
Multicell migration tracking within
angiogenic networks by deep
learning-based segmentation and
augmented Bayesian filtering

Mengmeng Wang
Lee-Ling Sharon Ong
Justin Dauwels
H. Harry Asada

Mengmeng Wang, Lee-Ling Sharon Ong, Justin Dauwels, H. Harry Asada, “Multicell migration tracking
within angiogenic networks by deep learning-based segmentation and augmented Bayesian
filtering,” J. Med. Imag. 5(2), 024005 (2018), doi: 10.1117/1.JMI.5.2.024005.



Multicell migration tracking within angiogenic
networks by deep learning-based segmentation
and augmented Bayesian filtering

Mengmeng Wang,a,* Lee-Ling Sharon Ong,b Justin Dauwels,c and H. Harry Asadad

aNanyang Technological University, Energy Research Institute, Singapore
bSingapore-MIT Alliance for Research and Technology, Singapore
cNanyang Technological University, School of Electrical and Electronic Engineering, Singapore
dMassachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, Massachusetts, United States

Abstract. Cell migration is a key feature for living organisms. Image analysis tools are useful in studying cell
migration in three-dimensional (3-D) in vitro environments. We consider angiogenic vessels formed in 3-D micro-
fluidic devices (MFDs) and develop an image analysis system to extract cell behaviors from experimental
phase-contrast microscopy image sequences. The proposed system initializes tracks with the end-point
confocal nuclei coordinates. We apply convolutional neural networks to detect cell candidates and combine
backward Kalman filtering with multiple hypothesis tracking to link the cell candidates at each time step. These
hypotheses incorporate prior knowledge on vessel formation and cell proliferation rates. The association accu-
racy reaches 86.4% for the proposed algorithm, indicating that the proposed system is able to associate cells
more accurately than existing approaches. Cell culture experiments in 3-D MFDs have shown considerable
promise for improving biology research. The proposed system is expected to be a useful quantitative tool
for potential microscopy problems of MFDs. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
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1 Introduction
Cell migration experiments can be performed in three-dimen-
sional (3-D) microfluidic devices (MFDs).1 These devices,
with channels allowing either fluid to flow or gel scaffolds to
be injected, mimic the in vivo environments. In conventional
two-dimensional (2-D) in vitro experiments, cells move freely
and form a thin layer rather than a structure. In in vivo experi-
ments, we can only see the formed structure. However, from the
experiments in the 3-D MFDs, we can obtain the microscopy
images of both the structure and the individual cells. As con-
trolled reactions can be reproduced with a small volume of sam-
ples and reagents, MFDs are used for long-term studies of many
biological processes. In this study, we consider cell migration
during angiogenesis and develop an automated image analysis
system to extract cell migration behaviors.

Angiogenesis is the formation of new blood vessels from pre-
existing vessels.2 It is a critical process in growth, development,
and cancer invasion. During angiogenesis, endothelial cells
(ECs) lining an existing vessel (monolayer) will sprout out
into the gel, in response to local chemical and mechanical
stimuli.3–5 Our angiogenic experiments are conducted in MFDs,
where the ECs have been shown to migrate in 3-D environments
by Ong et al.6 Stained cells under fluorescent/confocal micros-
copy provide clear cell locations. However, staining inhibits

cell proliferation and migration especially over long period.7

Therefore, we culture the unstained ECs and observe the angio-
genic vessels by phase-contrast microscopy8 at 20× magnifica-
tion daily over a period of 10 to 14 days.9 Each image has
a resolution of 1532 × 2048 pixels. At the end point, we image
the vessels by confocal microscopy after staining cell nuclei
with Hoechst dye (Invitrogen) and actin with Alexa Fluor
488 Phalloidin (Invitrogen).

Automated image analysis tools to extract cell migration
behaviors are useful for a wide range of biomedical research.
Conventional image analysis systems focus on cell migration
in 2-D in vitro environments, whereas our cells are cultured in
MFDs. Unlike the cells in 2-D, our cells migrate within the 3-D
collagen gel, remodel the gel, and form 3-D blood vessels.
Moreover, these cells do not overtake each other due to the exist-
ence of tight cell junctions, and their migration is constrained by
the vessels. This creates a unique problem that has never been
addressed.

1.1 Existing Approaches

The existing automated image analysis techniques for cell seg-
mentation and tracking can be classified into two categories:
tracking by model evolution and tracking by detection. The
former category detects and tracks the cells simultaneously by
representing the cells with mathematical models, whereas the
latter category first detects cell candidates in all the frames inde-
pendently and then links the detected candidates into tracks.
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In model evolution algorithms, the mathematically repre-
sented cell contours are smoothly evolved from one time
frame to the next one, using a velocity term defined by the con-
tent of the “target frame.”10–14 In general, model evolution algo-
rithms require a high imaging frequency to allow sufficient cell
overlap between frames and accurate cell contour/boundary
detection. These approaches are not applicable to our images
due to our low imaging frequency (one day) and unclear cell
boundaries (tight cell junctions).

In tracking by detection algorithms, cells are first detected in
all the frames independently using thresholding of pixel inten-
sities,15,16 edge detection,17 image restoration,18–20 or template
matching.21 Kanade et al.18 applied image restoration to segment
the cells on a 2-D flat surface from phase-contrast images, as
shown in Fig. 1(a). Due to the different culture environments,
the morphologies of our cells within angiogenic vessels are dif-
ferent [see Fig. 1(b)]. Moreover, the thickness of the MFDs is
120 μm, whereas the thickness of a cell on a flat surface is
around 3 to 20 μm. Due to the artifacts of phase-contrast micros-
copy, imaging thicker specimens produces severe halo effects
that reduce the visibility of our cell boundaries unlike the
data by Kanade et al.18 In addition to that, some cells may
be slightly out of focus. Therefore, the image restoration tech-
nique is not applicable for our images. A different approach is
template matching; a template is compared to patches of a gray-
level image by means of a match statistics evaluated for each
patch.22 Euclidean distance, mean square difference, and sup-
port vector machine (SVM) can work as the template matching
criteria for cell detection.21,23–26 Since we can easily obtain cell
templates from end-point phase-contrast images by aligning the
latter with their corresponding end-point confocal images, we
apply convolutional neural networks (CNN) to detect cell can-
didates from the time-lapse phase-contrast images.

Subsequently, association algorithms, such as “nearest-
neighborhood” association,27,28 mean-shift process,29–31 the
Hungarian method,32 Viterbi algorithm,33 Kalman filtering,34

particle filtering,35 multiple hypothesis tracking (MHT),18,36,37

and active structured learning,38 can be used to determine the
most likely cell correspondence between frames. These tech-
niques are either applied to images of cells migrating on
a 2-D surface or 3-D in vivo florescence images, which are far
different from our 3-D in vitro application. In the works by
Ong et al.,6 stained ECs and vessels were tracked using
Bayesian filtering from time-lapse confocal images of 30-min
intervals. However, our images are acquired once a day, which
is much longer than most existing tracking systems. Therefore,
tracking these cells is a challenge that has not been previously
addressed.

1.2 Summary of Contribution

In this paper, we focus on tracking by detection algorithm to
track the migrating ECs within angiogenic vessels formed in
3-D MFDs by linking the coarse time-lapse 2-D phase-contrast
images and 3-D end-point confocal images. Since the ECs in 3-
D MFDs can appear and disappear from our 2-D phase-contrast
images, the main challenge is to accurately identify the cell can-
didates and track cell division and migration in 3-D (in focus/out
of focus) over image sequences.

Our proposed system includes image registration, vessel seg-
mentation, cell detection, and multiple hypothesis Kalman filter-
ing, to track cell proliferation and migration within angiogenic
vessels in different frames. As mentioned, we obtain time-lapse
phase-contrast images and end-point confocal images of the
angiogenic vessels from the experiments. The stained cells are
easily recognized in the end-point confocal images. Therefore,
instead of starting with the first time point like other cell tracking
applications, we apply backward Kalman filter by initializing
our tracks with the accurate cell locations obtained from the con-
focal images at the final time point where all proliferation has
occurred. Furthermore, we incorporate biological knowledge to
add constraints and to estimate the track probability during cell
association:

• In our angiogenic vessels, cells cannot overtake the cells
in front of them, whereas cells on a 2-D surface can move
freely. This difference is one of the constraints during
association.

• In conventional approaches, the increment of cells with
time is only due to proliferation. However, for angiogenic
experiments in 3-DMFDs, cells can migrate from cell–gel
interface to form the angiogenic vessels. In other words,
the increment of cells can be either due to proliferation or
migration from cell–gel interface. Thus, we include an
empirical equation in our tracking algorithm to estimate
the probability that one cell is due to migration from
cell–gel interface.

Since one phase-contrast image is recorded each day for each
slot, biologists can conduct many experiments in parallel, where
cell viabilities are well-maintained. Moreover, by backward
tracking each cell in the 3-D network structure, cell lineage
and trajectory information, linking the chemical and physical
characteristics of a cell can be obtained in an automated manner.

The rest of this paper is structured as follows. In Sec. 2, we
explain our proposed automated cell tracking system. In Sec. 3,
we present numerical results on our experimental phase-contrast
images. We offer concluding remarks in Sec. 4.

2 Automated Multicell Tracking System
Our automated tracking system is shown in Fig. 2. First, we
align and transform all the experimental images, including
both phase-contrast images and the end-point confocal
images, into one common coordinate system through image
registration. We then apply morphological image processing
algorithms to segment the binary vessel shape. This shape is
converted to a medial axis transform (MAT) representation.39

Simultaneously, we train a CNN classifier to detect and label
cell candidates in the phase-contrast images. Last, by combining
backward Kalman filtering with MHT, we associate and track
the detected cell candidates over sequences. From the tracking

(a)

Cells

(b)

Fig. 1 Examples of cells (a) on a 2-D surface and (b) within 3-D angio-
genic vessels (red arrows point to cells).
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results, we can obtain cell lineage and trajectory information to
understand cell characteristics better. In the following, we will
discuss each component in detail.

2.1 Image Registration

We acquired the experimental images manually at different
days; hence, the angiogenic vessels are misaligned across
the image sequences as shown in Fig. 3. We spatially register

all the image sequences by transforming them into a common
coordinate system, so that we can associate and track all
the cells.

To register these images, we first extract salient features from
all the images. We choose the intersections of the straight post
edges (lines 1 to 4) as features, which are labeled in red in Fig. 3.
To automatically detect these features, we apply the Hough
transform to identify the straight lines representing the post
edges. From these detected lines, the corresponding intersec-
tions between images are obtained. We then derive the scale,
linear translation, and rotation parameters based on the intersec-
tions’ coordinates by iterative closest point to align all the
images. The pixels below the identified post edges are marked
to zero to avoid any post features to be detected as vessels or
cells in the later stage.

2.2 Vessel Segmentation

We aim to investigate the behavior of cells within the gel. Hence,
we do not need to segment cells under the cell–gel interface
[see Fig. 4(a)]. Based on the observations, we fit a parabola
to estimate the cell–gel interface in the experimental images.
The parabola equation has the following form:

EQ-TARGET;temp:intralink-;e001;326;502a1ðx − ap þ a3Þ2 þ a2; (1)

where ap is the intersection point of lines 1 and 4 obtained
during image registration, and a1, a2, and a3 are the coefficients
of the parabola. The best-fit is obtained by brute-force
optimization.1 The pixels below the parabola are masked out
as our region of interest is the area above the cell–gel interface.

Next, we convert the processed experimental images into
binary images with the global image threshold computed using
Otsu’s40 method. We obtain the segmented binary vessel shape
[see Fig. 4(b)] through the following series of morphological
operations in MATLAB™:22

• “imclose” to connect the gaps in the boundaries: structur-
ing element is a 2-D disk-shaped structuring element with
15 pixels,

• “imfill” to fill the holes inside the vessel area, and

Image
registrationn

Vessel
segmentation

Cell
detection

Multiple hypothesis
Kalman filtering

Experimental

images

Tracking

results

Fig. 2 Diagram of the proposed automated tracking system: image
registration to align all the experimental images, vessel segmentation
to represent binary vessel shape, cell detection to label all cell
candidates, and multiple hypothesis Kalman filtering to associate
the detected cell candidates.

Line 1

Line 2

Line 3

Line 4

Line 1

Line 2

Line 3

Line 4

Post
Post

Fig. 3 Experimental phase-contrast images of two successive
frames. The trapezoidal post is designed to retain the gel within the
microfluidic channel. Lines 1 to 4 can be detected and represented
using Hough transform. The red points are the correspondence points
used during image registration.

(a) (b) (c)

Cell–gel interface

Fig. 4 Examples of vessel segmentation: (a) cell–gel interface, (b) the segmented binary vessel shape,
and (c) vessel shape with centerline.
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• “bwareaopen” to remove the noises that have fewer than P
pixels: P ¼ 20;000.

These parameters are selected based on a set of training
images, and moderate changes in these parameters do not
lead to significant change in the binary vessel shapes.

We represent the segmented vessels shape with MAT by a
centerline [see Fig. 4(c)] and radii.39 We can reconstruct the
original vessel shape for visualization with the obtained MAT
data set. Since the cells typically remain within the vessel,
we can eliminate cell candidates outside the vessel during cell
detection.

2.3 Cell Detection

CNN is a widely used deep learning approach in pattern-recog-
nition and image-recognition problems.41 We construct a CNN
architecture by stacking multiple layers (see Fig. 5) and train
the CNN network to distinguish cell and noncell templates.
The resulting CNN classifier is then used to detect the cell
candidates from the time-lapse phase-contrast images.

We use the end-point confocal images, where we can easily
recognize the cells, to select our cell templates to ensure they are
informative. By aligning the phase-contrast images with their
corresponding confocal images, we can distinguish cell coordi-
nates and noncell coordinates in the phase-contrast images.
These coordinates are cropped as our templates, as shown in
Fig. 6. After rotating the templates by 90 deg, 180 deg, and
270 deg, respectively, flipping them horizontally and vertically,
and adding Gaussian noise, we obtain 3228 cell templates and
3372 noncell templates to train the CNN classifier. Each tem-
plate has a size of 100 × 100, which is sufficiently large to
fit each individual cell.

The architecture of a CNN varies depending on the types and
numbers of layers included. Some common types of layers
include convolution, ReLU, pooling, dropout, fully connected,
softmax, and classification layer.

The convolution layers are the core building blocks of
a CNN, which extract different features of the input.41,42 An
image becomes a stack of filtered images after a convolution
layer. ReLU is the abbreviation of rectified linear unit, which
implements the function y ¼ maxðx; 0Þ to set any negative
input value to zero. It increases the nonlinear properties of
the overall network without affecting the receptive fields of
the convolution layer.43 The pooling layer serves to progres-
sively reduce the spatial size of the representation, to reduce
the number of parameters and amount of computation in the net-
work and, hence, also to control overfitting. Max-pooling is the
most common pooling operation, which partitions the input
image into a set of nonoverlapping rectangles, and for each
such subregion, outputs the maximum. After several convolu-
tion, ReLU, and max-pooling layers, the fully connected layer
combines all of the features learned by the previous layers to
classify the images.44 A dropout layer, which randomly sets
input elements to zero with a given probability, follows the fully
connected layer to reduce overfitting.45 The fully connected
layer usually uses the softmax activation function (softmax
layer) for a classification problem.46 The classification layer
is the final layer, which uses the probabilities returned by the
softmax activation function for each input to assign it to one of
the classes.

The types and number of layers included in a CNN classifier
depend on the training data. To get the most suitable architecture
of our CNN classifier, we vary not only the number of layers but
also the parameters of each layer. For the data at hand, we apply
fivefold cross validation to get the optimal CNN architecture.
The training templates are randomly partitioned into five
equal-sized subsamples, where one subsample is retained as
the validation data for testing the classifier and the remaining
four subsamples are used as training data. We repeat the cross-
validation process for five times to obtain our CNN classifier,
which yields a classification accuracy of 92.39%, as shown
in Fig. 5. The first convolutional layer has 20 filters with a filter
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Fig. 5 Architecture of the CNN classifier for cell detection.

Fig. 6 Examples of (a) cell and (b) noncell templates from phase-contrast images to train the CNN
classifier. Size of each template is 100 × 100.
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size of 5 × 5, and the second convolutional layer has 20 filters
with a filter size of 10 × 10. The pool size of both max-pooling
layers is 2 × 2. The output sizes of the first and second fully
connected layers are 10 and 2, respectively.

We then apply the resulting CNN classifier to classify
the pixels in our experimental phase-contrast images through
a sliding window manner. The centers of the clusters, which
are classified as positive class, are selected as the position of
cell nuclei.

2.4 Multiple Hypothesis Kalman Filtering

We combine backward Kalman filtering with MHT to associate
and track the cell candidates within the vessels over time.
Instead of starting with the image at the first time point,
we initialize our tracks with the end-point confocal image,
which provide the accurate cell locations and where all
proliferation has occurred. Furthermore, we combine biological
knowledge, such as vessel information and cell proliferation
rate, to add constraints when estimating the probabilities in
cell association.

We denote each individual cell state by xk ¼ ½xk; yk; _xk; _yk�T,
where xk and yk are the estimated cell centroid positions in
the x- and y-axes, respectively, and _xk and _yk are their
corresponding velocities. The system covariance at time k is
denoted by Pk. The observation state is the cell position in
x- and y-axes obtained in cell detection process, denoted by
zk ¼ ½xk; yk�T .

The backward Kalman filter consists of two steps: backward
prediction and update. The prediction equations for the prior
state estimate x̂k−1jk and corresponding system covariance
estimate Pk−1jk are

EQ-TARGET;temp:intralink-;e002;63;400x̂k−1jk ¼ Fx̂kjk; (2)

EQ-TARGET;temp:intralink-;e003;63;369Pk−1jk ¼ FPkjkFT þQ; (3)

and the update equations for the posterior cell estimate and
covariance estimate are

EQ-TARGET;temp:intralink-;e004;63;319x̂k−1jk−1 ¼ x̂k−1jk þKk−1ỹk−1; (4)

EQ-TARGET;temp:intralink-;e005;63;293Pk−1jk−1 ¼ ðI −Kk−1HÞPk−1jk; (5)

where F is the state transition model, Q is the covariance matrix
of the process noise, H is the observation model, which maps
the state space into the observation space, R is the covariance of
the observation noise, ỹk−1 is the innovation or the residual
error between the predicted and observed estimate, Sk−1 is
the innovation covariance, and Kk−1 is the optimal Kalman gain
matrix, yielding the minimummean square error. ỹk−1, Sk−1, and
Kk−1 are calculated as follows:

EQ-TARGET;temp:intralink-;e006;63;178ỹk−1 ¼ zk−1 −Hx̂k−1jk; (6)

EQ-TARGET;temp:intralink-;e007;63;147Sk−1 ¼ HPk−1jkHT þ R; (7)

EQ-TARGET;temp:intralink-;e008;63;120Kk−1 ¼ Pk−1jkHTðHPk−1jkHT þ RÞ−1: (8)

We assume a constant velocity model; hence, we have

EQ-TARGET;temp:intralink-;e009;326;541F ¼

2
664
1 0 Δt 0

0 1 0 Δt
0 0 1 0

0 0 0 1

3
775 and H ¼

�
1 0 0 0

0 1 0 0

�
;

(9)

where Δt ¼ −1 day.
Backward Kalman filter with validation gating is a popular

approach to update the cell state during cell association. In each
image, we extract multiple cells, which will be updated to multi-
ple tracks. To associate an observation to a particular track,
we employ a validation gate as an association threshold of
whether to accept or reject an observation-to-target association.
Observations that fall within the validation gate will be updated.
As shown in Fig. 7, the blue and red ellipse are the validation
gate for cell 1 and cell 2, respectively. Specifically, we compute
the Mahalanobis distance between each observation to each
state estimate as

EQ-TARGET;temp:intralink-;e010;326;323d2ij ¼ ỹTij;k−1S
−1
ij;k−1ỹij;k−1; (10)

where ỹij;k−1 is the innovation between the backpredicted track i
and the observation j and Sij;k−1 is the corresponding innovation
covariance. The observation, whose Mahalanobis distance with
a track is smaller than a chi-squared threshold (validation gate),
is more likely belonging to this track. If there are no observa-
tions within this gate, no observation updates to this track will
occur. When there are multiple observations in a validation gate,
the estimate is updated with only the best-matched observation
(smallest Mahalanobis distance). For instance, observation 1 is
associated with track 1 and observation 2 is associated with
track 2 in Fig. 7.

The alternative way for multiple observations problem is to
apply MHT, where the association of observations can be
delayed till sufficient information is available. The flowchart in
Fig. 8 shows a diagram of the proposed cell tracking system.

At the end point, which is the initial time point of the back-
ward Kalman filter, we create one track for each cell. Each cell
state and covariance estimate at time k are backpropagated to
time k − 1 using Eqs. (2) and (3). If there are Nk−1 observations
which fall within the validation gate, MHT updates all the

Fig. 7 Backward Kalman filter with validation gating in data associa-
tion: blue and red ellipses are the validation gate for tracks 1 and 2,
respectively. Track 1 is associated with observation 1 and track 2 is
associated with observation 2 in this plot.
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observations to the same track by generating Nk−1 new branches
to the track. Figure 9 provides an example of the MHT process
for one cell in two successive time steps. Within the blue ellipse,
the purple diamond represents the predicted position of one
track at time k − 1. The green triangles indicate the observations
that may be associated with this track with probability p1, p2,
and p3, respectively. The red pentagon depicts the hypothesis
(with probability p0) that the track is coming from the cell–
gel interface. All the possible hypotheses in step k − 1 are
maintained and considered independently to generate new
hypotheses in the next time step, as indicated by the red ellipses
in Fig. 9. Since the number of branches for each track increases
exponentially, to keep the computation under control, we main-
tain M branches for each time by including biological knowl-
edge and pruning the tracks with low probability.

Let us consider cell i at time k. This cell might be due to the
migration or proliferation of an existing cell labeled as j at time
k − 1. It is also possible that this cell is in the cell–gel interface
or out of focus (not in the focal plane) at time k − 1. The cor-
responding probabilities are calculated in different ways.

We employ the Mahalanobis distance to calculate the prob-
ability that track i stems from the migration or proliferation of
an existing cell j. If the distance is smaller than the threshold
gate value, the probability that the track i is associated with
observation j is calculated as

EQ-TARGET;temp:intralink-;e011;63;353piðzjk−1Þ ∝ j2πSij;k−1j−1
2e−

1
2
d2ij : (11)

We assume that the cells nearer to the cell–gel interface
(larger y-position) are more likely to be new tracks. The prob-
ability that track i is due to migration from the cell–gel interface
is computed as

EQ-TARGET;temp:intralink-;e012;326;752piðMÞ ∝ 1

ðb1 − yk−1jkÞb2
; (12)

where b1 ¼ 1700 and b2 ¼ 2.47 are the empirical parameters
tuned from our experimental data and yk−1jk is the cell position
in y-direction from backward Kalman prediction. The probabil-
ities for track i estimated by Eqs. (11) and (12) are then normal-
ized for this time step.

We include biological knowledge to reduce the number of the
new tracks in each step. Since the doubling time of our ECs is 15
to 48 h, we assume that one cell can at most split once within one
day. In other words, we allow at most two cells at time k to be
associated with one same observation at time k − 1 during
merging. In our angiogenic vessels, cells cannot overtake each
other due to the existence of tight cell junctions, so we eliminate
the tracks where overtaking happens during association.
Meanwhile, we discard the tracks with low probability to keep
the number of tracks generation computations under control.

As mentioned, we keep M branches and obtain their corre-
sponding cell state estimates and system covariance estimates
with backward Kalman update for each time step. Typically,
M ¼ 4 is selected since the remaining branches have negligible
probabilities. Each of these new tracks is considered independ-
ently and used to generate new predictions for next time step.
We repeat this tracking process until k ¼ 1 and obtain N0Mt−1

hypotheses in total, where N0 is the number of the cells obtained
from the end-point confocal images and t is the total time steps.
Last, the tracks are selected as the most probable hypotheses.

3 Results and Discussion
We applied the proposed automated multicell tracking system to
the experimental time-lapse phase-contrast images with the aim
of tracking the nuclei of the ECs within the angiogenic vessels.

3.1 Image Registration Results

With our proposed registration algorithm, we aligned all the
phase-contrast image sequences and their corresponding end-
point confocal images. We overlay the end-point phase-contrast
images and their corresponding end-point confocal images to
illustrate the registration results (see Fig. 10).

Figures 10(a) and 10(d) are the original end-point experi-
mental images obtained from phase-contrast microscopy.
Figures 10(b) and 10(e) are their corresponding confocal
images. Here, the blue blobs are the cell nuclei stained by
Hoechst, and the green structures are the actin stained by
Phalloidin. We can see that the size and position of the vessels
are different in the phase-contrast images and confocal images.
The aligned phase-contrast and confocal images are shown in
Figs. 10(c) and 10(f), where the resized phase-contrast images
are shown in the background. We marked the cell nuclei stained
in the confocal images as green blobs for clearer identification.
The angiogenic structures are well-aligned in Fig. 10, sug-
gesting our image registration algorithm is accurate.

3.2 Cell Detection Results

We consider the same examples as in Sec. 3.1 to illustrate
our cell detection results. Figures 11(a) and 11(e) show the
results for the proposed CNN-based cell detection algorithm.
Figures 11(b) and 11(f) show the results from partial least square
regression (PLSR) approach with 30 PLS components as
explained in Ref. 47. Figures 11(c) and 11(g) show the cellFig. 9 MHT for one cell in two successive time steps.

Fig. 8 Flowchart of multiple hypothesis Kalman filtering. Cell state,
system covariance, and probabilities of all the tracks are recursively
updated over time to form multiple hypotheses. The cell associations
are obtained by selecting the most probable hypotheses.
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detection results for principal component analysis (PCA) in
combination with SVM classification. We also trained an
SVM classifier based on the original high-dimensional template
data to distinguish the cells from the background in our exper-
imental images, for comparison. The results are shown in
Figs. 11(d) and 11(h). The red stars ð�Þ label the location of
the detected cell nuclei for all these images.

To evaluate the performance of these approaches quantita-
tively, precision and recall measures are calculated. Precision
is the fraction of detected cells that are actual cells, and recall
is the fraction of the actual cells that are detected

EQ-TARGET;temp:intralink-;e013;63;241Precision ¼ TP

TPþ FP
and Recall ¼ TP

TPþ FN
; (13)

where TP, FP, and FN are defined in the 2 × 2 confusion matrix
in Table 1.48 This confusion matrix describes the four possible
outcomes of a given binary classifier and a set of instances.

To assess the different cell detection approaches, we also
compute F-score F1, defined as the harmonic mean of precision
and recall

EQ-TARGET;temp:intralink-;e014;326;329F1 ¼ 2 ·
Precision · Recall
Precisionþ Recall

: (14)

To validate the cell detection results, we use the end-point
phase-contrast images, matching the estimated cell locations
with their corresponding confocal images. We analyzed 18 end-
point phase-contrast images in this paper. Since the phase-
contrast image is a 2-D slice and the confocal image is in 3-D
with multiple slices, we choose the ground truth in two ways.
For the first case, the actual positives and negatives are extracted
from all the slices of confocal images. However, since our
phase-contrast image is in 2-D, we use only one slice of the
confocal image to provide the ground truth for the second case.
We choose the slice that has a similar focal plane as the 2-D
phase-contrast image. The TP, FP, and FN values for the four
approaches are provided in Table 2. Their corresponding preci-
sion, recall, and F1 values are listed in Table 3.

For case 1, all the precision values are above 80%, suggesting
that most of the detected cells are actual cells. The recall for
CNN reaches 85.7%, which is higher than for the other three
approaches, indicating that CNN detects most of the actual
cells.

Fig. 10 Illustration of image registration results: (a) and (d) are the end-point phase-contrast images, (b)
and (e) are their corresponding confocal images, and (c) and (f) show the coregistered confocal and
phase-contrast images.

Table 1 Confusion matrix for a binary classifier.48

Actual positive Actual negative

Assigned positive True positive (TP) False positive (FP)

Assigned negative False negative (FN) True negative (TN)
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Fig. 11 Cell detection results of examples in Fig. 10 from different approaches: (a) and (e) from CNN
classifier, (b) and (f) from PLSR,47 (c) and (g) from PCA in conjunction with SVM, and (d) and (h) from
an SVM classifier. Red stars ð�Þ indicate the locations of the detected cell nuclei.

Table 2 TP, FP, and FN values for different cell detection
approaches.

Case 1: all slices Case 2: one slice

Detection approaches TP FP FN TP FP FN

CNN 228 33 38 228 33 22

PLSR 217 38 49 217 38 33

PCA and SVM 107 26 159 107 26 143

SVM 124 23 142 124 23 126

Table 3 Classification performance for different cell detection
approaches.

Case 1: all slices Case 2: one slice

Approaches
Precision

(%)
Recall
(%) F 1

Precision
(%)

Recall
(%) F 1

CNN 87.4 85.7 0.87 87.4 91.2 0.89

PLSR 85.1 81.6 0.83 85.1 86.8 0.86

PCA and
SVM

80.5 40.2 0.54 80.5 42.8 0.56

SVM 84.4 46.6 0.60 84.4 49.6 0.62
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The recall of CNN is limited to about 85.7%, which can be
explained as follows. The height of our device is around 120 μm
and there are cells migrating throughout this range. We only
acquire the 2-D image of the angiogenic vessels in focus. Some
cells, which are external to the vessels, are out of focus and
almost invisible in the phase-contrast images. These cells are
not detected by our algorithms. However, these out-of-focus
cells are observed in the 3-D confocal images. This scenario
can be seen in Fig. 10.

For case 2, the recall for all the four approaches increases as
shown in Table 3. Particularly, the recall for the proposed cell
detection algorithm (CNN) increases to 91.2%. From the values
of F-score in Table 3, which balances recall and precision, we
can also conclude that CNN is a preferable algorithm to detect
the ECs within the 3-D angiogenic vessels from our experimen-
tal phase-contrast images. We hypothesize that the features
extracted from CNN are more suitable to represent the cell
templates.

3.3 Tracking Results

Since our cell association approach is detection based, we use
the cell detection results from the proposed approach based on
CNN as the cell locations during cell association.

We provide two examples of the association results in
Fig. 12. The results for the proposed tracking system are
shown in Figs. 12(a), 12(b), 12(e), and 12(f). We also apply
backward Kalman filter with validation gating for cell associa-
tion [see Figs. 12(c), 12(d), 12(g), and 12(h)]. Each image
presents the tracking results for two successive frames and
the background is the experimental phase-contrast image. We
can see that the proposed multicell tracking approach produces
better tracking results than backward Kalman filter with valida-
tion gating.

We applied the proposed system to track cells in five sprout-
ing slots, where each slot has four to five frames (one frame
per day). We estimated the association accuracies (the percent-
age of the correct associations in the total associations) for

Fig. 12 Cell tracking examples: (a)–(d) for example 1 and (e)–(h) for example 2. (a), (b) and (e), (f):
backward Kalman filter with MHT, (c), (d) and (g), (h): backward Kalman filter with validation gating.
Each image shows the outcomes of the tracking algorithms for two successive frames, where the
phase-contrast image is shown in the background.
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the proposed approach, the nearest-neighborhood association,
the backward Kalman filter with validation gating, and the
Hungarian method32 (see Table 4). We excluded in this compari-
son methods in the literature that require more information about
the cells than merely the cell locations, since such information is
unavailable for our data. Since these methods cannot be applied
to our data, we did not assess them. We obtained the ground
truth through manual association, which is the traditional
method of analyzing the cell migratory behaviors.

Since the sampling interval is one day, cells migrate over
a relatively long distance between frames. Using nearest-neigh-
borhood association, the new tracks at time k are typically asso-
ciated wrongly to cells that are near to the cell–gel interface at
time k − 1. In the backward Kalman filter with validation gating
approach, we predict the track backward each time step via
a constant velocity motion model. In this model, we assume
that the track velocity is a constant during one time step, and
we update it at every time step. This approach yields more reli-
able association results, improving the association accuracy
from 26.7% to 60.1%. In the Hungarian method, we first predict
the new positions of the cells at time k using a constant velocity
model and then estimate the Euclidean distances of the predicted
cells at time k and the cells at time k − 1, to find the associations
with minimal cost. However, cell migration and proliferation
are not considered since it only allows for one-to-one matching.
Thus, only 53.0% association accuracy is obtained. In our
approach, we combine MHT with backward Kalman filter,
which delays the decision making, and determine the associa-
tions once sufficient information is available. Moreover, biologi-
cal knowledge is incorporated when considering the new cells
from the cell–gel interface and reducing the number of new
tracks. As a result, we can track not only the migration and
proliferation of the existing cells but also the new cells from
cell–gel interface and out-of-focus plane (see Fig. 12). This
explains why the association accuracy increases to 86.4% for
our approach. Compared with the association accuracy (85.9%)
based on PLSR in Ref. 47, we can also conclude that the
increment in cell detection accuracy due to the CNN improves
the association accuracy.

Cell trajectory information can be obtained from the tracking
results. Moreover, the system can automatically generate cell
lineage plots (see Fig. 13), showing the history of the cell
proliferation and cell migration into the gel, with timestamps
of when it is in focus and out of focus. Such cell lineage plot
provides crucial information (e.g., the number of cells, division
time, growth fraction, etc.) to biologists who are interested in
studying cell migration behaviors under different conditions.

The cell lineage plots in Figs. 13(a) and 13(b) correspond to
the two examples in Fig. 12. The blue lines indicate that cells
migrate within the 3-D gel. The branch points of these blue lines
represent cell proliferation. The red stars illustrate the incoming
cells from the cell–gel interface. The green stars indicate that
cells migrate out of focus. The cell lineage plot illustrates the
history of cell migration and proliferation in a compact and
effective manner.

By comparing the cell lineage plots obtained under different
experimental conditions, biologists can easily figure out the
influences of the chemical factors on cell division and cell
migration. For instance, Fig. 13(a) is from angiogenic experi-
ment under positive sphingosine-1-phosphate (S1P) gradient,
and Fig. 13(b) is from angiogenic experiment without S1P.9

By comparing these two figures, one can conclude that positive
S1P gradient induces more recruitment of cells from the mono-
layer and stimulates cell proliferation. The cell lineage plots
provide quantitative information about the influence of S1P
on angiogenesis. Such quantitative data are an important step
toward better understanding and new theories of angiogenesis;
hence, the proposed tools probably will enable biologists to
make new discoveries concerning angiogenesis. These data can
also be used to develop mathematical models to predict the
cell migration under different conditions, leading ultimately to
a better understanding cell migration in angiogenesis.

4 Conclusion
We presented an automated image analysis system to track the
migrating ECs within 3-D angiogenic vessels cultured in MFDs
by combining end-point confocal and time-lapse phase-contrast

Table 4 Accuracy (percentage of correct associations) for different
cell association approaches. I, nearest-neighborhood association; II,
Kalman filter with validation gating; III, Hungarian method; and IV,
Kalman filter with MHT.

Correct associations Total associations
Association
accuracy (%)

I 53 198 26.7

II 119 198 60.1

III 105 198 53.0

IV 171 198 86.4
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Fig. 13 Cell lineage plot: (a) for example 1 and (b) for example 2 in
Fig. 12. The blue lines represent the cells that migrate within the 3-D
gel; the red stars represent the incoming cells from the cell–gel inter-
face, whereas the green stars indicate the cells migrating out of focus.
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images. This system consists of image registration, vessel seg-
mentation, cell detection, and multiple hypothesis Kalman filter-
ing to track cell proliferation and migration (in/out of focus) in
3-D angiogenic vessels. We incorporate biological knowledge,
such as vessel information and experimental device properties,
to add constraints and to estimate the track probability during
cell association. Our proposed cell detection algorithm based
on CNN yields 87.4% precision and 91.2% recall for cell can-
didates detection, which helps the biologists to recognize a large
number of cells automatically with high accuracy. The associ-
ation accuracy reaches 86.4% for the proposed multiple hypoth-
esis Kalman filtering approach when associating the detected
cell candidates. In the future, we will apply deep residual learn-
ing to improve cell detection accuracy. We will also explore
other possible features of cells and combine the detection like-
lihood of each cell with the Mahalanobis distance to improve the
association accuracy. From the tracking results (see Fig. 12), we
are able to obtain information about the cell trajectory and create
a cell lineage plot (see Fig. 13) to visualize the history of the cell
migration and proliferation in a compact and effective manner.
By comparing with the identified biomarkers in the end-point
confocal images, biologists can explore links between the
chemical and physical characteristics of a cell. With this infor-
mation about the cell history, mathematical models can be devel-
oped to predict the cell migration under different cell conditions,
leading ultimately to a better understanding of the biological
processes in cells.
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