-TARGET;temp:intralink-;e017;326;706

8>><>>:
pσ ¼ ½∇2Lþ diagðwl þ wuÞ�−1ð−∇f þ yl − yuÞ
ps ¼

�
pσ
−pσ

�
þ c − s

pz ¼ μs−1 − w ⊙ ps − z

; (17)

which involves the inversion of the size NM × NM.

3.3 Update Variables

Once pσ , ps, and pz are obtained, we then estimate the step
length to update the parameters.16 The maximum of the step
lengths is given by the following rule:

EQ-TARGET;temp:intralink-;e018;326;568

�
αmax
s ¼ maxfα ∈ ½0;1�jsþ αps ≥ ð1 − τÞsg

αmax
z ¼ maxfα ∈ ½0;1�jzþ αpz ≥ ð1 − τÞzg ; (18)

with τ ∈ ð0;1Þ used (for example, τ ¼ 0.995). This prevents var-
iables s and z from approaching the lower boundary.

Next, we perform the backtracking line search30 to estimate
acceptable step lengths αs and αz. To this end, we use the fol-
lowing exact merit function ϕ with η ∈ ð0;1Þ:

EQ-TARGET;temp:intralink-;e019;326;468ϕðσt; sÞ ¼ f − μ
X2MN

i¼1

logðsiÞ þ vkcðxÞ − sk; (19)

and make a sufficient decrease requirement

EQ-TARGET;temp:intralink-;e020;326;407ϕðσt þ αspσ; sþ αspsÞ ≤ ϕðσt; sÞ þ ηαsDϕðσt; s; pσ; psÞ;
(20)

where Dϕðσt; s; pσ ; psÞ denotes the directional derivative of ϕ in
the direction ðpσ ; psÞ. The step lengths αs and αz are found in the
ranges αs ∈ ð0; αmax

s � and αz ∈ ð0; αmax
z � so that Eq. (20) is

satisfied.
Then, the parameters σt, s, and z are updated as

EQ-TARGET;temp:intralink-;e021;326;312

( σt←σt þ αspσ
s←sþ αsps
z←zþ αzpz

: (21)

Once the following error function is smaller than a given
threshold, the PD interior point method stops

EQ-TARGET;temp:intralink-;e022;326;235Eðσt; s; z; μÞ ¼ maxfk∇f − ATzk; kSz − μ1k; kc − skg:
(22)

Algorithm 1 summarizes the PD interior point method devel-
oped above. Note that the Hessian ∇2L can be approximated as
Bk at each iteration k by the quasi-Newton method, instead of
the full Hessian used by Newton’s method. We will compare
Newton’s method and the quasi-Newton method in the section
of experiments.

4 Efficient Formulations
The most computationally intensive part of the PD algorithm
shown above is the computation of Hessians for Newton’s
method and Jacobians for Newton’s and quasi-Newton methods.
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We propose here efficient formulations of Hessian and Jacobian
of the problem, whose computational cost is much smaller than
naive formulations used in the previous approaches.

First, we show the naive and old formulations of Hessian and
Jacobian, then introduce our new formulations, followed by dis-
cussions on computational cost.

4.1 Previous Old Formulations for Inverse Problem

Here, we show how the previous approaches12,13,15 do. We call
these the old formulations.

4.1.1 Jacobian: old formulation

Remember that the objective function f to be minimized is
EQ-TARGET;temp:intralink-;e023;63;271

f ¼
XN
i¼1

XN
j¼1

�
I2ij − 2IijI0

XNij

k¼1

Hijke−σ
T
t Dijk

þ I20
XNij

k¼1

XNij

l¼1

HijkHijle−σ
T
t ðDijkþDijlÞ

�
. (23)

The gradient of f is given as follows by taking the derivative of
the objective function:
EQ-TARGET;temp:intralink-;e024;63;161

∂f
∂σt

¼
XN
i¼1

XN
j¼1

�
2IijI0

XNij

k¼1

Hijke−σ
T
t DijkDijk

− I20
XNij

k¼1

XNij

l¼1

HijkHijle−σ
T
t ðDijkþDijlÞðDijk þ DijlÞ

�
: (24)

To simplify the equation, the following notations are introduced:

EQ-TARGET;temp:intralink-;e025;326;752

Eij ¼

0BBBB@
e−σ

T
t Dij1

e−σ
T
t Dij2

..

.

e−σ
T
t DijNij

1CCCCA; Hij ¼

0BBBB@
Hij1

Hij2

..

.

HijNij

1CCCCA;

Dij ¼

0BBBB@
Dij1

Dij2

..

.

DijNij

1CCCCA; (25)

EQ-TARGET;temp:intralink-;e026;326;602

fDij ¼

0BBBBB@
Dij1 þ Dij1 · · · Dij1 þ DijNij

Dij2 þ Dij1 · · · Dij2 þ DijNij

..

. . .
. ..

.

DijNij
þ Dij1 · · · DijNij

þ DijNij

1CCCCCA: (26)

Now, f and the gradient are rewritten as follows:

EQ-TARGET;temp:intralink-;e027;326;507f ¼
XN
i¼1

XN
j¼1

½I2ij − 2IijI0ET
ijHij þ I20ðET

ijHijÞ2�; (27)

EQ-TARGET;temp:intralink-;e028;326;457

∂f
∂σt

¼
XN
i¼1

XN
j¼1

ð2IijI0sum½ðEij ⊙ HijÞ ⊗ Dij�

− I20sumf½ðEij ⊙ HijÞðEij ⊙ HijÞT� ⊗ fDijgÞ; (28)

where sumfg stands for the sum over the elements of the con-
tainer [Eq. (26)] of vectors, and ⊗ denotes the tensor product.

4.1.2 Hessian: old formulation

We define the following notations:

EQ-TARGET;temp:intralink-;e029;326;329βijx ¼

0BBB@
Dij1x

Dij2x

..

.

Dijkx

1CCCA; (29)

EQ-TARGET;temp:intralink-;e030;326;253

γijx ¼

0BBBBB@
Dij1x þDij1x · · · Dij1x þDijkx

Dij2x þDij1x · · · Dij2x þDijkx

..

. . .
. ..

.

Dijkx þDij1x · · · Dijkx þDijkx

1CCCCCA; (30)

where Dijkx stands for the x’th element of Dijk.
Now, the second-order derivate of f can be represented as

follows:
EQ-TARGET;temp:intralink-;e031;326;138

∂2f
∂2σt

¼

0BBBBB@
h1;1 h1;2 · · · h1;NM

h2;1 h2;2 · · · h2;NM

..

. ..
.

· · · ..
.

hNM;1 hNM;2 · · · hNM;NM

1CCCCCA; (31)

Algorithm 1 Primal-dual interior point with line search.

Data: μ > 0, σ ∈ ð0;1Þ, ϵTOL > 0, ϵμ, η ∈ ð0;1Þ, k ¼ 0.

Input: A feasible initial estimates σt , s > 0, and z > 0.

Input: B0 ¼ I // Only for quasi-Newton

Result: Estimates of σt

1 repeat

2 repeat // inner loop

3 Compute the decent direction p ¼ ðpσ ;ps;pzÞ

4 Compute the step lengths αs and αz

5 Update σt , s, z

6 Update the approximation Bk // Only for quasi-Newton

7 Set k←k þ 1

8 until Eðσtk ; sk ; zk ; μÞ ≤ ϵμ;

9 μ←σμ

10 ϵμ←μ

11 until Eðσtk ;sk ; zk ; 0Þ ≤ ϵTOL;
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where each element is given by
EQ-TARGET;temp:intralink-;e032;63;741

hxy¼−
XN
i¼1

XN
j¼1

IijI0sumðEij ⊙ Hij ⊙ βijx ⊙ βijyÞ

þ
XN
i¼1

XN
j¼1

I20sum½ðEij ⊙ HijÞðEij ⊙ HijÞT ⊙ γijx ⊙ γijy�:

(32)

4.2 Proposed New Efficient Formulation

The problem of the previous old formulations of Jacobian and
Hessian shown above is the computation cost increasing as the
number Nij of paths increases. As discussed later, the compu-
tation cost is OðN2

ijÞ on average.
The idea of the proposed formulation is to explore the prop-

erty of the exponential function and its derivative in the problem.
As shown below, the computation cost can be reduced toOðNijÞ
on average.

4.2.1 Jacobian: new formulation

First, we rewrite the cost function as follows:

EQ-TARGET;temp:intralink-;e033;63;496f ¼
XN
i¼1

XN
j¼1

r2ij; (33)

where rij is a residual

EQ-TARGET;temp:intralink-;e034;63;434rij ¼ Iij − I0
XNij

k¼1

Hijke−σ
T
t Dijk ¼ Iij − I0ET

ijHij: (34)

Now we use the chain rule of differentiation, and we have

EQ-TARGET;temp:intralink-;e035;63;371

∂f
∂σt

¼
XN
i¼1

XN
j¼1

2rij
∂rij
∂σt

; (35)

where

EQ-TARGET;temp:intralink-;e036;63;309

∂rij
∂σt

¼ I0
XNij

k¼1

Hijke−σ
T
t DijkDijk ¼ I0DijðEij ⊙ HijÞ: (36)

Here, we define [Note that this is not the same as the one
defined in the previous approaches above, which is a structure
used in MATLAB codes to store Dijk. Here, Dij is an ðNMÞ ×
Nij matrix.]

EQ-TARGET;temp:intralink-;e037;63;219Dij ¼ ðDij1;Dij2; : : : ;DijNij Þ; (37)

which has Nij vectors of dimension NM, and ðEij ⊙ HijÞ is a
coefficient vector. Therefore,

EQ-TARGET;temp:intralink-;e038;63;164

∂f
∂σt

¼
XN
i¼1

XN
j¼1

2I0ðIij − I0ET
ijHijÞDijðEij ⊙ HijÞ: (38)

4.2.2 Discussion

Suppose that the expectation of the number of paths is
N̄ ¼ E½Nij�. Then, the computations for the proposed new for-
mulation of Jacobian above are:

• OðN̄Þ multiplications for Eij ⊙ Hij,

• OðN̄Þ additions for ET
ijHij,

• OðN̄NMÞmultiplications and additions forDijðEij ⊙ HijÞ
because there are OðN̄Þ vectors of dimension NM,

for each i and j. In total, it takes OðN̄N3MÞ operations to com-
pute NM elements of the Jacobian or OðN̄N2Þ operations per
element.

Contrary, for each i and j, the previous old formulation
Eq. (28) needs:

• OðN̄Þ multiplications for Eij ⊙ Hij,

• OðN̄NMÞ multiplications for ðEij ⊙ HijÞ ⊗ Dij because
there are OðN̄Þ vectors of dimension NM,

• OðN̄NMÞ additions for sum½ðEij ⊙ HijÞ ⊗ Dij�,
for the first term, and

• OðN̄2Þ multiplications for ðEij ⊙ HijÞðEij ⊙ HijÞT,
• OðN̄2NMÞ additions for computing fDij because there are

OðN̄2Þ vectors of dimension NM,

• OðN̄2NMÞ multiplications for

½ðEij ⊙ HijÞðEij ⊙ HijÞT� ⊗ fDij,

• OðN̄2NMÞ additions for
sumf½ðEij ⊙ HijÞðEij ⊙ HijÞT� ⊗ fDijg,

for the second term. In total, it takes OðN̄2N3MÞ operations to
compute NM elements of the Jacobian, or OðN̄2N2Þ operations
per element. The difference is mainly caused by the second term
of Eq. (28).

In summary, the proposed new formulation has the cost of
OðN̄N2Þ operations per element, whereas the previous old for-
mulation has the cost of OðN̄2N2Þ operations per element.
Table 1 summarizes the discussion above.

4.2.3 Hessian: new formulation

In the same manner, we can derive the Hessian as follows. From
the Jacobian

Table 1 Comparison of the new and old formulations for computing
the Jacobian.

Terms New Old

Ei j  ⊙ Hi j OðN̄Þ OðN̄Þ

ET
i jHi j OðN̄Þ

Dij ðEi j  ⊙ Hi j Þ OðN̄NMÞ

ðEi j  ⊙ Hi j Þ ⊙ Dij OðN̄NMÞ

sum½ðEi j  ⊙ Hi j Þ ⊙ Dij � OðN̄NMÞ

ðEi j  ⊙ Hi j ÞðEi j  ⊙ Hi j ÞT OðN̄2Þ
fDij OðN̄2NMÞ

½ðEi j  ⊙ Hi j ÞðEi j  ⊙ Hi j ÞT� ⊙ 
fDij OðN̄2NMÞ

sumf½ðEi j  ⊙ Hi j ÞðEi j  ⊙ Hi j ÞT� ⊙ 
fDijg OðN̄2NMÞ

Per element OðN̄N2Þ OðN̄2N2Þ
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EQ-TARGET;temp:intralink-;e039;63;752

∂f
∂σt

¼
XN
i¼1

XN
j¼1

2rij
∂rij
∂σt

; (39)

we obtain the Hessian by using the chain rule of differentiation

EQ-TARGET;temp:intralink-;e040;63;699

∂2f
∂σ2

t
¼
XN
i¼1

XN
j¼1

2
∂rij
∂σt

∂rij
∂σt

T

þ 2rij
∂2rij
∂σ2

t
; (40)

where

EQ-TARGET;temp:intralink-;e041;63;642

∂2rij
∂σ2

t
¼ −I0

XNij

k¼1

Hijke−σ
T
t DijkDijkDT

ijk; (41)

EQ-TARGET;temp:intralink-;e042;63;597 ¼ −I0DijdiagðEij ⊙ HijÞDT
ij: (42)

Now, the Hessian can be written as follows:

EQ-TARGET;temp:intralink-;e043;63;558

∂2f
∂σ2t

¼
XN
i¼1

XN
j¼1

2I20DijðEij ⊙ HijÞ½DijðEij ⊙ HijÞ�T

−2I0ðIij − I0ET
ijHijÞDijdiagðEij ⊙ HijÞDT

ij: (43)

Note that DijðEij ⊙ HijÞ½DijðEij ⊙ HijÞ�T should not be
expanded as DijðEij ⊙ HijÞðEij ⊙ HijÞTDT

ij because it involves
a large matrix ðEij ⊙ HijÞðEij ⊙ HijÞT, which is computation-
ally intensive to compute.

4.2.4 Discussion

By reusing Eij ⊙ Hij and DijðEij ⊙ HijÞ computed for the
Jacobian, the new formulation of Hessian needs:

• OðN2M2Þ multiplications for
DijðEij ⊙ HijÞ½DijðEij ⊙ HijÞ�T,

• OðN̄NMÞ multiplications for DijdiagðEij ⊙ HijÞ,
• OðN̄N2M2Þ multiplications for DijdiagðEij ⊙ HijÞDT

ij,

for each i and j. In total, it takes OðN̄N4M2Þ operations to com-
pute N2M2 elements of the Hessian or OðN̄N2Þ operations per
element.

Contrarily, for each element, the previous formulation
[Eq. (32)] needs:

• OðN̄2Þ multiplications for γijx,
• OðN̄Þ multiplications and the sum for

ðEij ⊙ Hij ⊙ βijx ⊙ βijyÞ,
• OðN̄2Þ multiplications for ðEij ⊙ HijÞðEij ⊙ HijÞT,
• OðN̄2Þ multiplications and the sum for

ðEij ⊙ HijÞðEij ⊙ HijÞT ⊙ γijx ⊙ γijy,
• OðN̄2N2Þ additions for the sums of i and j.

In total, it takes OðN̄2N2Þ operations to compute a single
element of the Hessian.

In summary, the proposed new formulation has the cost of
OðN̄N2Þ operations per element, whereas the previous old for-
mulation has the cost of OðN2N̄2Þ operations per element.
Table 2 summarizes the discussion above.

5 Numerical Simulation
In this section, we report the results obtained by simulations
using the proposed method by comparing PD and LB interior
point methods, as well as old and new formulations of Jacobian
and Hessian.

Since the mathematical model we used to describe the light
transport in the forward problem is exactly the same as the
model in the previous work,15 we use the same setup as follows.
For the 2-D layered medium, the grid size was set to N ¼ M ¼
24 with square voxels of size 1 (mm), i.e., the medium is
24 ðmmÞ × 24 ðmmÞ. The values of the extinction coefficients
are set between 1.05 and 1.55 (mm−1), and the lower and upper
bounds (σtl and σtu) are set to be 1.0 and 2.0 (mm−1), respec-
tively. Values of the initial guess are 1.001 for all elements of
σt0, as well as s0 and z0. Parameters used in Algorithm 1 are set
as σ ¼ 0.5, η ¼ 0.01, ϵμ ¼ 1, and ϵTOL ¼ 0.02.

5.1 Estimation Quality

The ground truth and the estimated results are shown in Fig. 3.
The matrix plots in the top row of this figure represent five dif-
ferent media (a)–(e) used for the simulation, which were also
used in the previous work.15 Note that the medium e is the
Shepp–Logan phantom.31 Each voxel is shaded in gray accord-
ing to the values of the extinction coefficients.

The following rows show the estimated results of different
combinations of LB or PD methods, old or new formulas,
and Newton’s or quasi-Newton methods. The proposed method
is PD-new-Newton/quasi-Newton; that is, the PD method with
Newton’s or quasi-Newton method by using the proposed new
formulation. The row LB-old-quasi-Newton corresponds to the
previous work15 that uses the LB method with the quasi-Newton
method by using the old formulation, and the row LB-old-
Newton corresponds to another prior work.12

As we can see, the results of different combinations almost
look the same for each of the five media. This observation is also
validated by the root-mean-square error (RMSE) shown in
Table 3. The RMSE values of all combinations are more or
less the same, while some variations appear due to the different
update rules between Newton’s and quasi-Newton methods, and
different stopping conditions between LB and PD methods.

Table 2 Comparison of the new and old formulations for computing
the Hessian.

Terms New Old

Dij ðEi j  ⊙ Hi j Þ½Dij ðEi j  ⊙ Hi j Þ�T OðN2M2Þ

DijdiagðEi j  ⊙ Hi j Þ OðN̄NMÞ

DijdiagðEi j  ⊙ Hi j ÞDT
i j OðN̄N2M2Þ

ðEi j  ⊙ Hi j  ⊙ βi jx  ⊙ βi jy Þ OðN̄Þ

ðEi j  ⊙ Hi j ÞðEi j  ⊙ Hi j ÞT OðN̄2Þ

ðEi j  ⊙ Hi j ÞðEi j  ⊙ Hi j ÞT ⊙ γi jx  ⊙ γi jy OðN̄2Þ

Sums of i , j OðN2N̄2Þ

Per element OðN̄N2Þ OðN2N̄2Þ
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5.2 Estimation Time

The main goal of this paper is to develop an efficient way to
solve the inverse problem. Table 3 shows the computation
cost of different combinations. All experiments were performed
on a Linux workstation (two Intel Xeon E5-2630 2.4 GHz
CPUs, total 16 physical cores, with 256 GB memory). We
implemented the method in MATLAB R2017a and did not
explicitly use the parallel computation toolbox of MATLAB
except the Hessian computation of LB/PD-old-Newton due to
its slow computation. Parallel matrix multiplications are, how-
ever, automatically performed on MATLAB. Table 3 shows the

computation time for different computations in seconds. We
report the average and standard deviation of 10 trials, except
the cases of LB/PD-old-Newton which show the processing
time of a single trial.

For any combination, our proposed new formulation is much
faster than the old formulation. The uses of Newton’s method
greatly benefit from the efficient Hessian computation and the
computation time reduces more than a factor of 100. However,
the new formulation does not help to reduce the computation
cost of quasi-Newton methods and the reduction is a factor
of just 2 or 3. This is due to the fact that the quasi-Newton

(a) (b) (c) (d) (e)

Fig. 3 Numerical simulation results for five media (a)–(e) in a grid of 24 × 24. Darker shades of gray
represent larger values of extinction coefficients (more light is absorbed at the voxel). The bars on
the side show extinction coefficient values in gray scale. The first row shows ground truth for five different
types of media used for the simulation. The following rows show the estimated results for different com-
binations of LB or PD methods, old or new formulas, and Newton’s or quasi-Newton methods.
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method needs gradient vectors, and its computation is of the
order NM (the number of voxels) and it is not so large in
terms of the total computation cost. In contrast, Hessian com-
putation in the Newton’s method is of the size NM × NM,
which is quite large compared to the gradient. Our new for-
mulation is, therefore, better when the Newton method is
used.

With the quasi-Newton method, the PD approach seems to be
comparable to the LB method. By comparing rows LB/PD-
new-quasi-Newton, LB is faster than PD for denser media
(c), (d), and (e). This might be caused by the different ways
of approximations by the quasi-Newton method. For the LB
method, the gradient is modified by the approximated Hessian.
For the PD method, however, the approximated Hessian is used
in the matrix to be solved, resulting in an update rule of pσ regu-
larized by diagonal elements of w in Eq. (17). Except the sim-
plest medium (a), the fast combination is PD-new-Newton,
which is proposed in this paper. This is due to the fast conver-
gence of Newton’s method compared to the quasi-Newton
method, and also the fact that the PD method needs fewer
iterations than the LB method. The qualities of results are
almost the same as discussed above, then PD-new-Newton is
the best when the working memory is enough for storing the
Hessian. Otherwise, LB/PD-new-quasi-Newton is better to
be used.

5.3 Comparison

We compare our methods to a standard DOT implemented in the
Electrical Impedance Tomography and Diffuse Optical
Tomography Reconstruction Software (EIDORS).32,33 in the
same setting as the previous work:15 N ¼ M ¼ 24 medium of
size 24 ðmmÞ × 24 ðmmÞ with the five media (a)–(e). For solv-
ing DOT by EIDORS, we used 24 × 24 × 24 ¼ 1152 triangle
elements. For boundary conditions, we placed 48 light sources
and detectors at the same intervals around the medium. We used
some different solvers and priors; Gauss–Newton method34 with
Laplace, NOSER,35 and Tikhonov priors, and PD method with
total variation prior.

Due to the diffusion approximation of DOT, the results in
Fig. 4 for DOT with the Gauss–Newton method are blurred,
and those for DOT with PD have a tendency of overestimating
the high-coefficient value areas. In contrast, the results of PD-
new-Newton (and other combinations in Fig. 3) are clearer and
sharper for all combinations. This observation is also validated
by the RMSE shown in Table 3. The RMSE values of PD-new-
Newton are smaller than the values of DOT for all five media.

The obvious drawback of PD-new-Newton is its high com-
putation cost. It is slower by a factor of 10 compared to DOT
with the PD method and a factor of 100 to DOTwith the Gauss–
Newton method. A large part of the computation cost comes

(a) (b) (c) (d) (e)

Fig. 4 Numerical simulation results for five media (a)–(e) in a grid of 24 × 24. Darker shades of gray
represent larger values of extinction coefficients (more light is absorbed at the voxel). The bars on
the side show extinction coefficient values in gray scale. The first row shows ground truth for five different
types of media used for the simulation. The following rows show the estimated results for different com-
binations of LB or PD methods, old or new formulas, and Newton’s or quasi-Newton methods. Results of
the previous work15 and DOT are shown as baselines in the last three rows.
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from the computation of Hessian and Jacobian, which depends
on the number of paths Nij. Further reduction of computation
cost is left for our future work.

6 Conclusion
In this paper, we have proposed a PD approach to optical tomog-
raphy with a discretized path integral and also efficient formu-
lation for computing Hessian and Jacobian. Numerical
simulation examples with 2-D layered media are shown to dem-
onstrate that the proposed method, called PD-new-Newton in
the experiments, performed faster than the previous work
(LB-old-quasi-Newton) while the estimated extinction coeffi-
cients of both methods were comparable. Compared to DOT,

the proposed method worked slower but produced better estima-
tion results in terms of RMSE.
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Table 3 RMSEs and computation time for the numerical simulations for five different types of media (a)–(e) with grid size of 24 × 24, for different
combinations of LB or PD methods, old or new formulas, and Newton’s or quasi-Newton methods. Each computation time shows the mean and
standard deviation of 10 trials, except the combinations of “old-Newton.” Note that RMSE values are exactly the same for 10 trials. Results of DOT
methods are shown for comparison.

a b c d e

RMSE LB-new-Newton 0.008422 0.012643 0.014594 0.021246 0.052511

LB-new-quasi-Newton 0.008646 0.012478 0.014444 0.020375 0.049811

LB-old-Newton 0.008422 0.012643 0.014594 0.021246 0.052420

LB-old-quasi-Newton 0.008646 0.012478 0.014444 0.020375 0.049818

PD-new-Newton 0.009776 0.013190 0.014490 0.021251 0.055912

PD-new-quasi-Newton 0.009754 0.013184 0.014502 0.021201 0.056085

PD-old-Newton 0.009776 0.013190 0.014490 0.021251 0.055912

PD-old-quasi-Newton 0.009754 0.013184 0.014502 0.021201 0.056084

DOT (GN, Laplace prior) 0.059339 0.062984 0.078100 0.065001 0.087094

DOT (GN, NOSER prior) 0.052053 0.057515 0.075478 0.059156 0.086397

DOT (GN, Tikhonov prior) 0.054729 0.056196 0.073146 0.059284 0.087659

DOT (PD, TV prior) 0.055047 0.059219 0.081811 0.070263 0.086107

Computation time (s) LB-new-Newton 60.00� 4.60 57.63� 1.41 61.90� 2.88 62.32� 1.22 93.10� 2.46

LB-new-quasi-Newton 18.64� 0.90 17.22� 1.03 25.32� 1.21 20.73� 1.10 32.57� 0.58

LB-old-Newton 126100 12848 13383 14037 21577

LB-old-quasi-Newton 44.86� 1.33 42.58� 1.19 63.75� 1.76 54.05� 2.04 91.17� 1.48

PD-new-Newton 18.73� 2.18 16.52� 0.67 17.40� 0.93 18.28� 1.30 23.14� 1.32

PD-new-quasi-Newton 14.44� 0.78 13.07� 0.61 40.25� 1.01 30.77� 0.86 48.26� 1.59

PD-old-Newton 5673 5418 5824 5663 7547

PD-old-quasi-Newton 75.67� 1.34 67.18� 1.38 203.42� 3.42 155.69� 2.67 248.05� 4.86

DOT (GN, Laplace prior) 0.34� 0.04 0.41� 0.04 0.40� 0.03 0.40� 0.04 0.40� 0.03

DOT (GN, NOSER prior) 0.52� 0.04 0.52� 0.05 0.53� 0.05 0.50� 0.01 0.52� 0.03

DOT (GN, Tikhonov prior) 0.29� 0.01 0.29� 0.02 0.30� 0.03 0.29� 0.01 0.29� 0.02

DOT (PD, TV prior) 2.67� 0.07 2.68� 0.06 2.67� 0.07 2.64� 0.05 2.66� 0.07

Journal of Medical Imaging 033501-9 Jul–Sep 2017 • Vol. 4(3)

Yuan et al.: Primal-dual approach to optical tomography with discretized path integral. . .



References
1. S. R. Arridge and M. Schweiger, “Image reconstruction in optical

tomography,” Phil. Trans. R. Soc. B 352(1354), 717–726 (1997).
2. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. mod-

elling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
3. J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medi-

cine: I. experimental techniques,” Phys. Med. Biol. 42(5), 825–840
(1997).

4. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.
15, R41–R93 (1999).

5. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and
inverse problems,” Inverse Probl. 25(12), 123010 (2009).

6. G. Bal, “Inverse transport theory and applications,” Inverse Probl.
25(5), 053001 (2009).

7. K. Ren, “Recent developments in numerical techniques for transport-based
medical imaging methods,” Commun. Comput. Phys. 8, 1–50 (2010).

8. A. Charette, J. Boulanger, and H. K. Kim, “An overview on recent radi-
ation transport algorithm development for optical tomography imag-
ing,” J. Quantum Spectrosc. Radiat. Transfer 109(17–18), 2743–
2766 (2008).

9. Y. Mukaigawa, R. Raskar, and Y. Yagi, “Analysis of scattering light
transport in translucent media,” IPSJ Trans. Comput. Vision Appl. 3,
122–133 (2011).

10. Y. Dobashi et al., “An inverse problem approach for automatically
adjusting the parameters for rendering clouds using photographs,”
ACM Trans. Graph. 31(6), 1 (2012).

11. Y. Ishii et al., “Scattering tomography by Monte Carlo voting,” in IAPR
Int. Conf. on Machine Vision Applications (2013).

12. T. Tamaki et al., “Multiple-scattering optical tomography with layered
material,” in 2013 Int. Conf. on Signal-Image Technology & Internet-
Based Systems, pp. 93–99, IEEE (2013).

13. B. Yuan et al., “Layered optical tomography of multiple scattering
media with combined constraint optimization,” in 2015 21st Korea-
Japan Joint Workshop on Frontiers of Computer Vision (FCV),
pp. 1–6, IEEE (2015).

14. R. Akashi et al., “Scattering tomography using ellipsoidal mirror,” in
21st Korea-Japan Joint Workshop on Frontiers of Computer Vision
(FCV 2015), Mokpo, South Korea, pp. 1–5 (2015).

15. B. Yuan et al., “Optical tomography with discretized path integral,”
J. Med. Imaging 2, 033501 (2015).

16. S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge
University Press, Cambridge (2004).

17. B. Yuan et al., “Optical tomography with discretized path integrals: a
comparison with log-barrier and primal-dual methods,” in The Korea-
Japan joint workshop on Frontiers of Computer Vision (FCV 2016),
pp. 378–382 (2016).

18. T. Tamaki et al., “Efficient formulations of optical tomography with dis-
cretized path integral,” in The 23th International Workshop on Frontiers
of Computer Vision (FCV 2017), pp. 1–5 (2017).

19. G. Zhang et al., “Acceleration of dynamic fluorescence molecular
tomography with principal component analysis,” Biomed. Opt.
Express 6, 2036 (2015).

20. H. M. Huang and I. T. Hsiao, “Accelerating an ordered-subset low-dose
X-ray cone beam computed tomography image reconstruction with a
power factor and total variation minimization,” PLoS One 11(4),
e0153421 (2016).

21. G. Pratx and L. Xing, “GPU computing in medical physics: a review,”
Med. Phys. 38(5), 2685–2697 (2011).

22. J. Lobera et al., “High performance computing for a 3-D optical diffrac-
tion tomographic application in fluid velocimetry,” Opt. Express 23(4),
4021 (2015).

23. S. Ha et al., “GPU-accelerated forward and back-projections with spa-
tially varying kernels for 3D DIRECT TOF PET reconstruction,” IEEE
Trans. Nuclear Sci. 60(1), 166–173 (2013).

24. F. Xu and K. Mueller, “Accelerating popular tomographic
reconstruction algorithms on commodity PC graphics hardware,”
IEEE Trans. Nuclear Sci. 52(3), 654–663 (2005).

25. V. G. Nguyen and S. J. Lee, “GPU-accelerated iterative reconstruction
from Compton scattered data using a matched pair of conic projector
and backprojector,” Comput. Methods Programs Biomed. 131, 27–36
(2016).

26. R. Liu, Y. Luo, and H. Yu, “GPU-based acceleration for interior tomog-
raphy,” IEEE Access 2, 841–855 (2014).

27. M. Schweiger, “GPU-accelerated finite element method for modelling
light transport in diffuse optical tomography,” Int. J. Biomed. Imaging
2011, 1–11 (2011).

28. S. Q. Zheng et al., “A distributed multi-GPU system for high speed elec-
tron microscopic tomographic reconstruction,” Ultramicroscopy
111(8), 1137–1143 (2011).

29. A. Borsic, E. A. Attardo, and R. J. Halter, “Multi-GPU Jacobian accel-
erated computing for soft-field tomography,” Physiol. Meas. 33, 1703–
1715 (2012).

30. J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer,
New York (2006).

31. L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a head
section,” IEEE Trans. Nucl. Sci. 21, 21–43 (1974).

32. A. Adler and W. R. Lionheart, “EIDORS: towards a community-based
extensible software base for EIT,” in 6th Conf. on Biomedical
Applications of Electrical Impedance Tomography, London, UK,
pp. 1–4 (2005).

33. A. Adler and W. R. Lionheart, “Uses and abuses of EIDORS: an exten-
sible software base for EIT,” Physiol. Meas. 27(5), S25 (2006).

34. A. Adler and R. Guardo, “Electrical impedance tomography: regular-
ized imaging and contrast detection,” IEEE Trans. Med. Imaging 15,
170–179 (1996).

35. M. Cheney et al., “NOSER: an algorithm for solving the inverse con-
ductivity problem,” Int. J. Imaging Syst. Technol. 2(2), 66–75 (1990).

Bingzhi Yuan received his BE degree in software engineering from
Beijing University of Posts and Telecommunications, China, and his
ME degree in engineering from Hiroshima University, Japan, in 2010
and 2013, respectively. Currently, he is a PhD student at Hiroshima
University.

Toru Tamaki received his BE, ME, and PhD degrees in information
engineering from Nagoya University, Japan, in 1996, 1998, and 2001,
respectively. After being an assistant professor at Niigata University,
Japan, from 2001 to 2005, he is currently an associate professor in
the Department of Information Engineering, Graduate School of
Engineering, Hiroshima University, Japan. His research interests
include computer vision and image recognition.

Bisser Raytchev received his PhD in informatics from Tsukuba
University, Japan, in 2000. After being a research associate at
NTT Communication Science Labs and AIST, he is presently an as-
sistant professor in the Department of Information Engineering,
Graduate School of Engineering, Hiroshima University, Japan. His
current research interests include computer vision, pattern recogni-
tion, high-dimensional data analysis, and image processing.

Kazufumi Kaneda received his BE, ME, and DE degrees from
Hiroshima University, Japan, in 1982, 1984, and 1991, respectively.
He is a professor in the Department of Information Engineering,
Graduate School of Engineering, Hiroshima University. In 1986,
he joined Hiroshima University. He was a visiting researcher at
Brigham Young University from 1991 to 1992. His research interests
include computer graphics and scientific visualization.

Journal of Medical Imaging 033501-10 Jul–Sep 2017 • Vol. 4(3)

Yuan et al.: Primal-dual approach to optical tomography with discretized path integral. . .

http://dx.doi.org/10.1098/rstb.1997.0054
http://dx.doi.org/10.1088/0031-9155/42/5/008
http://dx.doi.org/10.1088/0031-9155/42/5/007
http://dx.doi.org/10.1088/0266-5611/15/2/022
http://dx.doi.org/10.1088/0266-5611/25/12/123010
http://dx.doi.org/10.1088/0266-5611/25/5/053001
http://dx.doi.org/10.4208/cicp.220509.200110a
http://dx.doi.org/10.1016/j.jqsrt.2008.06.007
http://dx.doi.org/10.2197/ipsjtcva.3.122
http://dx.doi.org/10.1145/2366145
http://dx.doi.org/10.1109/SITIS.2013.26
http://dx.doi.org/10.1109/SITIS.2013.26
http://dx.doi.org/10.1109/FCV.2015.7103735
http://dx.doi.org/10.1109/FCV.2015.7103735
http://dx.doi.org/10.1117/1.JMI.2.3.033501
http://dx.doi.org/10.1364/BOE.6.002036
http://dx.doi.org/10.1364/BOE.6.002036
http://dx.doi.org/10.1371/journal.pone.0153421
http://dx.doi.org/10.1118/1.3578605
http://dx.doi.org/10.1364/OE.23.004021
http://dx.doi.org/10.1109/TNS.2012.2233754
http://dx.doi.org/10.1109/TNS.2012.2233754
http://dx.doi.org/10.1109/TNS.2005.851398
http://dx.doi.org/10.1016/j.cmpb.2016.04.012
http://dx.doi.org/10.1109/ACCESS.2014.2349000
http://dx.doi.org/10.1155/2011/403892
http://dx.doi.org/10.1016/j.ultramic.2011.03.015
http://dx.doi.org/10.1088/0967-3334/33/10/1703
http://dx.doi.org/10.1109/TNS.1974.6499235
http://dx.doi.org/10.1088/0967-3334/27/5/S03
http://dx.doi.org/10.1109/42.491418
http://dx.doi.org/10.1002/(ISSN)1098-1098

