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Abstract. Magnetic resonance imaging (MRI) provides a number of advantages over computed tomography
(CT) for radiation therapy treatment planning; however, MRI lacks the key electron density information necessary
for accurate dose calculation. We propose a dictionary-learning-based method to derive electron density
information from MRIs. Specifically, we first partition a given MR image into a set of patches, for which we used
a joint dictionary learning method to directly predict a CT patch as a structured output. Then a feature selection
method is used to ensure prediction robustness. Finally, we combine all the predicted CT patches to obtain
the final prediction for the givenMR image. This prediction technique was validated for a clinical application using
14 patients with brain MR and CT images. The peak signal-to-noise ratio (PSNR), mean absolute error (MAE),
normalized cross-correlation (NCC) indices and similarity index (SI) for air, soft-tissue and bone region were
used to quantify the prediction accuracy. The mean ± std of PSNR, MAE, and NCC were: 22.4� 1.9 dB, 82.6�
26.1 HU, and 0.91� 0.03 for the 14 patients. The SIs for air, soft-tissue, and bone regions are 0.98� 0.01,
0.88� 0.03, and 0.69� 0.08. These indices demonstrate the CT prediction accuracy of the proposed learn-
ing-based method. This CT image prediction technique could be used as a tool for MRI-based radiation treat-
ment planning, or for PET attenuation correction in a PET/MRI scanner. © 2018 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JMI.5.3.034001]
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1 Introduction
Magnetic resonance imaging (MRI) has several important
advantages over computed tomography (CT) for radiation treat-
ment planning.1 Chiefly, MRI significantly improves soft-tissue
contrast over CT, which increases the accuracy and reliability of
target delineation in multiple anatomic sites. A potential treat-
ment planning process incorporating MRI as the sole imaging
modality could eliminate systematic MRI-CT coregistration
errors, reduce cost, minimize radiation exposure to the patient,
and simplify clinical workflow.2 Despite these advantages, MRI
contains neither unique nor quantitative information on electron
density, which is needed for accurate dose calculations and gen-
erating reference images for patient setup. Therefore, in this pro-
posed MRI-only-based treatment planning process, electron
density information that is otherwise obtained from CT must
thus be derived from the MRI by synthesizing a so-called
pseudo CT (PCT).3,4

Accurate methods for estimating PCT from MRI are cru-
cially needed. The existing estimation methods can be broadly
classified into the following four categories:

Atlas-based methods: These methods use single or multi-
ple atlases with deformable registrations.5–8 They can
also incorporate pattern recognition techniques to esti-
mate electron density.9,10 The main drawback is that

their accuracy depends on that of the intersubject
registration.

Classification-based methods: These methods first man-
ually or automatically segment MR images into bone,
air, fat and soft-tissue classes, and then assign a uni-
form electron density to each class.11–16 However,
these methods may not reliably be able to differentiate
bone from air due to the ambiguous intensity relation-
ship between bone and air using MRI.

Sequence-based methods: These methods create PCTs
by using intensity information from standard MR,
specialized MR sequences such as the ultrashort
echo time (UTE), or a combination of the two.17–25

However, the current image quality of UTE sequences
is unsatisfactory for accurate delineation of blood
vessels from bone; both similarly appear dark.14,25

Learning-based methods: In these methods, a map
between CT and MRI is learned by a training data
set and then used for predicting PCT for the target
MRI.4,26–32 Recent work have proposed a Gaussian
mixture regression (GMR) method for learning from
UTE MR sequences.19,33–36 Due to lack of spatial
information, the quality of GMR method was subop-
timal. Li et al.37 proposed convolutional neural net-
works. Random forests have also been used for
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learning the map.38–41 Huynh et al.41 used the structural
random forest to estimate a PCT image from its corre-
sponding MRI. However, the redundant features often
contain several biases, which may affect the training
of decision tree and thus cause prediction errors.
Recently, another group of learning-based methods are
the dictionary-learning-based methods.3,42,43 Andreasen
et al.3,42 used a patch-based method to generate PCTs
based on conventional T1-weighted MRI sequences.
They refined this method for use in MR-based pelvic
radiotherapy. Due to the parallelizable iteration, a fast
patch-based PCT synthesis accelerated by graphics
processing unit (GPU) for PET/MR attenuation correc-
tion was proposed.43 Aouadi et al.44 proposed a sparse
patch-based method applied to MR-only radiotherapy
planning.

Since recent dictionary-learning-based methods have not
taken into consideration patient-specific features when repre-
senting an image patch, the purpose of this work is to address
this issue by the following improvement.

1. Position and deformation balance: Three-dimensional
(3-D) rotation invariant local binary pattern (3-D
RILBP) features are innovatively crafted with multira-
dii level sensitivity and multiderivate image modeling
to balance rigidity of image deformation and sensitiv-
ity of small position difference.

2. Anatomic signature: A feature selection method is
introduced to identify the informative and salient
features that are discriminative for clustering bone,
air, and soft tissue of each voxel, by minimizing
the least absolute shrinkage and selection operator
(LASSO) energy function. The identified features,
known as the anatomical signature, are used to per-
form dictionary learning.

3. Joint dictionary learning: To address the challenge of
training large amounts of data, for each patch of new
arrival MRI, the local self-similarity is applied to
restrict the training domain. Then, a joint dictionary
learning model is proposed to sparsely represent the
newMRI patch by simultaneously training the diction-
ary of MRI anatomic signature and CT intensity. The
alternative direction method (ADM)45 is introduced to
train the coupled dictionaries of MR and CT by feed-
ing both to distributed optimization. The basic pursuit
(BP)46 method combined with well-trained diction-
aries is utilized for the sparse representation of a
new MRI patch.

This paper is organized as follows: we provide an over-
view of the proposed MRI-based PCT framework in the
methods, followed by the details on anatomic signature,
construction of the coupled similar patch-based dictionary
via joint dictionary learning, and the prediction of target
CT by sparse representation reconstruction. We compare
state-of-art methods based on dictionary learning with our
approach in the results and conclude that our dictionary-
learning-based PCT estimation framework could be a useful
tool for MRI-based radiation treatment planning for rigid
structures.

2 Methods

2.1 System Overview

For a given pair of MR and CT training images, the CT image
was used as the regression target of the MRI image. We assumed
that the training data have been preprocessed by removing noise
and uninformative regions and have been aligned and normal-
ized using mean and standard deviation. In the training stage, for
each 3-D patch of MR image, we extracted 3-D RILBP features
with multiradii-level sensitivity and multiderivate image model-
ing including the original MR image and the derivate image fil-
tered through standard deviation and mean filters. The mean and
standard filtered images were obtained by assigning each voxel
a value corresponding to the mean and standard value of the
voxels in a spherical neighborhood around the voxel, respec-
tively. The CT label of each patch’s central voxel was obtained
using fuzzy C-means labeling. The most informative features
corresponding to cluster the labels were identified by an
LASSO operator; their statistical discriminative power was
evaluated by each one’s Fisher’s score.47 For each patch of
new arrival MRI, the training data were collected by searching
similar neighbors within a bounded region. Then, we used a
joint dictionary learning method to simultaneously train the
sparse representation dictionary of both anatomic signature
and CT intensities within the searched region. Last, the sparse
coefficients of this patch were generated by BP46 methods under
the dictionary of MRI features. Finally, we used these coeffi-
cients to reconstruct the PCT image under the well-trained
dictionary of CT. A brief workflow of our method is shown in
Fig. 1.

2.2 Preprocessing

A rigid intrasubject registration was used to align each pair of
brain CT and MR images of the same subject. All pairs were
aligned onto a common space by applying a rigid-body intersub-
ject registration. All the training pairs were further registered to
a new test MR image. We performed denoising, inhomogeneity
correction, and histogram matching for MR images. To reduce
the computational cost of training the models, a mask was per-
formed by removing the most useless regions, i.e., the air region
outside the body contour, in all MRI images.

2.3 Feature Extraction

Based on the approach proposed by Pauly et al.,48 in which two-
dimensional (2-D) LBP-like features were used for predicting
organ bounding boxes in Dixon MR image sets, a 3-D rotation
invariant version was implemented for this task. The 3-D
version differs from 2-D version. The neighborhood voxels
are not defined by a circular neighborhood but instead by
a spherical one, which can be solved by the RILBP operator
proposed by Fehr and Burkhardt.49 To address MRI artifacts,
we used multiderivate image modeling to extract features
with different image models, and also used multiple spatial
scales with fixed patch size to achieve the feature’s multiradius
level sensitivity as recommended previously.41 For 3-D RILBP
feature extraction, we used a cube with size of 3 × 3 × 3 mm3

and a sphere with a 3-mm radius for the first scale and then
added 2 and 4 mm to those values for the second and third
scales, respectively. The 3-D RILBP feature maps of multilevel
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and multiderivate image modeling in transverse plane are
shown in Fig. 2, where each feature map’s voxel is constructed
by central feature of feature vector of 3-D patch centered at that
voxel’s position.

2.4 Feature Selection

We denote F ¼ ffðx1Þ; fðx2Þ; : : : ; fðxnÞg as the extracted
features of MR image patches centered at each position i,
X ¼ fx1; x2; : : : ; xng is the set of CT voxels at each position

(a1)

(a2)

(a3)

(b1)

(b2)

(b3)

(c1)

(c2)

(c3)

(d1)

(d2)

(d3)

Fig. 2 Example of 3-D RILBP feature maps. The (a1–a3) are the image sets including original
MRI image, mean of MRI and standard division of MRI. The corresponding feature maps are in
the (b1–b3), (c1–c3), and (d1–d3). In (b1–b3), a sphere with radius 3 mm and cubes of size
3 × 3 × 3 mm3 were used. In (c1–c3), the sphere radius was 5 mm and cube size was 5 × 5 × 5 mm3.
In (d1–d3), the sphere radius was 7 mm and cube size was 7 × 7 × 7 mm3.

Target MR Training MR Training CT

Preprocess Corresponding
transformation

Joint dictionary learning

Feature extraction

Final PCT
Reconstruction

Preprocess

Feature selection

Post-processing

Patch selection

Feature extraction

CT label

Central voxel

Fig. 1 The brief architecture of the proposed method.
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i. Recent studies50–52 have shown the potential drawback of
using extremely high-dimensional features for existing learning
methods. One major concern is that high-dimensional training
data may contain bias and redundant components, which could
over fit the learning models and in turn affect the final learning
robustness. To address this challenge, we propose a feature
selection method using a logistic regression function, as feature
selection can be regarded as a binary regression task with respect
to each dimension of the original feature.50,51 Further, the goal of
feature selection is to identify and group a small subset of the
most informative features. Thus, our feature selection is accom-
plished by implementing the sparsity constraint in the logistic
regression, i.e., minimizing the following LASSO energy loss
function:

EQ-TARGET;temp:intralink-;e001;63;598

Xn
j¼1

logð1þ expf−l½wTfðxjÞ þ b�gÞ þ μ
Xm
i¼1

jwij∕βi; (1)

where fðxÞ denotes the original feature, w is a sparse coefficient
vector that denotes a binary coefficient, with nonzero denoting
that the corresponding features are relevant to the anatomic
classification, and zero denoting that the nonrelevant features
are eliminated during the classifier learning process. b denotes
the intercept scalar. lð·Þ is an anatomical binary labeling func-
tion. βi is a optimization scalar and μ is a regularization param-
eter. n denotes the number of voxel samples xj and m denotes
the length of vector w. β is computed by discriminative power,
i.e., Fisher’s score47 for each feature of feature vector.

The optimization tries to punish the features that have smaller
discriminative power, i.e., uninformative features are eliminated
from training the learning-based model. To implement this pun-
ishment, βi is used to be divided by jwij. The optimal solution of
intercept scalar b and wi can be estimated by Nesterov’s53

method. Denoted as fsðxÞ, the informative features correspond-
ing to the nonzero entries in w were selected, which have
superior discriminatory power in distinguishing bone, air, and

soft-tissues from each other. We defined fsðxÞ as the MRI
patch’s anatomic signature.

Two-step feature selection was applied by first labeling air
and nonair materials in first round and then labeling bone
and soft-tissue in the second round. The air, soft-tissue, and
bone labels, as shown in Fig. 3, are roughly segmented by
fuzzy C-means clustering method. Structures adjacent to both
bone and air are difficult to accurately disambiguate in compari-
son with voxels of other regions. Therefore, more samples were
drawn from the bone and air regions during the feature selection
process. To balance the three regional samples, ratio parameters
were used to control the ratio of the number of samples drawn
from air, bone, and soft-tissue regions.

An example is given in Fig. 4, in which (a) and (b) show
training paired MRI and CT image with two types of samples.
The samples of the bone region are indicated by red asterisk
whereas those selected from soft-tissue regions are indicated
by green circles. Figure 4(c) shows a scattered plot of the
samples corresponding to the randomly selected two features
without feature selection, whereas Fig. 4(d) shows that of the
samples corresponding to the two top-ranked features, which
are evaluated by Fisher’s score,47 after feature selection. It can
be seen with feature selection that bone regions can be distin-
guished from the soft tissues.

2.5 Pseudo Computed Tomography Synthesis

After preselecting the most informative feature as an anatomic
signature, we propose a joint dictionary learning framework to
handle the challenge of large-scale data training. The aim was to
estimate the target CT intensity from a MRI in a patch, or
a group of voxels, wise local self-similarity fashion using the
joint dictionary learning and sparse representation technique.
If a patch (with a size of 5 × 5 × 5 voxels) in the new arrival
MR image is similar to a certain patch of training MR images,
then the corresponding CT central voxel for these two MR

(a) (b) (c) (d)

Fig. 3 Example of the CT image label. (a) and (c) The different slices of CT image, (b) and (d) the cor-
responding labels, where black area denotes the air label, the white area is the bone label and the gray
area is the soft-tissue label.

0 1
0

1

0 1
0

11 1

1 1
0 0

0 0

(c) (d)(a) (b)

Fig. 4 An example of feature selection.
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patches were highly correlated. Each patch of the new arrival
MRI image could identify several similar instances from the
properly selected trainingMR patches via a sparse learning tech-
nique when the training data set is sufficient enough. Therefore,
in this paper the correlation of MR anatomic signature and CT
central voxels can be constructed by joint dictionary learning,
which tracks the same sparse coefficients of both MR patches
and CT intensities. To this end, the framework involves the train-
ing and predicting stages. In the training stage, the following
two steps are used to efficiently learn the correlation between
MR anatomic signature and CT central voxel within the selected
similar templates.

1. We selected a small number of similar local training
MR patches and their corresponding CT central voxels
in distinctive regions as the dataset for our next train-
ing step.

2. For the small set of training data, the coupled diction-
aries were adaptively trained to sparsely represent
the MR anatomic signature and CT intensity by joint
dictionary learning, where each dictionary column is
initialized by MR signature and their corresponding
CT intensities.

The prediction stage consists of the following two steps:

1. For each target MR patch, we extracted similar train-
ing MR patches and the corresponding coupled
dictionary so that the target patch can be sparsely
represented by the selected dictionary.

2. The target CT voxel was predicted by applying sparse
reconstruction of training CT intensities dictionary
(i.e., a linear combination of CT dictionary columns)
using the previously obtained sparse coefficients.

2.5.1 Patch selection based on local similarity

Before constructing the coupled dictionary, patch selection is
needed among all candidate MR patches to reduce the computa-
tional complexity and to enhance the prediction accuracy by
excluding the irrelevant patches based on reasonable similar
metrics. Specifically, the criterion for patch similarity is defined
between two MRI patches IMR

i and IMR
j by a reflecting weight

wij, which can be computed by calculating distance between
both CT intensity and MRI anatomic signature

EQ-TARGET;temp:intralink-;e002;63;238wij ¼ exp½−ðkIMR
i − IMR

j k2
2
þ ρkfMR

i − fMR
j k2

2
Þ∕2Sβδ�;

(2)

where S is the number of voxels in the target patch, β is a
smoothing parameter, δ is the standard division of all the patches
and features, and ρ denotes the balance parameter of the sim-
ilarity between anatomic signature and image intensity. First,
the new arrival MRI is normalized by mean and standard
deviation. Then, the training set Di of the new MRI patch’s cen-
tral position i can be obtained by sorting the K-nearest patches
within a specific searching region Nkx×ky×kzðiÞ

EQ-TARGET;temp:intralink-;e003;63;101Di ¼fðfMR
j ;yMR

j Þjj∈ sortðwij; 0descend 0Þ⊂Nkx×ky×kzðiÞg;
(3)

where wij reflecting the local similarities between new MRI
patch IMR

i and training MRI patch IMR
j . wij is utilized in our

next step of joint dictionary learning.

2.5.2 Joint dictionary learning

Let fðfMR
i ; IMR

i ; yCTi Þji ¼ 1;2; : : : ; ng denotes a database con-
taining a set of anatomic signature, MRI patches, and corre-
sponding CT central voxels: where fMR

i ∈ Rm denotes the
anatomic signature, Rm denotes the multidimensional space,
IMR
i and yCTi ∈ R denotes the corresponding MRI patch and
CT central voxel intensity value, respectively.

To train the locally-adaptive coupled dictionary for each
preselected training database, we initialized the first iteration
of the dictionary with each coupled column comprising a
pair of similar MRI anatomical signature and a corresponding
central voxel of CT. Let F ¼ fω · fMR

i ji ¼ 1;2; : : : ; ng denotes
the set of weighted anatomic signatures of training MRI patches
and Y ¼ fyCTi ji ¼ 1;2; : : : ; ng denotes the set of corresponding
CT intensities. The element-wise product of ω is obtained
by Fisher’s score47 as shown in Sec. 2.4. The goal of applying
omega is to further enforce the influence of the most dis-
criminative signatures by adaptive weighting parameter.
Then, the initialization of coupled dictionary is generated as
ðDMR; DCTÞ ¼ ðF; YÞ.

In the following iterations, supposing we have the roughly
constructed dictionary DMR ∈ Rm×n of MRI signatures and
DCT ∈ R1×n of CT intensities on training data from the previous
iteration, we utilize the joint dictionary learning method to
simultaneously update DMR and DCT with the core idea that
the sparse representation tracks the same sparse coefficients
of both MR signatures and CT intensities. Let W ¼
fwiji ¼ 1;2; : : : ; ng denotes the weights corresponding to
each MRI patch IMR

i computed by local self-similarity in
Eq. (2), where wi ¼ fwijjj ∈ Nkx×ky×kzðiÞ \ figg. Then, each
training MRI anatomic signature and its corresponding CT
intensity can be sparsely represented by a pair of coupled
DMR and DCT, respectively. Let A ¼ fαiji ¼ 1;2; : : : ; ng
denotes the set of sparse coefficients. Then the joint dictionary
learning framework can be described as follows:
EQ-TARGET;temp:intralink-;e004;326;303ðDMR; DCT; AÞ ¼ arg min

DMR;DCT;X
kF −DMRAk2F þ μkY −DCTAk22

þ τkWAk2;1; (4)

where τ is the regularization parameter of column sparse term, μ
denotes the parameter of penalization, kAk2;1 ¼

P
n
i¼1 kAik2 is

the joint l2;1-norm, and Ai is i’th row of the matrix A.
Equation (4) can be solved by ADM method.45

2.5.3 Prediction

For each patch Inew of a new arrival MRI patch, the sparse
representation αnew of a new arrival MRI patch anatomic
signature under dictionary DMR can be calculated by a BP
optimization46

EQ-TARGET;temp:intralink-;e005;326;128αnew ¼ arg min
x

kfMR
new −DMRαk22 þ τkαk1; (5)

where fMR
new denotes the anatomic signature of each new

MRI patch. Finally, with the corresponding dictionary of
CT DCT, we utilized the coefficient αnew to reconstruct the
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PCT intensity by a linear combination of dictionary DCT

columns

EQ-TARGET;temp:intralink-;e006;63;730yPCTnew ¼ DCTαnew: (6)

Our proposed algorithm is summarized in Algorithm 1. The
default parameter setting of Algorithm 1 is shown in Table 1.

3 Experiments

3.1 Datasets and Quantitative Measurements

To test our prediction method, we applied the proposed method
to 14 paired brain MR and CT images. All patients’ MRI
(1.0 × 1.0 × 1.0 mm3) and CT (1.0 × 1.0 × 1.0 mm3) data
were acquired using a Siemens MR and CT scanner. To quan-
titatively characterize the prediction accuracy, we used three
widely used metrics: mean absolute error (MAE), peak sig-
nal-to-noise ratio (PSNR), normalized cross correlation
(NCC), and similarity index (SI)54 for air, soft-tissue and
bone regions. MAE is used to measure how close forecasts
or predictions are to the actual outcomes. PSNR is an engineer-
ing term for the ratio between the maximum possible power of a
signal and the power of corrupting noise that affects the fidelity
of its representation. NCC is a measure of similarity between
two series as a function of the displacement of one relative
to the other. SI has been used to evaluate the image quality
of nonrigid image registration. The three metrics are defined as

EQ-TARGET;temp:intralink-;e007;326;537MAE ¼ jICT − IPCTj∕C; (7)

EQ-TARGET;temp:intralink-;e008;326;507PSNR ¼ 10 log10

�
Q2

kICT − IPCTk22∕C
�
; (8)

EQ-TARGET;temp:intralink-;e009;326;467NCC ¼ 1

C

X
x;y;z

½ICTðx; y; zÞ − μCT�½IPCTðx; y; zÞ − μPCT�
σCTσPCT

;

(9)

EQ-TARGET;temp:intralink-;e010;326;412SI ¼ 2 ×
nfACT ∩ APCTg

nfACTg þ nfAPCTg
; (10)

where ICT is the ground-truth CT image, IPCT is the correspond-
ing PCT image, Q is the maximal intensity value of ICT and
IPCT, and C is the number of voxels in the image. μCT and
μPCT are the mean of CT and PCT image, respectively. σCT
and σPCT are the standard deviation of CT and PCT image,
respectively. ACT and APCT denote the binary mask (air, soft-
tissue, and bone) of CT and PCT image, respectively. We set
intensity value < − 400 HU as air, >300 HU as bone, and
the rest as soft-tissue. nfAg is the number of elements in set A.
In general, a better prediction has lower MAE, and higher
PSNR, NCC, and SI values.

3.2 Parameter Setting

To compare the influence of multiple parameters within our pro-
posed algorithm (shown in Table 1) we evaluated how variation
of one parameter affects performance while fixing the other
parameters to their default settings in Table 1. Our parameter
testing experiment was performed by testing one patient and
training the other 13 patients. This was done by comparing
the three metrics in Eqs. (7)–(9). We tested the regularization
parameter μ of Eq. (1) over the range of 0.01 to 0.1 and
fixed the other parameter as default settings in Table 1. The per-
formance was not sensitive around μ ¼ 0.05. The smoothing
parameter β and balancing parameter ρ in Eq. (2) were empiri-
cally set to 1 and 0.5, respectively. These parameters were
decided by their performance on our experiments. In Eq. (4),
the parameters μ and τ were initialized by 1 and 0.5, in the

Algorithm 1 Pseudo CT prediction using anatomic signature and
joint dictionary learning.

1. For each training MR image patch IMR, extract the multiscale and
multilevel 3-D RILBP feature fMR.

2. Use fuzzy C-means to segment each corresponding CT ICT into
three labels that represent the CT values in the range of bone,
soft-tissue and air.

3. For the coupled training MRI features and corresponding CT labels,
apply LASSO logistic regression Eq. (1) to select the informative
features as an anatomic signature.

4. Use Fisher’s score47 to measure the discriminant power of
the anatomic signature to separate bone, air and soft-tissue,
and normalize to ω such that

P
ωi ¼ 1.

5. For each new arrival MRI image patch IMR
i , select its similar patches

IMR
i j from the training patches by computing the weight wij from
Eq. (2), and sorting the K-nearest patches by Eq. (3).

6. For the anatomic features fMR
i j of IMR

i j and corresponding CT voxels
yCT
i j , initialize the coupled dictionaries: D̂MR ¼ffMR

i j jj ∈Nkx×ky×kz
ðiÞ \

figg and D̂CT ¼ fyCT
i j jj ∈ Nkx×ky×kz

ðiÞ \ figg.

7. Use joint dictionary learning [Eq. (4)] to train the coupled dictionary
ðDMR; DCTÞ.

8. For each new arrival MRI patch, use Eq. (5) to obtain the sparse
representation of learned dictionary DMR, and then use Eq. (6) to
reconstruct the pseudo CT intensity.

Table 1 Default parameter setting.

Parameter Default value Meaning

Window size 9 × 9 × 9 mm3 MRI searching region size

Patch size 5 × 5 × 5 mm3 MRI patch size (for feature
extraction)

n 25 Number of similar patches

m 63 Length of anatomic signature

μ 0.05 Regularization parameter in
Eq. (1)

β 1 Smoothing parameter of weight
estimation in Eq. (2)

ρ 0.5 Balancing parameter in Eq. (2)

μ 1 Penalty parameter of joint
dictionary learning in Eq. (4)

τ 0.5 Regularization parameter of joint
dictionary learning in Eq. (4)
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following iterations, these two parameters were updated by
ADM as previously recommended.45

We also fixed the patch size and tested different window
sizes, and vice versa. As seen in Table 2, the best MAE and
NCC were obtained with a patch size of 5 × 5 × 5 mm3 and
a window size of 9 × 9 × 9 mm3 (Table 2).

Figures 5(a1)–5(a3) show PSNR, MAE, and NCC metrics as
a function of number of similar patches, whereas the other
parameters are fixed as in default setting in Table 1. From
these curves, 23 similar patches are sufficient for a good predic-
tion. However, since MAE was the highest priority metric that

was optimized, the absolute change in PSNR from 23 to 25 sim-
ilar patches holds less weight than MAE, which resulted in 25
similar patches being the most optimal number for prediction.

The number of selected features also influences the learning
performance. If most features are eliminated by feature selec-
tion, the precision of PCT prediction may be diminished
due to insufficient information. Conversely, if the majority of
features are selected, uninformative data may also affect the
accuracy of the proposed method. To measure the performance
as determined by the number of selected features, we evaluated
the PSNR, NCC, and MAE metrics as shown in Figs. 5(b1)–
5(b3), and fixed the other parameter as shown in Table 1.
One can observe that the optimal number of selected features
is 63.

3.3 Contribution of Feature Selection and
Joint Dictionary Learning

In Sec. 2, we introduced two enhancements over the classic fea-
ture-based method, i.e., feature selection and joint dictionary
learning. Figure 6 shows detailed visual comparisons between
classic feature-based (CF), feature selection-based (FS), and
feature selection with jointly dictionary learning-based (FSJDL)
methods. Table 3 quantifies the above observations using 14
pairs of MR-CT leave-one-out experiments. We can visually
observe the result in Fig. 6 that the FSJDL method best pre-
serves continuity, coalition, and smoothness in the prediction
results. As prediction results between methods primarily differ
in regions were bone is adjacent to air, visual results within such
regions are shown in Figs. 6(b2)–6(d2) and 6(b5)–6(d5). Table 4
shows the consistent improvement in FS over the CF method,
and the modest improvement of FSJDL over the FS and CF
methods. The prediction estimated by FS is statistically superior
to the CF method for MAE, NCC, and PSNR (t-test, p < 0.001).

Table 2 The performance with different patch size and window size.

Window size

Patch size 5 × 5 × 5 7 × 7 × 7 9 × 9 × 9

3 × 3 × 3 PSNR = 22.7 dB PSNR = 22.9dB PSNR = 22.7 dB

NCC = 0.93 NCC = 0.93 NCC = 0.92

MAE = 76.1 HU MAE = 79.3 HU MAE = 83.6 HU

5 × 5 × 5 N/A PSNR = 23.7 dB PSNR = 23.7 dB

NCC = 0.93 NCC = 0.93

MAE = 76.1 HU MAE = 75.9 HU

7 × 7 × 7 N/A N/A PSNR = 23.1 dB

NCC = 0.93

MAE = 76.9 HU

74.5

76.5

78.5

5 7 9 11 13 15 17 19 21 23 25 27
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E
 (
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)

Number of similar patches

23.20
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M
A

E
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H
U
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Number of selected features
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Fig. 5 (a1–a3) The MAE, PSNR, and NCC performance with different number of similar patches and
(b1–b3) the MAE, PSNR, and NCC performance with different number of selected features.
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Also, the prediction estimated by FSJDL is significantly supe-
rior to the FS method for MAE and NCC (p < 0.001).

3.4 Comparison of State-of-the-Art Dictionary
Learning-Based Methods

We compared our method with two state-of-the-art dictionary-
based approaches: an intensity-based method (Int)42 and a fast
patch-based method (FP).43 The parameters used in these two

(a1) (b1) (c1) (d1)(b1) (c(( 1) (d1)(

(a2) (b2) (c2) (d2)

(b3) (c3) (d3)

(a3) (b4) (c4) (d4)(b4)(a3) (d4)(c4)(

(a4) (b5) (c5) (d5)

(b6) (c6) (d6)

(b2000

-2000

0

(b2000

-2000

0

Fig. 6 Comparison of the PCT estimated by CF, FS, and FSJDL, (a1) and (a3) ground truth CT, (b1–d1)
and (b4–d4) are the PCT result generated by CF, FS, and FSJDL, respectively. (a2–d2) The zoomed
regions indicated by solid red boxes in (a1–d1); (a4–d4) are the zoomed regions indicated by solid red
boxes in (a3–d3). (b3–d3) are difference image between ground truth (a1) and the PCT estimated by
CF, FS, and FSJDL. (b6–d6) Difference image between ground truth (a3) and the PCT generated by
CF, FS, and FSJDL.

Table 3 Numerical results with compared methods.

Method MAE (HU) PSNR (dB) NCC

CF 102.8 ± 22.7 21.6 ± 1.2 0.87 ± 0.04

FS 96.4 ± 23.8 22.0 ± 1.4 0.88 ± 0.04

FSJDL 82.6 ± 26.1 22.4 ± 1.9 0.91 ± 0.04

Journal of Medical Imaging 034001-8 Jul–Sep 2018 • Vol. 5(3)

Lei et al.: Magnetic resonance imaging-based pseudo computed tomography using anatomic signature and joint dictionary learning



methods were set based on their best performance. The predic-
tion results are shown in Fig. 7. The CT images generated by our
method are similar to ground truth. Our method outperforms
these two methods, specifically with higher similarity in
shape and lower difference values. The Int method often results
in blurred predictions due to simple averaging of the similar
patches. Although the FP method works better than the Int
method, its prediction remains noisy. Table 4 quantifies the
superiority of our method over the other two in terms of
MAE, PSNR, NCC, and SI. Our method’s average MAE of
82.6 HU is significantly better than the 148.9 and 125.5 HU
generated by the Int and the FP methods, respectively.
Figure 8 shows the detailed prediction performance of the com-
parison method through histogram analyses of the entire leave-
one-out template. It can be seen that for some patients, overall

performance is inferior to that of others, presumably owing to
lack of database diversity.

4 Discussion
In our study, we have presented a dictionary-learning-based
method of estimating a PCT image from a standard MR
image. We introduced an anatomic signature based on feature
selection into a dictionary-learning-based method to improve
the prediction accuracy of the resultant PCT. Local self-similar-
ity was incorporated to address the challenge of large-scale
training data training. Joint dictionary learning was applied to
learn the coupled dictionary of MRI anatomic signatures and
CT intensities. We evaluated the clinical application of our
method on MR-CT brain datasets and compared its performance

Table 4 Numerical results of the proposed and state-of-the-art dictionary learning methods.

Method MAE (HU) PSNR (dB) NCC SI (Air) SI (Soft-tissue) SI (Bone)

Int 148.9 ± 42.3 18.3 ± 0.9 0.80 ± 0.05 0.80 ± 0.09 0.57 ± 0.12 0.51 ± 0.13

FP 125.5 ± 24.5 19.1 ± 1.1 0.80 ± 0.05 0.93 ± 0.02 0.72 ± 0.07 0.56 ± 0.18

FSJDL 82.6 ± 26.1 22.4 ± 1.9 0.91 ± 0.04 0.98 ± 0.01 0.88 ± 0.03 0.69 ± 0.08

FSJDL versus Int (p-value) <0.001 <0.001 <0.001 <0.001 <0.001 0.002

FSJDL versus FP (p-value) <0.001 <0.001 <0.001 <0.001 <0.001 0.036

(a1) (b1) (c1) (d1) (e1) (f1)

(b2) (c2) (d2) (e2) (f2)

(a2) (b3) (c3) (d3) (e3) (f3)

(b4) (c4) (d4) (e4) (f4)

2000

-2000

0

2000

-2000

0

Fig. 7 Comparison with two state-of-the-art methods: (a1–a2) ground truth, (b1–b4) intensity-based
method (Int), (c1–c4) fast patch-based method (FP), (d1–d4) classic feature-based method (CF),
(e1–e4) feature selection-based method (FS), and (f1–f4) feature selection with joint dictionary learn-
ing-based method (FSJDL).
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with the true CT image (ground truth) and two state-of-the-art
dictionary-learning-based methods.

The efficacy of using 3-D RILBP was visually demonstrated
in Figs. 7(d1)–7(d4) when compared with [Figs. 7(c1)–7(c4)]
and numerically demonstrated by detailed metrics comparing
FP and CF methods in Fig. 7. We observed that 3-D RILBP
features notably improved the prediction accuracy of the
PCT. Figure 2 shows that multiradii level sensitivity and multi-
derivate image modeling provided features containing local
texture, edges and spatial information derived from a 3-D MR
image patch. Thus, we concluded that 3-D RILBP features can
balance image deformation invariance and sensitivity to small
structural changes.

The efficacy of using an anatomic signature was demon-
strated via the comparison between Figs. 6(c1)–6(c6), compared
with Figs. 6(b1)–6(b6), Figs. 7(e1)–7(e4) versus Figs. 7(d1)–
7(d4) and Table 4. The PCT generated from FP method was
superior compared with that generated with the CF method.
Our results showed that the anatomic signature substantially
improved the prediction accuracy, both qualitatively and quan-
titatively. It can be concluded that the use of anatomic signature
identified by feature selection can diminish the influence of
bias and redundant information contained by high-dimensional
training data and preserve the informative and highly relevant
features for prediction performance.

Figures 6(d1)–6(d6) compared with Figs. 6(c1)–6(c6), and
Figs. 7(f1)–7(f4) compared with Figs. 7(e1)–7(e4), and Fig. 8
FSJDL compared with the FS method validated the efficacy
of the local self-similarity and joint dictionary learning frame-
work. The FSJDL method was a significant improvement to
FS method. Since the training was based on a small set of
similar patches, a CT image could be predicted in about 2 h
on 3.00 GHz Intel Xeon 8-core processor, compared to about
1 week required for competing methods in the same experimen-
tal environment. Thus, joint dictionary learning drastically
reduces computation complexity.

Our method was substantially better than two state-of-the-art
dictionary learning methods as evaluated by the local texture,
edge and spatial information anatomical signature extraction,
the discriminative feature selection, and the joint dictionary
learning framework. As shown in Fig. 7, our system could pre-
dict PCT images that are similar to ground-truth values and
could effectively capture minute changes in electron densities.
As shown in Table 4 and Fig. 8, our proposed method signifi-
cantly improved the performance of PCT. The MAE between
our generated PCT and ground truth CT is <85 Hounsfield
unit (HU). The previous work14 has shown that an HU error on
the order of ∼100 did not affect the dosimetric accuracy of
intensity modulated radiation treatment planning based on PCT.
This shows that PCT generated from MRI is a valid clinical
application that can be applied to the current workflow of patient
treatment planning.

Although we have proposed an accurate method for estimat-
ing PCTs derived from brain T1-weighted MR, this work still
has several limitations. First, we did not apply this method to
other body sites, such as abdomen and lung. For nonrigid struc-
tures, we will have to use a deformable MRI-CT registration to
deal with the intrasubject mismatch between MRI and CT.
Second, a dosimetric comparison between plans generated
from the simulation CT and its corresponding predicted CT
has not yet been explored. Third, we did not compare our algo-
rithm with the other state-of-the-art machine-learning-based
methods. The goals here are proving the efficiency of the feature
selection in manufactural feature-based dictionary learning
method, and improving the recent dictionary-learning-based
methods for PCT estimation. Last, we tested our algorithm
on 14 patients’ brain; testing in a larger population can prove
the robustness of our algorithm.

5 Conclusion
Here, we proposed anatomic signature and joint dictionary
learning-based methods to improve the accuracy of pseudo

Fig. 8 (a–c) The MAE, PSNR, and NCC of different methods for each enrolled patient, respectively.
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CT prediction. The anatomic signature was generated by iden-
tifying the most informative and discriminative features within
the 3-D RFLBP features extracted from multiradii level sensi-
tivity and multiderivate image modeling-based MR images. The
feature selection was implemented by LASSO and then the
Fisher’s score was adopted to evaluate the relevance of such fea-
ture anatomically and statistically. To feasibly implement the
specific dictionary learning for each patch of an arriving new
MRI, a bounded searching region with most similar neighbors
was obtained by computing the local self-similarity. Then, a
joint dictionary learning method was incorporated to simultane-
ously train the sparse representation coupled MRI and CT dic-
tionaries of either MRI anatomic signature or CT intensities.
Afterward, the sparse coefficients of new MRI patch signature
were optimized by BP methods under the well-trained MRI
dictionary. Finally, we used these coefficients to reconstruct
the pseudo CT intensity under the well-trained CT dictionary.
Experimental results showed that our method can accurately
predict pseudo CT images in various scenarios, even in the con-
text of large shape variation, and outperforms two state-of-the-
art dictionary-learning-based methods.

Disclosures
The author declares no conflicts of interest.

Acknowledgments
This research was supported in part by the National Cancer
Institute of the National Institutes of Health under Award No.
R01CA215718, the Department of Defense (DoD) Prostate
Cancer Research Program (PCRP) Award No. W81XWH-13-
1-0269 and Dunwoody Golf Club Prostate Cancer Research
Award, a philanthropic award provided by the Winship Cancer
Institute of Emory University.

References
1. J. M. Edmund and T. Nyholm, “A review of substitute CT generation for

MRI-only radiation therapy,” Radiat. Oncol. 12, 28 (2017).
2. S. Devic, “MRI simulation for radiotherapy treatment planning,”

Med. Phys. 39(11), 6701–6711 (2012).
3. D. Andreasen et al., “Patch-based generation of a pseudo CT from

conventional MRI sequences for MRI-only radiotherapy of the brain,”
Med. Phys. 42(4), 1596–1605 (2015).

4. M. Kapanen and M. Tenhunen, “T1/T2*-weighted MRI provides clin-
ically relevant pseudo-CT density data for the pelvic bones in MRI-only
based radiotherapy treatment planning,” Acta Oncol. 52(3), 612–618
(2013).

5. J. Uha et al., “MRI-based treatment planning with pseudo CT generated
through atlas registration,” Med. Phys. 41(5), 051711 (2014).

6. J. Sjolund et al., “Generating patient specific pseudo-CT of the head
from MR using atlas-based regression,” Phys. Med. Biol. 60(2), 825–
839 (2015).

7. E. Schreibmann et al., “MR-based attenuation correction for hybrid
PET-MR brain imaging systems using deformable image registration,”
Med. Phys. 37(5), 2101–2109 (2010).

8. J. A. Dowling et al., “An atlas-based electron density mapping method
for magnetic resonance imaging (MRI)-alone treatment planning and
adaptive MRI-based prostate radiation therapy,” Int. J. Radiat. Oncol.
83(1), E5–E11 (2012).

9. J. Sjolund et al., “Skull segmentation in MRI by a support vector
machine combining local and global features,” in 22nd Int. Conf. on
Pattern Recognition, pp. 3274–3279 (2014).

10. M. Hofmann et al., “MRI-based attenuation correction for PET/MRI:
a novel approach combining pattern recognition and atlas registration,”
J. Nucl. Med. 49(11), 1875–1883 (2008).

11. P. Khateri et al., “A novel segmentation approach for implementation of
MRAC in head PET/MRI employing short-TE MRI and 2-point Dixon
method in a fuzzy C-means framework,” Nucl. Instrum. Methods Phys.
Res. Sect. A 734, 171–174 (2014).

12. P. Khateri et al., “Generation of a four-class attenuation map for MRI-
based attenuation correction of PET Data in the head area using a novel
combination of STE/Dixon-MRI and FCM clustering,” Mol. Imaging
Biol. 17(6), 884–892 (2015).

13. H. Yu et al., “Toward magnetic resonance-only simulation: segmenta-
tion of bone in MR for radiation therapy verification of the head,” Int. J.
Radiat. Oncol. 89(3), 649–657 (2014).

14. M. S. R. Gudur et al., “A unifying probabilistic Bayesian approach to
derive electron density from MRI for radiation therapy treatment
planning,” Phys. Med. Biol. 59(21), 6595–6606 (2014).

15. C. Siversson et al., “Technical note: MRI only prostate radiotherapy
planning using the statistical decomposition algorithm,” Med. Phys.
42(10), 6090–6097 (2015).

16. X. F. Yang and B. W. Fei, “Multiscale segmentation of the skull in MR
images for MRI-based attenuation correction of combined MR/PET,”
J. Am. Med. Inf. Assoc. 20(6), 1037–1045 (2013).

17. A. P. Aitken et al., “Improved UTE-based attenuation correction for
cranial PET-MR using dynamic magnetic field monitoring,”Med. Phys.
41(1), 012302 (2014).

18. C. Buerger et al., “Investigation of MR-based attenuation correction and
motion compensation for hybrid PET/MR,” IEEE Trans. Nucl. Sci.
59(5), 1967–1976 (2012).

19. J. M. Edmund et al., “A voxel-based investigation for MRI-only radio-
therapy of the brain using ultra short echo times,” Phys. Med. Biol.
59(23), 7501–7519 (2014).

20. V. Keereman et al., “MRI-based attenuation correction for PET/MRI
using ultrashort echo time sequences,” J. Nucl. Med. 51(5), 812–818
(2010).

21. L. B. Aasheim et al., “PET/MR brain imaging: evaluation of clinical
UTE-based attenuation correction,” Eur. J. Nucl. Med. Mol. Imaging
42(9), 1439–1446 (2015).

22. J. Cabello et al., “MR-based attenuation correction using ultrashort-
echo-time pulse sequences in dementia patients,” J. Nucl. Med.
56(3), 423–429 (2015).

23. Y. Berker et al., “MRI-based attenuation correction for hybrid PET/MRI
systems: a 4-class tissue segmentation technique using a combined
ultrashort-echo-time/dixon MRI sequence,” J. Nucl. Med. 53(9),
796–804 (2012).

24. C. N. Ladefoged et al., “Region specific optimization of continuous lin-
ear attenuation coefficients based on UTE (RESOLUTE): application to
PET/MR brain imaging,” Phys. Med. Biol. 60(20), 8047–8065 (2015).

25. S. H. Hsu et al., “Investigation of a method for generating synthetic CT
models from MRI scans of the head and neck for radiation therapy,”
Phys. Med. Biol. 58(23), 8419–8435 (2013).

26. C. M. Rank et al., “MRI-based treatment plan simulation and adaptation
for ion radiotherapy using a classification-based approach,” Radiat.
Oncol. 8, 51 (2013).

27. C. M. Rank et al., “MRI-based simulation of treatment plans for ion
radiotherapy in the brain region,” Radiother. Oncol. 109(3), 414–418
(2013).

28. J. Kim et al., “Implementation of a novel algorithm for generating
synthetic CT images from magnetic resonance imaging data sets for
prostate cancer radiation therapy,” Int. J. Radiat. Oncol. 91(1), 39–47
(2015).

29. J. Korhonen et al., “Influence of MRI-based bone outline definition
errors on external radiotherapy dose calculation accuracy in hetero-
geneous pseudo-CT images of prostate cancer patients,” Acta Oncol.
53(8), 1100–1106 (2014).

30. J. Korhonen et al., “A dual model HU conversion from MRI intensity
values within and outside of bone segment for MRI-based radiotherapy
treatment planning of prostate cancer,” Med. Phys. 41(1), 011704
(2014).

31. X. F. Yang and B. W. Fei, “A skull segmentation method for brain MR
images based on multiscale bilateral filtering scheme,” Proc. SPIE
7623, 76233K (2010).

32. B. K. Navalpakkam et al., “Magnetic resonance-based attenuation cor-
rection for PET/MR hybrid imaging using continuous valued attenua-
tion maps,” Invest. Radiol. 48(5), 323–332 (2013).

Journal of Medical Imaging 034001-11 Jul–Sep 2018 • Vol. 5(3)

Lei et al.: Magnetic resonance imaging-based pseudo computed tomography using anatomic signature and joint dictionary learning

https://doi.org/10.1186/s13014-016-0747-y
https://doi.org/10.1118/1.4758068
https://doi.org/10.1118/1.4914158
https://doi.org/10.3109/0284186X.2012.692883
https://doi.org/10.1118/1.4873315
https://doi.org/10.1088/0031-9155/60/2/825
https://doi.org/10.1118/1.3377774
https://doi.org/10.1016/j.ijrobp.2011.11.056
https://doi.org/10.1109/ICPR.2014.564
https://doi.org/10.1109/ICPR.2014.564
https://doi.org/10.2967/jnumed.107.049353
https://doi.org/10.1016/j.nima.2013.09.006
https://doi.org/10.1016/j.nima.2013.09.006
https://doi.org/10.1007/s11307-015-0849-1
https://doi.org/10.1007/s11307-015-0849-1
https://doi.org/10.1016/j.ijrobp.2014.03.028
https://doi.org/10.1016/j.ijrobp.2014.03.028
https://doi.org/10.1088/0031-9155/59/21/6595
https://doi.org/10.1118/1.4931417
https://doi.org/10.1136/amiajnl-2012-001544
https://doi.org/10.1118/1.4837315
https://doi.org/10.1109/TNS.2012.2209127
https://doi.org/10.1088/0031-9155/59/23/7501
https://doi.org/10.2967/jnumed.109.065425
https://doi.org/10.1007/s00259-015-3060-3
https://doi.org/10.2967/jnumed.114.146308
https://doi.org/10.2967/jnumed.111.092577
https://doi.org/10.1088/0031-9155/60/20/8047
https://doi.org/10.1088/0031-9155/58/23/8419
https://doi.org/10.1186/1748-717X-8-51
https://doi.org/10.1186/1748-717X-8-51
https://doi.org/10.1016/j.radonc.2013.10.034
https://doi.org/10.1016/j.ijrobp.2014.09.015
https://doi.org/10.3109/0284186X.2014.929737
https://doi.org/10.1118/1.4842575
https://doi.org/10.1117/12.844677
https://doi.org/10.1097/RLI.0b013e318283292f


33. A. Johansson, M. Karlsson, and T. Nyholm, “CT substitute derived from
MRI sequences with ultrashort echo time,” Med. Phys. 38(5), 2708–
2714 (2011).

34. A. Johanson et al., “Improved quality of computed tomography substi-
tute derived from magnetic resonance (MR) data by incorporation of
spatial information—potential application for MR-only radiotherapy
and attenuation correction in positron emission tomography,” Acta
Oncol. 52(7), 1369–1373 (2013).

35. J. H. Jonsson et al., “Treatment planning of intracranial targets on MRI
derived substitute CT data,” Radiother. Oncol. 108(1), 118–122 (2013).

36. J. H. Jonsson et al., “Accuracy of inverse treatment planning on substi-
tute CT images derived from MR data for brain lesions,” Radiat. Oncol.
10, 13 (2015).

37. R. J. Li et al., “Deep learning based imaging data completion for
improved brain disease diagnosis,” Lect. Notes Comput. Sci. 8675,
305–312 (2014).

38. A. Jog, A. Carass, and J. L. Prince, “Improving magnetic resonance
resolution with supervised learning,” in IEEE 11th Int. Symp. on
Biomedical Imaging (ISBI), pp. 987–990 (2014).

39. D. Andreasen et al., “Computed tomography synthesis from magnetic
resonance images in the pelvis using multiple random forests and auto-
context features,” Proc. SPIE 9784, 978417 (2016).

40. S. L. S. Chan et al., “Automated classification of bone and air volumes
for hybrid PET-MRI brain imaging,” in Int. Conf. on Digital Image
Computing: Techniques and Applications (Dicta), pp. 1–8 (2013).

41. T. Huynh et al., “Estimating CT image from MRI data using structured
random forest and auto-context model,” IEEE Trans. Med. Imaging
35(1), 174–183 (2016).

42. D. Andreasen, K. Van Leemput, and J. M. Edmund, “A patch-based
pseudo-CT approach for MRI-only radiotherapy in the pelvis,” Med.
Phys. 43(8), 4742–4752 (2016).

43. A. Torrado-Carvajal et al., “Fast patch-based pseudo-CT synthesis from
T1-weighted MR images for PET/MR attenuation correction in brain
studies,” J. Nucl. Med. 57(1), 136–143 (2016).

44. S. Aouadi et al., “Sparse patch-based method applied to MRI-only
radiotherapy planning,” Phys. Med. 32, 309 (2016).

45. S. Boyd et al., “Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Found. Trends Mach.
Learn. 3(1), 1–122 (2010).

46. W. Deng, W. Yin, and Y. Zhang, “Group sparse optimization by
alternating direction method,” Proc. SPIE 8858, 88580R (2013).

47. M. W. Ayech and D. Ziou, “Automated feature weighting and random
pixel sampling in k-means clustering for Terahertz image segmenta-
tion,” in IEEE Conf. on Computer Vision and Pattern Recognition
Workshops (CVPRW) (2015).

48. O. Pauly et al., “Fast multiple organ detection and localization in whole-
body MR dixon sequences,” Lect. Notes Comput. Sci. 6893, 239–247
(2011).

49. J. Fehr and H. Burkhardt, “3D rotation invariant local binary patterns,”
in 19th Int. Conf. on Pattern Recognition, Vol. 1–6, pp. 616–619 (2008).

50. M. Avalos et al., “Sparse conditional logistic regression for analyzing
large-scale matched data from epidemiological studies: a simple algo-
rithm,” BMC Bioinf. 16, S1 (2015).

51. S. Aseervatham et al., “A sparse version of the ridge logistic regression
for large-scale text categorization,” Pattern Recognit. Lett. 32(2), 101–
106 (2011).

52. M. Yaqub et al., “Investigation of the role of feature selection and
weighted voting in random forests for 3-D volumetric segmentation,”
IEEE Trans. Med. Imaging 33(2), 258–271 (2014).

53. Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course, Springer US, New York (2003).

54. F. H. Tang and H. S. H. Ip, “Image fusion enhancement of deformable
human structures using a two-stage warping-deformable strategy:
a content-based image retrieval consideration,” Inf. Syst. Front. 11(4),
381–389 (2009).

Biographies for the authors are not available.

Journal of Medical Imaging 034001-12 Jul–Sep 2018 • Vol. 5(3)

Lei et al.: Magnetic resonance imaging-based pseudo computed tomography using anatomic signature and joint dictionary learning

https://doi.org/10.1118/1.3578928
https://doi.org/10.3109/0284186X.2013.819119
https://doi.org/10.3109/0284186X.2013.819119
https://doi.org/10.1016/j.radonc.2013.04.028
https://doi.org/10.1186/s13014-014-0308-1
https://doi.org/10.1007/978-3-319-10443-0
https://doi.org/10.1109/ISBI.2014.6868038
https://doi.org/10.1109/ISBI.2014.6868038
https://doi.org/10.1117/12.2216924
https://doi.org/10.1109/DICTA.2013.6691483
https://doi.org/10.1109/DICTA.2013.6691483
https://doi.org/10.1109/TMI.2015.2461533
https://doi.org/10.1118/1.4958676
https://doi.org/10.1118/1.4958676
https://doi.org/10.2967/jnumed.115.156299
https://doi.org/10.1016/j.ejmp.2016.07.173
https://doi.org/10.1561/2200000016
https://doi.org/10.1561/2200000016
https://doi.org/10.1117/12.2024410
https://doi.org/10.1109/CVPRW.2015.7301294
https://doi.org/10.1109/CVPRW.2015.7301294
https://doi.org/10.1007/978-3-642-23626-6
https://doi.org/10.1109/ICPR.2008.4761098
https://doi.org/10.1186/1471-2105-16-S6-S1
https://doi.org/10.1016/j.patrec.2010.09.023
https://doi.org/10.1109/TMI.2013.2284025
https://doi.org/10.1007/s10796-009-9151-6

